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Abstract: Angiogenesis is part of the healing process following an ischemic injury and is vital
for the post-ischemic repair of the myocardium. Therefore, it is of particular interest to be able
to noninvasively monitor angiogenesis. This might, not only permit risk stratification of patients
following myocardial infarction, but could also facilitate development and improvement of new
therapies directed towards stimulation of the angiogenic response. During angiogenesis endothelial
cells must adhere to one another to form new microvessels. αvβ3 integrin has been found to
be highly expressed in activated endothelial cells and has been identified as a critical modulator
of angiogenesis. 68Ga-NODAGA-E[c(RGDyK)]2 (RGD) has recently been developed by us as an
angiogenesis positron-emission-tomography (PET) ligand targeted towards αvβ3 integrin. In the
present study, we induced myocardial infarction in Göttingen minipigs. Successful infarction was
documented by 82Rubidium-dipyridamole stress PET and computed tomography. RGD uptake was
demonstrated in the infarcted myocardium one week and one month after induction of infarction by
RGD-PET. In conclusion, we demonstrated angiogenesis by noninvasive imaging using RGD-PET
in minipigs hearts, which resemble human hearts. The perspectives are very intriguing and might
permit the evaluation of new treatment strategies targeted towards increasing the angiogenetic
response, e.g., stem-cell treatment.
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Figure 1. Angiogenesis PET (RGD PET) (top row) and 82Rb dipyridamole stress PET (bottom row) 
before induced myocardial infarction. (A) Front limbs; (B) Sternum; (C) Heart; (D) Lungs; (E) Ribs. 
Angiogenesis is part of the healing process following an ischemic injury and is vital for the 
post-ischemic repair of the myocardium. It is associated with the remodeling of the left ventricle and 
thus prognosis following myocardial infarction [1]. Therefore, it is of particular interest to be able to 
noninvasively monitor angiogenesis. This might not only permit risk stratification of patients 
following myocardial infarction, but could also facilitate development and improvement of new 
therapies directed towards stimulation of the angiogenic response. During angiogenesis endothelial 
cells must adhere to one another to form new microvessels. This is a process modulated by the 
extracellular matrix including integrins. Specifically, αvβ3 integrin is highly expressed in activated 
endothelial cells and has been identified as a critical modulator of angiogenesis and is therefore a 
potential target for directly imaging angiogenesis [2,3]. Existing noninvasive imaging methods 
directed towards the evaluation of angiogenesis have however been somewhat limited, possibly due 
to the fact that myocardial angiogenesis following myocardial infarction might be focal and therefore 
difficult to detect. Furthermore, most of the previous studies in angiogenesis imaging have been 
performed in smaller animals, mostly rats [4–13]. 68Ga-NODAGA-E[c(RGDyK)]2 (RGD) has recently 
been developed by us as an angiogenesis positron-emission-tomography (PET) ligand targeted 
towards αvβ3 integrin [14]. In the present study, we induced myocardial infarction in Göttingen 
minipigs [15]. Successful infarction was documented by 82Rubidium (82Rb)-dipyridamole stress PET 
and computed tomography (CT) (Siemens mCT, Siemens, 128-slice CT, Knoxville, USA). RGD 
uptake was demonstrated in the infarcted myocardium one week and one month after induction of 
infarction by RGD-PET. The study was approved by the National Authority in Denmark (approval 
number: 2014-15-0201-00191). During the PET acquisition minipigs were anesthetized as described in 
detail previously [15]. Baseline 82Rb rest and stress myocardial perfusion were performed the week 
prior to induction of myocardial infarction as a 7 min dynamic PET myocardial perfusion rest scan 
under administration of 1000–1200 MBq 82Rb followed by a 7 min dynamic dipyridamole stress 
PET-CT. Dipyridamole (140 µg/kg/min) was given as a continuous intravenous infusion over 4 min 
prior to 82Rb-tracer injection 3–5 min after the completion of dipyridamole infusion. The RGD-PET 
was performed as a 10 min ECG-gated scan 45 min after administration of 100 MBq RGD. PET 
images were analyzed using Cedars-Sinai Cardiac Suite (Cedars-Sinai Medical Center, Los Angeles, 
CA, USA) for Syngo. Via (Siemens, Knoxville, TN, USA). The figure shows RGD and 82Rb stress PET 

Figure 1. Angiogenesis PET (RGD PET) (top row) and 82Rb dipyridamole stress PET (bottom
row) before induced myocardial infarction. (A) Front limbs; (B) Sternum; (C) Heart; (D) Lungs;
(E) Ribs. Angiogenesis is part of the healing process following an ischemic injury and is vital for the
post-ischemic repair of the myocardium. It is associated with the remodeling of the left ventricle and
thus prognosis following myocardial infarction [1]. Therefore, it is of particular interest to be able to
noninvasively monitor angiogenesis. This might not only permit risk stratification of patients following
myocardial infarction, but could also facilitate development and improvement of new therapies
directed towards stimulation of the angiogenic response. During angiogenesis endothelial cells must
adhere to one another to form new microvessels. This is a process modulated by the extracellular
matrix including integrins. Specifically, αvβ3 integrin is highly expressed in activated endothelial
cells and has been identified as a critical modulator of angiogenesis and is therefore a potential target
for directly imaging angiogenesis [2,3]. Existing noninvasive imaging methods directed towards
the evaluation of angiogenesis have however been somewhat limited, possibly due to the fact that
myocardial angiogenesis following myocardial infarction might be focal and therefore difficult to detect.
Furthermore, most of the previous studies in angiogenesis imaging have been performed in smaller
animals, mostly rats [4–13]. 68Ga-NODAGA-E[c(RGDyK)]2 (RGD) has recently been developed by us
as an angiogenesis positron-emission-tomography (PET) ligand targeted towards αvβ3 integrin [14].
In the present study, we induced myocardial infarction in Göttingen minipigs [15]. Successful infarction
was documented by 82Rubidium (82Rb)-dipyridamole stress PET and computed tomography (CT)
(Siemens mCT, Siemens, 128-slice CT, Knoxville, USA). RGD uptake was demonstrated in the infarcted
myocardium one week and one month after induction of infarction by RGD-PET. The study was
approved by the National Authority in Denmark (approval number: 2014-15-0201-00191). During the
PET acquisition minipigs were anesthetized as described in detail previously [15]. Baseline 82Rb rest
and stress myocardial perfusion were performed the week prior to induction of myocardial infarction
as a 7 min dynamic PET myocardial perfusion rest scan under administration of 1000–1200 MBq
82Rb followed by a 7 min dynamic dipyridamole stress PET-CT. Dipyridamole (140 µg/kg/min) was
given as a continuous intravenous infusion over 4 min prior to 82Rb-tracer injection 3–5 min after the
completion of dipyridamole infusion. The RGD-PET was performed as a 10 min ECG-gated scan 45
min after administration of 100 MBq RGD. PET images were analyzed using Cedars-Sinai Cardiac
Suite (Cedars-Sinai Medical Center, Los Angeles, CA, USA) for Syngo. Via (Siemens, Knoxville, TN,
USA). The figure shows RGD and 82Rb stress PET images before induction of myocardial infarction.
82Rb stress PET showed even distribution of 82Rb in the left ventricle while the RGD PET showed no
RGD uptake.
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images before induction of myocardial infarction. 82Rb stress PET showed even distribution of 82Rb in 
the left ventricle while the RGD PET showed no RGD uptake. 

 
Figure 2. RGD (top row) and 82Rb stress PET (bottom row) one week and one month after induced 
myocardial infarction. (A) Myocardial infarction; (B) Sternotomy; (C) Pericardium. As shown, the 
82Rb stress PET (bottom row) showed a myocardial perfusion defect in the anterior wall of the left 
ventricle myocardium one week and one month after induced myocardial infarction confirming a 
myocardial infarction corresponding to an area supplied by the ligated branch from LAD. This 
myocardial perfusion defect was also present at rest (not shown). Furthermore, the RGD PET (top 
row) showed RGD uptake in the infarcted myocardium one week and one month following 
myocardial infarction. In addition, RGD PET showed RGD uptake in the sternum after sternotomy 
and pericardium, most likely due to the opening as part of the infarct induction procedure. As 
previously mentioned, most of the previous work in angiogenesis imaging have been done in smaller 
animals. The minipig heart and the human heart are very much alike, which makes the findings in 
this study even more encouraging and adds to the few, mostly very small, studies performed in 
human [16–18]. The perspectives are very intriguing and might permit the evaluation of new 
treatment strategies targeted towards increasing the angiogenetic response, e.g., stem-cell treatment. 
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Figure 2. RGD (top row) and 82Rb stress PET (bottom row) one week and one month after induced
myocardial infarction. (A) Myocardial infarction; (B) Sternotomy; (C) Pericardium. As shown, the 82Rb
stress PET (bottom row) showed a myocardial perfusion defect in the anterior wall of the left ventricle
myocardium one week and one month after induced myocardial infarction confirming a myocardial
infarction corresponding to an area supplied by the ligated branch from LAD. This myocardial perfusion
defect was also present at rest (not shown). Furthermore, the RGD PET (top row) showed RGD uptake
in the infarcted myocardium one week and one month following myocardial infarction. In addition,
RGD PET showed RGD uptake in the sternum after sternotomy and pericardium, most likely due to the
opening as part of the infarct induction procedure. As previously mentioned, most of the previous work
in angiogenesis imaging have been done in smaller animals. The minipig heart and the human heart
are very much alike, which makes the findings in this study even more encouraging and adds to the
few, mostly very small, studies performed in human [16–18]. The perspectives are very intriguing and
might permit the evaluation of new treatment strategies targeted towards increasing the angiogenetic
response, e.g., stem-cell treatment.

Acknowledgments: Great thanks to Christian Joost Holdflod Moeller for his help with the induction of the
myocardial infarction.
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