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Abstract: Coronavirus disease 2019 (COVID-19), which is becoming a global pandemic, is caused by
SARS-CoV-2 infection. In COVID-19, thrombotic events occur frequently, mainly venous thromboem-
bolism (VTE), which is closely related to disease severity and clinical prognosis. Compared with
historical controls, the occurrence of VTE in hospitalized and critical COVID-19 patients is incredibly
high. However, the pathophysiology of thrombosis and the best strategies for thrombosis prevention
in COVID-19 remain unclear, thus needing further exploration. Virchow’s triad elements have been
proposed as important risk factors for thrombotic diseases. Therefore, the three factors outlined
by Virchow can also be applied to the formation of venous thrombosis in the COVID-19 setting. A
thorough understanding of the complex interactions in these processes is important in the search for
effective treatments for COVID-19. In this work, we focus on the pathological mechanisms of VTE
in COVID-19 from the aspects of endothelial dysfunction, hypercoagulability, abnormal blood flow.
We also discuss the treatment of VTE as well as the ongoing clinical trials of heparin anticoagulant
therapy. In addition, according to the pathophysiological mechanism of COVID-19-associated throm-
bosis, we extended the range of antithrombotic drugs including antiplatelet drugs, antifibrinolytic
drugs, and anti-inflammatory drugs, hoping to find effective drug therapy and improve the prognosis
of VTE in COVID-19 patients.
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1. Introduction

Until August 23, 2021, COVID-19 has gradually spread to multiple countries and
regions as the epidemic worsens, with statistics showing about 211 million laboratory-
confirmed cases and approximately four million deaths due to the progression of the
disease. (https://www.who.int (accessed 23 August 2021)), leading to a profound im-
pact on society, culture, and the global economy. COVID-19 patients may present with
variable clinical features, ranging from asymptomatic infection to life-threatening clinical
comorbidities [1]. Interestingly, apart from acute respiratory distress syndrome (ARDS),
shock, and heart failure, liver failure, kidney failure, systemic coagulation derangement
is increasingly recognized as an important clinical course in COVID-19 patients with
upregulated coagulation indexes including fibrin/fibrinogen degradation products and D-
Dimer [2,3]. In this regard, systemic activation of blood coagulation can cause pathological
thrombotic events including arterial thrombosis, venous thrombosis, and microvascular
thrombosis, indicating a poor prognosis such as DIC, pulmonary embolism, and other
fatal manifestations. Furthermore, autopsy studies have identified pulmonary embolism,
diffuse alveolar damage, and a high occurrence of deep venous thrombosis (DVT) (58%).
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In this study, imaging examination of deceased patients revealed reticular infiltration in
the lungs with severe bilateral compactness and consolidation. About 67 percent of the
patients had diffuse lung injury. In all patients, SARS-CoV-2 RNA was detected in multiple
organs with high concentrations, mainly in the lungs [4]. As the epidemic progresses,
accumulated studies have revealed an increased incidence of VTE in patients hospitalized
with SARS-CoV-2, especially if they become critical illness with COVID-19 [5]. There is
a comprehensive systematic review from multiple health care systems, showing that the
occurrence of VTE in COVID-19 inpatients was 17.3%, of which approximately 2/3 were
DVTs. According to the subgroup analysis, VTE occurrence was more common in the
imaging diagnostic group (33.1% vs. 9.8% with clinical diagnosis), and intensive care unit
group (27.9% vs. 7.1% in the general ward) [6]. Importantly, the incidence of VTE was also
associated with mortality in patients with COVID-19, as studies indicated that significant
mortality is thought to be secondary to VTE. In fact, autopsy results of COVID-19 deaths
suggest that thrombosis plays an important role in mortality [3,4,7]. According to previous
studies, the risk factors for VTE are diverse including immobilization, malignant tumors,
major surgery, a history of VTE, and chronic heart disease [8]. Beyond that, age, gender,
BMI, and lymphocyte levels may be closely related to the incidence of VTE. Inflammatory
factors and coagulation factors (CRP, D-dimer, APTT, FDP) can be used to predict the
occurrence of venous thrombosis [9]. Clinical analysis showed that critically ill patients
with COVID-19 infection have a nearly 10-fold increased risk of venous thromboembolism
or death [10].

However, the values of these factors are not equal in patients with COVID-19 infection.
Therefore, on account of the implications in the clinical diagnosis, anticoagulant prophy-
laxis, and treatment, understanding the underlying pathophysiological mechanisms of
VTE in the progression of COVID-19 is of great significance. In the subsequent discussion,
we review the existing research on the involvement of VTE with SARS-CoV-2 infection,
focusing on the latest evidence on the pathologic mechanisms and clinical management of
VTE.

2. Pathophysiology of VTE in COVID-19

In exploring the pathophysiology of VTE formation, we should remember what the
famous German physician Rudolph Ludwig Karl Virchow described as the three major
factors contributing to thrombosis, namely: endothelial dysfunction, hypercoagulable state,
and blood stasis (the Virchow triad) [11]. The infection with SARS-CoV-2 can enhance three
aspects of the Virchow triad, resulting in an increased risk of thrombosis, which will be
elaborated on these three characteristics below.

Endothelial Dysfunction

Endothelial cells, as a single-cell layer on the inner wall of blood vessels, act as a
mechanical barrier between blood and basement membrane (a protective layer of limiting
endothelial cells (EC)–immune cell and EC–platelet interactions), controlling vascular tone
and immunomodulation [12]. Vascular endothelium is a highly active paracrine, endocrine,
and autocrine organ in the secretion system. Cytokines secreted by vascular endothelium
play an important role in regulating angiotasis and maintaining vascular homeostasis [13].
Endothelial dysfunction is a major contributor to microvascular dysfunction including
endothelial activation and decreased vasodilation, resulting in proinflammatory, hyper-
coagulable, and proliferative states [14,15]. Among the pathological mechanisms of VTE
in COVID-19, endothelial dysfunction could be induced by many factors including direct
SARS-CoV-2 invasion of ECs or secondary inflammation [16,17].

First, SARS-CoV-2 directly infects ECs and results in diffuse endothelial inflamma-
tion, dysfunction, apoptosis, and pyroptosis, thus impairing the normal antithrombotic
activity of endothelial cells [4,18]. Second, to enter cells, emerging evidence demonstrates
that SARS-CoV-2 targets multiple organs, expressing the angiotensin converting enzyme
2 receptor (ACE2) [19]. Existing research suggests that ACE2 receptor is widely expressed



J. Pers. Med. 2021, 11, 1328 3 of 12

on endotheliocytes. In addition, there is a kind of serine protease (transmembrane protease
serine 2) that can cleave and activate spike proteins on the membrane, promoting the
membrane fusion of SARS-CoV-2. Then, endocytosis and proliferation of SARS-CoV-2 may
continue, eventually leading to infection [17,20,21]. Moreover, SARS-CoV-2 virus binds
ACE2 and intracellular translocation, impairing ACE2 and depriving it of endogenous
normal enzyme function. Under these conditions, it is conceivable that depletion of ACE2,
characteristic of SARS-CoV-2 infection, facilitating the kallikrein-bradykinin (BK) system,
inflammation, vascular permeability, and coagulopathy [22,23]. Furthermore, immune
cells and inflammatory cytokines could enhance endothelial cell contraction and lead to
relaxation of endothelial junctions. This, in turn, pulls the endothelial cells apart, resulting
in the opening of gaps between adjacent endothelial cells [24]. In addition, increased
levels of proinflammatory cytokines (Interleukin-1, Interleukin-6, and TNF) were found
in COVID-19 patients, which may explain the endothelial dysfunction to some degree.
Previous works have demonstrated that endothelial cells can secrete a variety of anticoag-
ulant, antithrombotic substances. However, these molecules are normally covered with
glycoprotein, which could insulate them from blood cells such as red cells, platelets, and
immune cells. When infected with SARS-CoV-2, the breakdown of glycocalyx would lead
to the activation of endothelial cells, eventually resulting in thrombotic events [25,26].
Finally, when hypoxia occurs in COVID-19 patients, expressions of membrane adhesion
molecules (P-selectin, E-selectin, ICAM-1, and VCAM-1) may activate the COX signaling
pathway in ECs, resulting in endothelial cell destruction and vascular smooth muscle cell
contraction [27]. Other studies have demonstrated that hypoxia may result in elevating
hypoxia inducible factor-1α (HIF-1α), expressed by endothelial cells and immune cells,
and more importantly, it could enhance endothelial cell damage in COVID-19 patients by
reducing CD55 expression [28]. In conclusion, endothelial injury has great implications for
the formation of VTE in COVID-19 patients, not only in terms of its structure and function,
but also in the cascade reaction caused by it.

3. Hypercoagulable State

When SARS-CoV-2 infection occurs, The coagulation changes indicate a hypercoagu-
lable state, and these changes may increase the risk of thromboembolic complications. The
induction of a procoagulant state along with abnormal markers of coagulation (comple-
ment and cytokines), increased platelet reactivity, neutrophil extracellular traps (NETs). We
will describe their pathophysiological mechanisms in the following discussion.

3.1. Platelet Activation

Platelets, a type of non-nuclear blood cell in circulating blood, are known for their
important role in thrombosis and hemostasis [29]. Recent research has found that the
occurrence of thrombotic complications is particularly high in critically ill patients with
COVID-19. Increased arterial and venous thrombosis, even pulmonary embolism, are
consistent with the fact that increased platelet activation is more likely to occur in severe
patients than in mild or asymptomatic subjects [30]. All of the data placed platelets as
conductors of deep venous thrombosis (DVT) pathogenesis, the mechanics of which have
been explored. First, the SARS-CoV-2 virus can directly induce platelet activation through
Spike/ACE2 interactions, further causing thrombosis. In this process, studies showed that
mitogen-activated protein kinase (MAPK) was involved in SARS-CoV-2-induced platelet
activation, which also explained the phenomenon that the MAPK signaling pathway of
platelets was stimulated in COVID-19 patients [31,32]. On the other hand, viral infection
could trigger a range of inflammatory responses, and immune substances that may also
lead to high platelet activity in COVID-19 patients [31]. In COVID-19, some of the dys-
regulated pro-inflammatory cytokines (IL-1β, IL-6, and IL-8) play a pathological role in
promoting platelet activation and causing platelet dysfunction. For example, IL-1β could
regulate platelet aggregation through its receptor IL-1R1 expressed on platelets [33]. In
addition, other mechanisms related to the pathogenesis of COVID-19 include hypoxemia,
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increased inflammation, immune system activation, platelet apoptosis, and endothelial cell
dysfunction, [34,35], which might further promote platelet activation, ultimately leading
to thrombosis [36]. Previous articles have demonstrated that SARS-CoV-2-induced patho-
logical inflammation promotes the increased expression of P-selectin and the release of
sCD40L, which together with thrombin promotes platelet activation. This, in turn, further
increases thrombin, p-selectin, and sCD40L levels, creating a positive feedback loop that
promotes platelet activation and thrombosis [33].

3.2. Cytokines and Chemokines

In the process of COVID-19, elevated plasma levels of IL-6, IFN-γ, IL-2, IL-7, IL-15,
G-CSF, MCP1, MIP1α, and TNF were observed [25,37,38]. Multiple pro-inflammatory
cytokines such as IFN-γ, IL-6, and IL-2 can induce the formation of hypercoagulable state,
conducive to the occurrence of thrombotic events. Among them, IFN-γ mainly causes
thrombosis by stimulating platelet activity and damaging vascular endothelium [39]. It can
also promote the formation of venous thrombosis by mediating inflammatory response
and NETs [40]. Studies have also found that the combination of TNFα and IFN-γ could
facilitate the death of inflammatory cells through activating the JAK/STAT1/IRF1 axis
during SARS-CoV-2 infection, which could be a trigger for inflammatory thrombosis [41].
IL-6 leads to hypercoagulability by promoting platelet activation, endothelial dysfunction,
promoting coagulation factor disorders [42]. In the case of IL-2, it can induce cytokines
to impair the anticoagulation of endothelial cells, leading to activation of the coagulation
system [43]. In short, mechanistic understanding of pro-inflammatory cytokines including
TNF-a, IL-1, or IL-6 might be a basis to support the utility of the treatment in inflammatory
thrombosis.

3.3. Complement

Complement involves a cascade of processes to facilitate the expression of tissue factor
(TF) and induce a pre-thrombotic phenotype, eventually implicated in the formation of
thrombosis [44]. First, complement can enhance neutrophil/monocyte activation, and
complement effectors such as platelets, which could promote thrombotic inflammation,
microvascular thrombosis, and endothelial dysfunction [45]. Over the process of COVID-19,
studies have found that specific IgM increases during the acute phase and specific IgG
increases during subsequent phases, which can produce immune complexes that lead to in-
flammation, coagulation, and further activation of the complement system [46]. In addition,
when infected with SARS-CoV-2, complement activation may be an important mediator
to regulate a proinflammatory response. Complement activation pathways include the
classical pathway, alternative pathway, and lectin pathway, which lead to the production
of C3a and C5a. In turn, it stimulates the formation of the C5b–9 membrane attack com-
plex (MAC) to recruit neutrophils, ultimately leading to endothelial inflammation and the
induction of a prethrombotic state [47]. Therefore, understanding the association between
the complement and prothrombotic state during COVID-19 is helpful for the treatment of
thrombotic diseases including venous thrombosis.

3.4. Neutrophil Extracellular Traps/NETs

Neutrophil extracellular traps are three-dimensional lattices composed of densified
chromatin coated with histone and antimicrobial proteins that promote immune throm-
bosis [48]. NETs are composed of chromatin fiber mesh, antimicrobial peptide particles,
and enzymes released by neutrophils in order to control infections [49]. In recent works,
neutrophil infiltration was detected in the pathologic results from the autopsy of COVID-19
deaths [50]. Moreover, increased peripheral blood neutrophil counts were found in patients
with severe and non-surviving COVID-19 [51]. Previous research has indicated that NETs
may be important markers of disease severity in COVID-19 patients. More importantly,
it has the potential to be an important player in COVID-19 immune thrombosis [48,52].
Recent studies have shown that platelet-white blood cell interactions are important in pro-
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moting platelet and neutrophil activation [53]. One study detected increased levels of PF4
during the course of COVID-19 infection. PF4 is released from platelets and binds to NETs,
making them resistant to DNA enzymes [54]. P-selectin (CD62P) mediates the connection
between platelets and neutrophils by binding p-selectin glycoprotein ligand 1 (PSGL-1) on
neutrophils to promote platelet activation [55]. Furthermore, cathepsin G and neutrophil
elastase in NETs could regulate platelet function, and also activate platelets by protease-
activated receptor 4 to promote fibrin formation. Their cleavage results in activation of
glycoprotein IIb–IIIa as well as activation of plasma enzymes such as coagulation factors X
and V, ultimately leading to complete platelet activation [56,57] Moreover, recent studies
have demonstrated a connection between lysophosphatidic acid (LPA) and NETs. LPA is a
bioactive phospholipid from activated platelets and itself could induce the production of
NETs, further activating platelets to generate LPA. This positive feedback between LPA,
NET, and platelets can lead to the disordered immune thrombotic state [58,59].

4. Abnormalities of Blood Flow

Among the risk factors of venous thrombosis, not only endothelial injury and the
formation of hypercoagulability, but also abnormal blood flow are important factors of
venous thrombosis. Blood stasis usually occurs as a result of prolonged bedrest, immo-
bilization, strict isolation, and limited physiotherapy, especially in critically ill patients.
During the course of SARS-CoV-2 infection, patients with fatigue, hypoxemia, connection
to medical equipment (ventilator, electrocardiogram monitor), or serious complications
(respiratory failure, heart failure, or other organ involvement) are more likely to develop
venous thrombosis because they have limited movement [60]. In addition, during COVID-
19 acute respiratory distress syndrome (ARDS), the disease can cause pulmonary artery
resistance and increased right ventricular pressure, leading to pulmonary microcirculation
thrombosis, followed by venous return to the heart with reduced blood flow, resulting in
peripheral venous stasis [16,61].

5. VTE Clinical Management

The high occurrence of venous thrombus observed in patients with critically ill COVID-
19 has aroused people’s interest in the methods of prophylaxis and treatment of venous
thrombosis for patients with COVID-19. In this regard, according to the mechanism of
venous thrombosis and the characteristics of Virchow’s triad, there are a series of possible
prophylactic and therapeutic drugs including anticoagulant, antiplatelet drugs, and other
related drugs, and are described in detail below. In addition, as of 28 August 2021, we
found 20 studies of clinical trials from the ClinicalTrials.gov database, focusing on the
interventions to prevent and treat VTE in COVID-19 patients. These trials are investigating
different doses of heparin and low molecular weight heparin, different doses of platelet
inhibitors, and other drugs, as listed in Table 1.

5.1. Anticoagulation Management

Low molecular weight heparin (LMWH) or unfractionated heparin (UFH) is recom-
mended as a prophylactic antithrombotic therapy. This has been endorsed by the Scientific
and Standardization Committee on Coagulation of the International Society for Thrombosis
(SCC-ISTH). They have the advantage of having a short half-life, being easy to administer
(IV or subcutaneous), and having fewer drug interactions than oral anticoagulants. If
pharmacological prophylaxis is contraindicated, SCC-ISTH recommends that a mechanical
approach should be considered for multimodal thromboprophylaxis [62]. Interestingly,
the application of heparin has many benefits, not only an anticoagulant effect, but also
a variety of other effects. Studies have demonstrated that heparin has some protective
effects on endothelial cells in addition to its possible anti-inflammatory effects in COVID-19
patients, and may also be helpful in an anti-viral effect for coronavirus infection [63–65].
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Table 1. Ongoing trials focusing on interventions for the prevention and treatment of VTE in COVID-19 patients up to
28 August 2021.

ClinicalTrials.gov
Identifier Study Design/Status Patients, No. Treatment Group

NCT04842292 Interventional/Recruiting 40 Heparin vs. Placebo
NCT04746339 Interventional/Recruiting 1000 Apixaban 2.5 mg vs. Placebo
NCT04650087 Interventional/Recruiting 5320 Apixaban 2.5 mg vs. Placebo

NCT04600141 Interventional/Recruiting 308 Tocilizumab vs. Heparin Therapeutic dosage vs.
Heparin Prophylactic dosage

NCT04581954 Interventional/Recruiting 456 Ruxolitinib vs. Fostamatinib vs. Standard of care

NCT04542408 Interventional/Recruiting 172
Anticoagulation Agents (Edoxaban and/or high dose
LMWH) vs. Low dose Low molecular weight heparin
or Placebo

NCT04508023 Interventional/Recruiting 4000 Rivaroxaban vs. Placebo vs. Standard of Care (SOC)
NCT04492254 Interventional/Recruiting 1370 Enoxaparin

NCT04486508 Interventional/completed 600

Intermediate dose Enoxaparin/unfractionated heparin
vs. Standard prophylactic dose
Enoxaparin/unfractionated heparin vs. Atorvastatin
20 mg vs. Matched placebo

NCT04466670 Interventional/Recruiting 379 Acetylsalicylic acid vs. Unfractionated heparin
nebulized

NCT04416048 Interventional/Recruiting 400 Rivaroxaban vs. Standard Of Care (SOC)

NCT04406389 Interventional/Recruiting 186 Enoxaparin sodium vs. Unfractionated heparin vs.
Fondapariniux vs. Argatroban

NCT04401293 Interventional/completed 257 Enoxaparin vs. Prophylactic/Intermediate Dose
Enoxaparin

NCT04394377 Interventional/completed 615
Rivaroxaban20 mg/d followed by
enoxaparin/unfractionated heparin when needed vs.
Control group with enoxaparin 40mg/d

NCT04394000 Interventional/completed 72 Thromboprofylaxis protocol vs. Standard protocol
NCT04373707 Interventional/Recruiting 602 Enoxaparin
NCT04372589 Interventional/completed 1200 Heparin

NCT04367831 Interventional/Recruiting 100
Enoxaparin Prophylactic Dose vs. Heparin Infusion vs.
Heparin SC vs. Enoxaparin/Lovenox Intermediate
Dose

NCT04366960 Interventional/completed 189 Enoxaparin

NCT04360824 Interventional/Recruiting 170 Intermediate dose thromboprophylaxis vs. Standard
of Care thromboprophylaxis

Of note, low molecular weight heparin (LMWH) is of great significance for post-
discharge treatment, since patients are also at risk for venous thromboembolism after
discharge, up to 90 days after hospitalization. Therefore, susceptibility to VTE also needs
to be considered in the infection of SARS-CoV-2. SCC-ISTH recommends consideration
of low-molecular-weight heparin or FDA-approved prophylactic anticoagulants after
discharge (rivaroxaban and betrixaban) [65]. Although heparin therapy is a cornerstone
in the prevention and treatment of COVID-19 patients., its additional effects should not
be ignored. For example, heparin-induced thrombocytopenia (HIT) is a severe immune-
mediated prothrombotic disorder to heparin as it could form complexes with platelet
factor 4 (PF4). This binding could induce anti-PF4/heparin IgG antibodies, which may
stimulate platelet activation, leading to a prothrombotic syndrome [66]. Therefore, real-time
monitoring of anti-PF4/heparin antibodies, together with clinical symptoms suggestive
for HIT, are very important for the selection and application of heparin. In addition, it
is noteworthy that the majority of thrombotic events occurred in severe patients because
critically ill patients have more risk factors for thrombosis. For example, a study in New
York reported significantly higher benefits of anticoagulant therapy in severely ill patients
such as those on mechanical ventilation, with a 33.6 percent reduction in mortality [67].
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Therefore, special attention should be paid to the selection of anticoagulant therapy in
severe patients.

Direct oral administration of anticoagulants (DOACs) are commonly used in COVID-
19 patients who require anticoagulation. Nevertheless, oral anticoagulants are not routinely
administered in hospitalized COVID-19 patients as DOACs might interact with many
anti-inflammatory agents and some antivirals, affecting the efficacy of drugs such as
tocilizumab, lopinavir, and ritonavir. In addition, based on contraindications for its use,
obstructed excretion of DOACs in patients with renal damage may cause a risk of bleeding.
Therefore, attention should be paid to the use of oral anticoagulants [68–70].

5.2. Antiplatelet Agents

Several antiplatelet agents including tirofiban, dipyridamole, and nafamostat have
also received attention in the treatment of complications in COVID-19 patients. There
are ongoing clinical trials to verify their antithrombotic efficacy. For tirofiban, a single
center, case control, phase IIb study (NCT04368377) was conducted in the L. Sacco Hospital
Milano, Lombardia, Italy. They found that antiplatelet agent (tirofiban) may effectively
improve ventilation/perfusion ratio in COVID-19 patients with critical respiratory failure,
possibly affecting the prevention of thrombosis, intervening in megakaryocyte function
and platelet adhesion [71]. Regarding dipyridamole, recent work has reported that it was
able to improve the clinical prognosis in severe COVID-19 [72]. An ongoing clinical trial
(NCT04391179) conducted at the University of Michigan Ann Arbor, Michigan, United
States. The aim of the study was to assess whether the application of dipyridamole lasting
14 days would reduce excessive coagulation of COVID-19. The results of this trial will be
eagerly awaited. Finally, nafamostat has been used for pancreatitis, DIC, and dialysis in
Japan for more than 30 years. Nafamostat is an inhibitor of the synthesis of serine proteases
(thrombin, plasminase, and trypsin) with antiviral, anti-inflammatory, and anticoagulant
activity, and its role is being evaluated [73]. Importantly, unlike heparin, namorestat does
not cause bleeding side effects even at doses used for DIC. This major advantage is due
to the strong anti-fibrinolytic effect of nafamostat [74]. In addition, nafamostat is known
to inhibit TMPRSS-2, which shows a significant role during the course of COVID-19 [75].
Nafamostat promises to be a promising solution for COVID-19, which is characterized by
hypercoagulability and enhanced fibrinolysis of venous thromboembolism (VTE).

5.3. Other Clinical Management

In COVID-19 patients, induction of apoptosis and pyrodeath may play an important
role in endothelial cell damage, and it provides a theoretical basis for treatment to sta-
bilize endothelial cells while coping with viral replication, especially in the application
of anti-inflammatory, anti-cytokine drugs and ACE inhibitors [35]. Recently, endothelial
cell stabilization has clearly been identified as a therapeutic target for COVID-19. Adre-
cizumab (HAM8101) is an anti-adrenomedullin (anti-ADM) antibody that targets vascular
and capillary leakage in sepsis and inflammation and ultimately stabilizes and maintains
endothelial barrier function [76]. In addition, cytokine release syndrome is one of the most
alarming complications of COVID-19 virus infection, and cytokine-targeted agents may
confirm their role in the treatment. Among them, tocilizumab, a monoclonal antibody
against the interleukin-6 (IL-6) receptor, has been found to reduce mortality and hospitaliza-
tions to the ICU, and the degree of systemic inflammation. More interestingly, it has been
shown that tofacitinib could block the pathways of several important anti-inflammatory
cytokines (IL 2, 4, 7, 9, 15, and 21), while it does not inhibit the IL10 signaling pathway (a
main anti-inflammatory factor) [77,78]. These characteristics may explain why the use of
tofacitinib did not develop with significant side effects [79]. In addition, studies suggest
that inhibiting the high activity of platelets through the application of recombinant human
ACE-2 protein and anti-Spike monoclonal antibodies may be an effective treatment for
inhibiting VTE in patients with COVID-19 [31].
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In COVID-19, given the direct role of NETs in immune thrombosis, blocking NETs
may be helpful to improve patient outcomes. With current research advances, the new
developed NETosis inhibitors including Lonodelestat, Alvelestat, CHF6333, and Elafin [80]
may be therapeutic options for COVID-19 thrombotic.

Based on available clinical data of COVID-19, fibrinolysis shutdown was observed
in severe patients, and increased occurrence of VTE has been seen in patients with severe
thrombolysis abnormalities [81]. Therefore, fibrinolytic agents are being assessing due
to their potential therapeutic function in COVID-19 such as tissue-type plasminogen
activator [82].

Finally, evidence is accumulating on complement-related thrombotic microangiopa-
thy in COVID-19 patients [83]. Currently, two FDA-approved complement inhibitors
(eculizumab, ravulizuma) that can combine with C5 and inhibit cleavage with C5a and
C5b suppress the production of MAC [84,85].

6. Conclusions

In COVID-19, there are a variety of factors affecting the occurrence and development
of VTE, but the risk factors involved can be more systematically clarified from the perspec-
tive of Virchow triad. On one hand, endothelial dysfunction, hypercoagulable state, and
abnormal blood flow are respectively responsible for the extremely high incidence of VTE
events in patients with COVID-19, while on the other hand, they interact with each other.
For example, a feedback pathway promotes the occurrence of inflammation, which leads
to the high activity of platelets and ultimately causes the occurrence and maintenance of
venous thrombosis. It can be seen from our discussion that the prevention and treatment of
SCC-ISTH, LMWH, and UFH are the first choice, but the treatment and management of an-
tithrombotic therapy have multiple targets according to the pathophysiological mechanism
of thrombosis. Therapies targeting these pathologic mechanisms may alleviate venous
thrombosis in COVID-19 including anticoagulants, antiplatelets, fibrinolytic agents, and
immunomodulators. This provides a theoretical basis for heparin replacement therapy
and combination therapy, but the choice of specific regimen needs to be verified by future
clinical trials. In summary, understanding the complex mechanisms between COVID-19
virus infection, vasculature, immune system, and coagulation can contribute to effective
treatment for clinical management.
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