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Abstract: Gradually, FDG-PET/CT has been strengthening within the diagnostic algorithms 

of oncological diseases. In many of these, PET/CT has shown to be useful at different stages 

of the disease: diagnosis, staging or re-staging, treatment response assessment, and 

recurrence. Some of the advantages of this imaging modality versus CT, MRI, bone scan, 

mammography, or ultrasound, are based on its great diagnostic capacity since, according to 

the radiopharmaceutical used, it reflects metabolic changes that often occur before 

morphological changes and therefore allows us to stage at diagnosis. Moreover, another 

advantage of this technique is that it allows us to evaluate the whole body so it can be very 

useful for the detection of distant disease. With regard to breast cancer, FDG-PET/CT has 

proven to be important when recurrence is suspected or in the evaluation of treatment 

response. The technological advancement of PET equipment through the development of 

new detectors and equipment designed specifically for breast imaging, and the development 

of more specific radiopharmaceuticals for the study of the different biological processes of 

breast cancer, will allow progress not only in making the diagnosis of the disease at an early 

stage but also in enabling personalized therapy for patients with breast cancer. 
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1. Introduction 

1.1. Breast Cancer 

Breast cancer is the most common neoplasm in women worldwide and one of the leading causes of 

cancer-related death in women, with approximately 1.38 million new cases and 458,000 deaths each 

year around the world [1]. Many risk factors are well-known; however, the exact causes of breast cancer 

have not been identified [1,2]. Family history of breast cancer, for example, is a well-known factor that 

increases risk by a factor of two or three. Also, mutations such as BRCA (1 & 2) and p53 are considered 

to convey a very strong risk of developing the disease [1,2]. Besides these and some environmental risk 

factors, early detection of breast cancer is considered to be an essential milestone in the control of breast 

cancer. Early diagnosis is crucial in determining the choice of therapy, as well as a patient’s prognosis 

and chances for survival [3]. 

1.2. Diagnostic Imaging in Breast Cancer 

Anatomic imaging modalities including mammography (MM), ultrasound (US), computed 

tomography (CT), and magnetic resonance imaging (MRI) are mainly used in clinical practice for 

detecting primary tumors and staging breast cancer. However, the development of technology in imaging 

with advanced MRI and CT, and the introduction of other modalities in breast imaging including optical 

imaging, single photon emission tomography (SPECT), and positron emission tomography (PET) may 

offer multiple and distinct anatomical, functional, and metabolic information from a macroscopic to a 

molecular level. 

Radionuclide imaging (RI), which includes SPECT and PET, is able to measure in vivo cellular, 

molecular, and biochemical properties of neoplasms and normal tissues. While anatomic imaging 

modalities focus on improving spatial resolution and image quality, RI offers a more specific targeting 

of breast cancer with a greater contrast between tumor and normal tissue. 

By imaging specific biological processes, RI gives one step forward in cancer detection in addition 

to anatomical imaging techniques. Variations in phenotypes and biochemical changes in tissues have 

emerged as especially relevant new targets [4]. 

RI uses radionuclides combined with other elements to form chemical compounds, or else combines 

with existing pharmaceutical compounds to form what is called radiopharmaceuticals or radiotracers. 

These radiopharmaceuticals can radiolabel specific targets by labeling molecules (18F-FDG,  
18F-FLT, 18F-MISO, 18F-NaF, 11C-choline, 11C-acetate), proteins (18F-annexin V, 64Cu-DOTA-VEGF121, 
99mTc-VEGF), antibodies (99mTc-rituximab), chelates (99mTc-setamibi, 99mTc-HDP), and cellular receptors 

(18F-FES, 68Ga-DOTATOC), or even act directly as ions (99mTc-pertechnetate, 123I-sodium iodine) 

enabling the evaluation of biochemical changes, cellular physiology, cellular function and metabolism, 

and levels of molecular targets in an individual. 
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Through the years, advances in imaging technologies and radiochemistry have been used to  

develop new radiolabeled molecules to target different tissues, organs, or even molecules rather than  

just anatomy. 

SPECT imaging uses nuclides such as 99mTc, 123I, and 111In, among others, that decay while emitting 

single γ-ray photons with different energies. A gamma camera rotates around the patient, acquiring data 

from different positions, and then tomographic reconstruction is applied. However, unlike positrons 

emitted by PET agents, γ-ray photons do not deliver adequate information regarding the origin of the 

photon, making it impossible to define the line of response, as determined in PET technology [5]. In 

order to address this issue, collimators made of lead or tungsten are used to discard any diagonally 

incident photons, but, on the other hand, the collimators will exclude those photons that will not properly 

reach the crystal of the detectors, affecting the sensitivity of the system [5] compared to PET technology. 

The most commonly used radiotracer that has been used in SPECT imaging for breast imaging is 
99mTc-sestamibi (MIBI), a single-photon radiopharmaceutical. MIBI scintigraphy is a functional imaging 

study introduced in the early 1990s, now mainly used for cardiac imaging. First described by  

Aktolun et al. [6], and reported in breast cancer by Campeau et al. [7], MIBI enters the cell through 

passive movement from the extracellular compartment to the cytoplasm and accumulates in the 

mitochondria. Most malignant cells have higher intracellular mitochondrial concentration and thus MIBI 

accumulation will concentrate in tissue in proportion to that activity [8]. 

Brem et al. [9] studied the sensitivity and specificity of MIBI for the detection of breast cancer and 

compared the gamma imaging findings with histopathology. One hundred forty-six women were 

retrospectively studied, with 167 lesions biopsied. Authors claimed a sensitivity of 96% in detecting 

breast cancer in 80 out of 83 malignant-proven lesions, but showed a moderate specificity (59%). They 

concluded that MIBI imaging could help detect breast cancers. 

In recent years, high-resolution gamma cameras, specific to individual organs, have been developed, 

in particular for breast molecular imaging [9,10]. These devices seem to improve the overall 

performance, as will be discussed in Section 3. 

Contrary to SPECT agents, PET agents use pharmaceuticals labeled with positron-emitting 

radionuclides, produced mainly by particle accelerators also called cyclotrons. Some advantages of PET 

are based on the very high sensitivity and quantitative capabilities, presenting a broad impact in the clinical 

field, particularly in oncology. The innumerable possibilities for targeting a specific molecule, receptor, 

antibody, or drugs make RI a unique tool for clinical, pre-clinical, and research studies. 

Generally, malignant cells have enhanced glucose metabolism due to accelerated tumor growth as 

well as an increase in glucose transporter proteins compared to non-malignant cells, and thus an 

increased glycolytic activity [11]. This high glycolytic activity eases the detection of malignant cells 

using FDG-PET imaging. Unfortunately, 18F-fluorodeoxyglucose (FDG) is not a cancer-specific tracer 

since it has an increased uptake in inflammatory and infectious lesions and even a significant number of 

physiologic processes such as brain glucose uptake or muscle uptake [12–14]. 

Although many radiotracers have been developed for PET imaging, most breast cancer imaging 

studies have been performed with FDG [15]. FDG is a glucose analog transported via glucose 

transporters into the cells, phosphorylated by hexokinase. FDG mimics glucose during the first 

enzymatic reactions in the cells, but because FDG lacks a hydroxyl group at the C-2 position, further 
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catabolism of this radiotracer will not be possible. FDG becomes metabolically trapped in tumor cells at 

a rate proportional to glucose utilization and therefore glucose metabolism [16]. 

Some authors have demonstrated certain correlation between the degree of FDG uptake and several 

phenotypic features including tumor histologic type and grade, cell receptor expression, and cellular 

proliferations index [17,18]. Avril et al. [17] quantified FDG uptake in breast tumors and compared it 

with the histologic type, grading, and some other parameters in 50 invasive and six non-invasive breast 

carcinomas, finding a positive correlation mainly between the uptake of FDG and the histologic tumor 

type, microscopic tumor growth pattern, and tumor cell proliferation. However, they did not find a 

significant relationship between FDG uptake and other factors such as tumor size, steroid receptor status, 

and expression of the glucose transporter protein GLUT-1, concluding that though some positive 

correlations were observed, the degree of metabolic changes after a malignant transformation was most 

likely explained by a number of complex interactions between the need for energy of malignant cells 

and their tumoral microenvironment showing some limitations of FDG-PET imaging. In another study, 

Bos et al. [18] studied the relationship between FDG and some biomarkers known to be involved in 

underlying biologic mechanism in FDG-PET scans of 55 breast cancer patients. In this case, the authors 

found a positive correlation between FDG uptake and GLUT-1 expression, the mitotic activity index, 

the number of tumor cells, expression of hexokinase type I, and microvessel density, concluding that 

FDG uptake in breast cancer could be related to the microvessel density, GLUT-1 expression, activity 

of hexokinase-I, and proliferation rate, among other factors. 

Many studies have proven the excellent utility of PET in detection, staging, radiotherapy planning, 

and treatment response assessment in many oncological diseases. PET has proven to be a very useful 

tool in staging of advanced breast cancer and in assessing response to therapy widely used in clinical 

care. These benefits will be discussed in the following section. 

PET systems, most of them in their hybrid modality with CT (PET/CT), are mainly designed for 

whole body imaging, this being one of the strengths of this modality. However, in order to improve the 

spatial resolution for certain organs such as the breast, new organ-specific PET systems have been 

developed demonstrating better diagnostic accuracy in primary tumors or suspicion of recurrence than 

whole-body PET devices. These breast-based imaging modality systems are commonly named Positron 

Emission Mammography or PEM and will be later discussed. 

2. Clinical Applications 

Many studies have shown high sensitivity and specificity of FDG-PET for the detection of primary 

large and palpable breast tumors [19,20]. Nevertheless, the sensitivity decreases when the lesions are 

small and non-palpable, low-grade, or non-invasive neoplasms [20]. 

As already stated, FDG-PET has been used in breast cancer for diagnosis, staging and re-staging, and 

treatment response evaluation. However, results presented by several groups have shown a wide variety 

of conclusions for the use of PET in breast cancer [21–28]. In addition, there are some limitations and 

pitfalls that may lead to false-positive or false-negative results when assessing breast diseases. 

FDG uptake is observed in a variety of benign entities and in several physiologic conditions. FDG 

may accumulate in areas affected by various non-neoplastic conditions, for example in acute and chronic 

infections or inflammations and non-specific uptake in brown adipose tissue [29,30]. This increased 
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FDG uptake is produced by the increase of glycolytic metabolism because of the leukocytic infiltration 

that occurs during inflammatory events. Hence, this can be seen in patients who recently had surgery or 

radiation therapy. To correctly interpret these findings, the reader should be familiar with the normal 

physiologic distribution of the tracer, the physiologic variants, and benign causes that show an abnormal 

FDG uptake. These situations may result in false-positive findings and therefore be confused with 

malignant processes. 

On the contrary, small tumor size (depending on the spatial resolution of each system) or less 

aggressive histologic subtypes may be the cause for false-negative results [31–33]. Kumar et al. [33] 

studied 111 patients (116 breast lesions) with known or suspected breast cancer. An FDG-PET scan was 

performed for staging purposes and PET results were correlated with follow-up surgical pathology 

results. Of the 85 pathology-proven malignant lesions, 44 were false negative in PET. The authors found 

a significant difference in the tumor size, when the tumors were ≤10 mm (p = 0.003), and low tumor 

grade (p = 0.001) in patients with true positive and false negative results in PET. They concluded that 

tumor size and tumor grade were independent factors that predict FDG-PET results. 

Some authors have stated that dedicated breast PET devices or a breast-positioning device for PET 

may improve detection of breast cancer and therefore reduce false-negative results. Kaida et al. [34] 

investigated the detection rate of breast cancer in 660 healthy women that underwent both a conventional 

whole-body PET study and breast PET imaging in prone position using the breast positioning device. 

Of the 660 individuals, seven showed breast cancer lesions using the breast-positioning device in PET, 

but only five of these were positive by whole-body PET study. The authors concluded that prone breast 

imaging using a positioning device might help to improve the detection rate in breast cancer patients. 

Dedicated breast PET devices will be discussed in Section 3. 

The role of PET and PET/CT in the different phases of breast cancer is discussed in detail. 

2.1. Diagnosis of Primary Tumors 

To date, MM is the standard of reference for the detection of primary tumors, being the only screening 

method that has proven to have a significant influence on patient survival. Therefore, early detection of 

the disease is the most effective method for reducing mortality. Either MM or ultrasound (US) detects 

the changes in the anatomy of the breast tissue; nonetheless, metabolic changes occur before anatomical 

changes. The accelerated metabolic activity in oncological cells is the key point when thinking about the 

usefulness of FDG-PET imaging for detection of malignant tumors. 

Some researchers have shown very promising results for FDG-PET, with a sensitivity of 80%–96% 

and specificity of 90%–100% [35–37]. In addition, the sensitivity in differentiating benign from 

malignant tissue is approximately 90% in most of the studies. These results demonstrate that the 

capabilities of PET are limited by the size of the lesions (around 1 cm) and therefore affect its spatial 

resolution. However, the constant development of this technology has led to improvements, enabling 

detection of lesions less than 1 cm, even down to 0.3–0.5 cm in size in some PET systems. 

A known limitation of PET in breast pathology is the histological type and grade of the tumoral cells 

being less sensitive for the detection of invasive lobular carcinoma and slow-growing cancers like 

tubular carcinoma than for invasive ductal carcinoma [31,35–39]. Heudel et al. [38] analyzed the 

correlation between standard uptake value (SUV) and histopathological and immunohistochemical 
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prognostic factors in 45 women with biopsy-proven primary breast cancer. A positive relationship was 

found between FDG uptake and histological grade (p < 0.0001), histological type (p = 0.001), tumor size 

(p < 0.0435), estrogen receptor status (p < 0.0005), and progesterone receptor status (p = 0.002). The 

authors demonstrated that these known prognostic factors in breast cancer correlated well with the SUV, 

a noninvasive metabolic parameter. In another study, Ekmekcioglu et al. [39] also investigated the 

prognostic value of FDG-PET uptake in breast carcinomas by comparing it with histopathological and 

immunohistochemical prognostic factors (tumor size, histological type, histological grade, 

pleomorphism, mitosis count, lymphatic invasion, necrosis, estrogen negativity, Ki-67 level, axillary 

lymph node involvement, and triple negativity). The investigators showed that only a high Ki-67 level 

and tumor size were determining factors for high FDG uptake values, concluding that FDG uptake may 

serve as a prognosis indicator for biological behavior in breast tumors. 

The majority of the studies published show diagnostic performance results based on a PET scan alone; 

however, it has been confirmed that specificity obtained with the use of PET/CT significantly improves 

these results. In one study where PET, CT, and PET/CT were compared in breast cancer patients [40], 

the diagnostic confidence of PET/CT was higher than with PET or CT alone in more than 50% of the 

patients studied. 

Some other studies do not support the use of FDG-PET as a diagnostic tool [26]. Fletcher et al. [41] 

did not recommend its use for screening purposes but only when tumors were bigger than 2 cm, of 

aggressive types, or rising tumor biomarkers were present. 

2.2. Staging and Re-Staging 

One of the most important prognostic factors in breast cancer is the status of the axillary lymph nodes. 

Axillary lymph node dissection is the best approach for evaluating infiltration at this level; nevertheless, 

morbidity including lymphedema and significant costs are associated with this procedure. Sentinel 

lymph node biopsy (SLNB) using either dye contrast material or preferably radioisotopes has been 

accepted as the procedure of choice for nodal assessment. However, this practice still requires surgery 

and therefore the potential complications that surgery implies. 

An alternative to this invasive technique could be FDG-PET to predict lymph node metastasis from 

breast cancer [21,23,42]. One of the advantages of PET is the ability to detect malignant pathology due 

to an abnormal increase of the glucose metabolism even in non-pathologically enlarged lymph nodes not 

captured by CT. 

Several authors have presented high sensitivity and specificity rates in the evaluation of axillary 

lymph nodes using FDG-PET [31,43,44]; however, this seems to be insufficiently accurate to replace 

the already accepted techniques for axillary staging. Some metastases can be microscopic and because 

of the limited spatial resolution could be a reason for false-negative in FDG-PET [31,32].  

Zhang et al. [32] studied the diagnostic accuracy of FDG-PET/CT in detecting primary invasive breast 

cancer, including invasive ductal breast cancer, invasive lobular breast cancer, and axillary, internal 

mammary, and supraclavicular lymph nodes metastases. One hundred sixty-four women with operable 

invasive breast cancer and clinically negative lymph nodes underwent FDG-PET/CT and were 

retrospectively analyzed and compared with the histopathology of dissected axillary lymph nodes. The 

diagnostic performance of FDG-PET/CT was significantly correlated with primary tumor grade  
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(p = 0.003) and size (p = 0.0007). However, the sensitivity, specificity, overall accuracy, positive 

predictive value, and negative predictive value in the staging of axillary lymph nodes dissection were 

46.3%, 91.1%, 79.8%, 63.3%, and 83.6%, respectively, with a false negative rate of 54% mainly because 

of micrometastases. The investigators concluded that FDG-PET/CT was helpful in the detection of the 

primary breast cancer and distant metastases but had a limited value in the axillary, internal mammary 

and supraclavicular lymph nodes evaluation. 

Most recently, Riegger et al. [45] evaluated FDG-PET/CT in comparison to US as the standard of 

reference of non-invasive imaging techniques in the detection and accuracy of axillary lymph node 

metastases. The authors determined that though FDG-PET/CT seems to be more accurate than US, it is 

only as sensitive as US in the detection of axillary lymph node metastases and therefore it is not 

recommended as a substitute for SLNB. On the contrary, FDG-PET/CT was able to detect previously 

unsuspected loco-regional extra-axillary lymph node metastases [45]. Aukema et al. [46] also supported 

the usefulness of FDG-PET/CT as an additional imaging tool to assess extra-axillary lymph node 

metastases with a significant impact on the management of the patients. This shows the potential 

advantage of PET/CT found in the evaluation of regional lymph nodes in particular locations such as in 

the internal mammary and supraclavicular lymph nodes. 

It is well known that the prevalence of distant metastases is directly related to the staging of the 

disease at diagnosis [21,23,42,46,47]. As the staging of the disease increases, the possibility of having 

distant metastases also increases. Probably the most important benefit of FDG-PET/CT compared  

with other imaging modalities is the capability of detecting unknown distant metastases in a single 

whole-body study (Figure 1) [31]. Sensitivity and specificity in detecting distant metastases are very 

high, in the range of 86%–100% and 90%–98% respectively [31,48,49]. Dirisamer et al. [49] evaluated 

the sensitivity and specificity of contrast-enhanced CT (ceCT) and PET/CT for re-staging of patients 

with suspected recurrence of breast cancer and concluded that FDG-PET/CT can improve staging and 

therefore affect clinical management in patients with suspected breast cancer recurrence and distant 

metastatic disease. 

In conclusion, FDG-PET or FDG-PET/CT cannot replace SLND and is not recommended for routine 

lymph node staging [41], nor for staging patients with I, IIA, or IIB breast cancer [50]. Instead, it should 

be included into the work-up when distant metastases or recurrent breast cancer are suspected [41], for 

detection of extra-axillary lymph node metastases and distant metastases [26,31], and when lymph nodes 

are palpable or locally advanced breast cancer is present [51]. 
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Figure 1. A 67-year-old woman with breast carcinoma and known bone metastases, but 

without suspicion of progression, referred for FDG-PET/CT exam. (a) Axial PET image 

showing a focus of FDG uptake in the right posterior parietal lobe; (b) axial CT showing a 

rounded lesion with contrast enhancement ring and perilesional edema (arrow); (c) MIP 

image demonstrating the known multiple bone metastases; (d) fused image showing a 

rounded hypermetabolic new lesion consistent with brain metastases. 

2.3. Treatment Response Evaluation 

Total cure in metastatic breast cancer is rarely achieved; however, with the proper therapy the survival 

and quality of life of these patients can be extended. Some studies have demonstrated promising results 

when using FDG-PET for assessing treatment response. For example, Gennari et al. [52] showed not only 

that the decrease of FDG uptake was correlated with a good response to treatment in patients with 

metastatic disease but also that the response evaluated with FDG-PET could be predictable immediately 

after the first cycle of chemotherapy [53]. More groups of investigators also supported these  

conclusions [28,54,55] by stating that the absence of FDG uptake after therapy anticipates better survival 

rates in patients suffering from metastatic breast cancer. So FDG-PET uptake, measured by SUV should 

be considered as a prognostic tool for metastatic breast cancer patients [56]. 
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Neoadjuvant chemotherapy (NAC) is commonly used in locally advanced breast cancer patients and 

is considered to be the standard of care for downstaging the tumor prior to surgery, and significantly 

improves the prognoses of complete pathologic responders versus non-responders [22,57,58]. It has been 

reported that up to 70% of breast cancer patients treated with NAC have a clinical response; however, 

only around 25% of these will have a partial or complete response when it is correlated with 

histopathology [57]. Therefore, the efficacy of NAC can only be determined once the tissue is removed 

from surgery and histopathologically analyzed, which is considered to be the gold standard [57].  

In addition, for early stage breast cancer patients NAC has as its main advantage the ability to increase 

the use of breast conservation in surgery [59]. 

FDG-PET has been proposed as a useful diagnostic tool when there is a necessity for early 

identification of non-responders (Figure 2). Some studies demonstrated that the mean decrease in FDG 

uptake after the first cycle of chemotherapy was higher in partial, complete macroscopic, or microscopic 

lesions [60]. In this study, PET was able to predict complete pathologic response with a sensitivity and 

specificity of 90% and 74%, respectively. Zucchini et al. [24] evaluated metabolic changes with  

FDG-PET/CT after receiving NAC in early or locally advanced breast cancer patients, showing that early 

metabolic non-response was always related with histological non-responders and poor prognosis in  

ER-positive/HER2-negative patients. The authors concluded that FDG-PET/CT could be useful to select 

patients who might benefit from early therapeutic strategy modifications. A recent study confirmed that 

same conclusion by assessing the relevance of breast cancer subtypes for monitoring therapy response 

during NAC with FDG-PET/CT [61]. Response during NAC monitored with FDG-PET/CT was able to 

predict response in ER-positive/HER2-negative and triple negative subgroup of patients but less accurate 

in HER2-positive tumors. 

A peculiarity when evaluating treatment response with FDG-PET is found in responders after 

hormonotherapy due to the fact that a transient increase in glucose may occur. This metabolic  

flare phenomenon is known to be a side effect of anti-estrogen therapy, also associated with increased pain 

in bone metastases. This effect usually happens 7–10 days after the beginning of the hormonotherapy and 

is frequently followed by a remission of the disease [57]. Mortimer et al. [62] studied this metabolic 

effect with FDG-PET and 16 alpha-[29]fluoroestradiol-17 beta (FES)-PET in 40 women with  

biopsy-proved advanced ER-positive breast cancer receiving therapy with tamoxifen and concluded that 

this flare effect could be an indicator of hormone responsiveness in advanced breast cancer. 

One of the challenges that faces not only FDG-PET but other imaging modalities such as MRI, CT, 

and bone scanning with 99mTc-HDP (or MDP) is to be found in bone metastases. For example, bone 

scintigraphy, which is performed in many countries, has been part of the work-up in following those 

patients that have shown false-negatives due to the behavior of some metastases that show a more lytic 

component than an osteoblastic reaction [63,64]. Also, it has been reported that false-positive results, 

known as the “flare phenomenon,” can occur after a successful therapy response [65,66]. 

  



Diagnostics 2015, 5 70 

 

 

 

Figure 2. A 53-year-old woman with breast cancer in the course of therapy but with rising 

biomarkers. The patient was referred for FDG-PET/CT evaluation. Left column: baseline 

PET/CT scan. (a) Non-enhanced CT showing a hypodense lesion in the right posterior 

hepatic lobe; (b) PET/CT. Mild metabolism was shown in the lesion, similar to what was 

found in the background. Right column: mid-therapy PET/CT scan. (c) Non-enhanced CT 

showing the same lesion but significantly larger than baseline exam. (d) Hypermetabolic 

lesion with heterogeneous distribution of the radiotracer (arrow) shown on PET/CT, 

consistent with metastatic liver lesion. 

On the other hand, FDG-PET/CT offers good results in the evaluation of lytic and mixed bone 

metastases; however, it lacks diagnostic performance when those metastases are found to be the 

osteoblastic type. Nakai et al. [67] had a poor visualization rate in respect to bone metastases with  

FDG-PET. Other authors compared FDG-PET/CT versus CT imaging in the evaluation of early bone 

marrow metastases in breast cancer, establishing that FDG-PET/CT was more accurate than early 

detection on bone metastases, improving the staging in up to 15% of their patients. They recommend its 

use for treatment planning and follow-up (Figure 3) [68]. 
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Figure 3. Same patient as Figure 2. Left column: baseline PET/CT scan. (a,b) No 

abnormality was noticed on CT or PET/CT. Right column: mid-therapy PET/CT scan.  

(c) Non-enhanced CT showing an iso-hyperdense rounded lesion in the fourth lumbar 

vertebrae, called to be as undetermined. (d) PET/CT demonstrating a focus of FDG uptake 

(arrow) in the lumbar vertebrae due to bone metastases. 

In comparison with other imaging modalities including CT alone and MRI, FDG-PET/CT 

demonstrates better diagnostic accuracy [47,69]. CT may be used for the detection of cortical and 

trabecular bone destruction but has a low sensitivity due to the fact that bone metastases usually start in 

the bone marrow instead of the cortical tissue, sometimes even more difficult to evaluate when 

osteoporosis or degenerative changes are also present [64]. Contrariwise, MRI is suitable for detecting 

bone marrow involvement but not for cortical disruption. 

An old PET radiopharmaceutical that has been receiving renewed interest is 18F-fluoride. This tracer 

has shown promise as a good modality for early and accurate detection of bone metastases in many 

neoplasms. Some suggest that the combination of FDG and fluoride PET imaging allows evaluation of 

both sclerotic and lytic lesions when assessing treatment response in bone metastases [31]. Damle et al. [64] 

compared the role of FDG-PET/CT, fluoride PET/CT, and bone scintigraphy in the detection of bone 

metastases in several oncological diseases and suggested that fluoride PET imaging can show bone 
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metastases when progression is clinically suspected or in high risk patients. Also, the authors believed 

that bone scanning with 99mTc-MDP could be replaced in the near future by fluoride PET in many diseases. 

A recently published study compared 99mTc-MDP, FDG-PET/CT, fluoride PET/CT, and MRI for the 

detection of known osseous metastases, confirming better image quality and superior evaluation 

performance of skeletal involvement with fluoride PET/CT compared to the other imaging techniques. 

In addition, FDG-PET/CT showed relevant soft-tissue information that could be helpful in the treatment 

management of the patients [70]. 

FDG-PET seems to be useful as a diagnostic tool for evaluating treatment response in locally 

advanced breast cancer or metastatic disease when change in the treatment strategy is possible. PET 

should be considered as a valuable imaging modality to predict NAC response in locally advanced breast 

cancer and chemotherapy in metastatic disease [71,72]. 

3. Dedicated Breast PET Imaging 

MM is still the cost-effective imaging modality of choice in standard breast cancer screening 

procedure; however, it suffers from low specificity in the detection of malignancy and in women with 

dense breast tissue. Other imaging modalities such as MRI have been tested as an alternative or 

complement to MM [25]. MRI offers high spatial resolution and excellent soft-tissue contrast, and, with 

the use of contrast agents, it provides enhancement information. Nonetheless, it is known to have a 

significant rate of false-positives in benign lesions, and in certain conditions like estrogen-modulation 

some lesions might be missed due to increased background signal [48]. Also, patients with implanted 

metal materials (pacemakers, etc.) or suffering from claustrophobia are usually excluded from MRI. 

Nuclear medicine has been offering many diagnostic tools in primary detection, staging, and the 

evaluation of treatment response but has recognized limitations, most of them already discussed. Recent 

developments in breast imaging have been achieved in the last decades based on the challenges that the 

diversity of breast imaging modalities, including whole-body PET systems, faced. To overcome the 

known limitations of these imaging techniques, breast-dedicated systems for positron imaging, also 

known as positron emission mammography (PEM), have been designed. The main benefits of PEM 

include higher spatial resolution, improved geometric sensitivity with reduced attenuation, shorter 

imaging time, and the possibility of lowering the radiopharmaceutical dose compared to whole-body 

PET systems [73]. 

PEM systems are equipped with two parallel photon detectors, very similar to the configuration used 

in mammography compressors, which directly correlates with that of MM, facilitating comparison of 

findings on both modalities. Preliminary studies using this technical approach show a sensitivity around 

90%, enabling the detection of small lesions [74]. Other groups have reported 91% sensitivity with 93% 

specificity [74] in a multicenter study trial. Additionally, the authors exhibited the ability of their PEM 

system to detect very small lesions (around 2 mm in size) and small foci of ductal carcinoma in situ [74]. 

Higher radiation dose than MM and the difficulty of detecting lesions in the posterior wall were reported 

in most studies. The variability of FDG uptake in small and less metabolically active tumors, and false-

positive imaging findings due to prior biopsy were also observed [16]. 

When comparing PEM with other imaging modalities besides whole-body PET, a large study of 

patients who had newly diagnosed early stage breast cancer and who were undergoing conventional 
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imaging, PEM, MRI, and conventional imaging plus PEM, depicted additional disease in 14% of 

patients, showing better specificity with PEM compared with MRI and thus avoiding unnecessary 

biopsies [75,76]. Recently, a study showed promising, but preliminary, results of the first  

high-resolution PEM-guided biopsy study, concluding that this approach is both safe and effective for 

the sampling of PET-depicted breast lesions [77]. 

As an alternative to this PEM design, a breast-dedicated high-resolution PET system has recently 

been developed. This device demonstrates a high detector spatial resolution (approx. 1.5 mm) with fast 

acquisition times designed in a hanging breast imaging approach. Some of the advantages of this 

approach are the prone position, which may improve the sensitivity and detection of difficult deep 

lesions, improved detection of small tumors especially in young women and those with dense breasts, 

and a portable system that allows imaging in the operation room (Figure 4). A pilot study tried to evaluate 

the tumor detection and FDG uptake characteristics in 32 patients in stage II and III breast cancer prior 

to NAC, compared to conventional PET/CT. The conclusion of this study was that this PEM system was 

able to detect almost all breast lesions, including those close to the thoracic wall [78]. 

 

Figure 4. Recently diagnosed breast cancer in a middle-aged woman. The dedicated  

breast PET scan (MAMMI Breast PET, Oncovision, GEM Imaging SA, Valencia, Spain) 

shows a focus of intense FDG uptake (arrow) in the upper inner quadrant of the right breast 

that was proven to be a breast carcinoma. Image courtesy of Dr. Cozar-Santiago and  

Dr. Ferrer-Rebolleda, Department of Nuclear Medicine, ERESA Medical Group, General 

University Hospital, Valencia, Spain. 
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In conclusion, dedicated breast PEM and PET systems seem to be a promising technology that help 

overcome the limitations of whole-body imaging and could eventually be capable of reliably imaging 

primary breast neoplasms. Some of the potential roles include detection, local staging, local recurrence, 

and predicting response to treatment. However, these preliminary results have to be further evaluated 

with more studies in order to determine the concrete benefits of these devices and their place in the 

diagnostic algorithm of breast cancer. 

4. Non-FDG Tracers 

The limitations of 18F-FDG are well-known as this is not a very specific tracer for breast malignancies. 

Besides 18F-FDG and 18F-fluoride, other radiopharmaceuticals have been used in both a pre-clinical and 

clinical setting. 

4.1. 18F-Fluoromisonidazole 

Assuming that around 70% of breast neoplasms are hormone-dependent, overexpressing hormone 

receptors such as estrogen receptor (ER), endocrine therapy has been established as an important tool to 

treat ER-positive breast cancer. Conventional anti-estrogen therapy with tamoxifen, for example, has 

shown worse results than those in postmenopausal patients in early and advanced stage of breast cancer 

treated with a new generation of hormone treatment with third-generation aromatase inhibitors [79]. 

However, 30% of ER-positive patients will not properly respond due to primary resistance to hormonal 

therapy [79]. 

In this setting, hypoxia is a normal phenomenon that occurs in solid tumors probably because of 

uncontrolled proliferation and immature blood vessels. Hypoxia-induced factor (HIF), a known 

biomarker for hypoxia, is known to be associated with tumor propagation, malignant progression,  

and resistance to treatment [79]. Kurebayashi et al. [80] studied the relationship between the  

growth-promoting effects of estradiol and the growth-inhibitory effects of an anti-estrogen in an  

ER-positive breast cancer cell line and observed that hypoxia was significantly reduced in both. Another 

study comparing neoadjuvant letrozole with letrozole plus metronomic cyclophosphamide demonstrated 

that high levels of HIF-1α were significantly associated with resistance to treatment [81,82]. 

In PET imaging, radiolabeled hypoxia-avid compounds can be used to evaluate the oxygenation status 

in experimental or human tumors. 18F-labeled fluoromisonidazole, or 18F-FMISO, is a nitroimidazole 

derivative radiopharmaceutical used in research PET/CT. This radiotracer has affinity for hypoxic cells 

with functional nitroreductase enzymes; therefore it accumulates in activated cells but not in necrotic 

cells [83]. Several studies have shown superb correlation between the uptake 18F-FMISO and oxygenation 

status of non-small cell lung neoplasms, head and neck cancer, gliomas, and cervical cancer [79]. 

4.2. 18F-Fluorothymidine 

Among the most commonly used drugs in breast cancer are taxanes. The possibility of imaging early 

response or resistance of therapy would be an ideal tool for clinicians. 18F-labeled fluorothymidine, or 
18F-FLT, has been proposed as an early molecular imaging biomarker able to evaluate treatment response 

with taxanes (i.e., doxetacel) [84]. In tumor cells, FLT uptake is regulated by equilibrative nucleoside 
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transporter (ENT-1) and thymidine kinase1 (TK1). TK1 is regulated during cell division transcriptionally 

in the G1 to S-phase of the cell cycle and hence cellular proliferation [85]. Uptake of FLT is also correlated 

to Ki-67 labelling index, another proliferation parameter, in breast cancer as shown by Kenny et al. [86], 

and various other cancers demonstrated by Salskov et al. [87]. Some studies have presented a strong 

correlation of FLT uptake with cell proliferation in untreated patients with breast cancer, enabling 

detection of response as early as 1 week after chemotherapy. Pio et al. [88] compared 18F-FDG and  
18F-FLT imaging in 14 patients with newly diagnosed primary or metastatic breast cancer for monitoring 

and predicting tumor response to chemotherapy. The group concluded that 18F-FLT may be more 

accurate than 18F-FDG two weeks after the end of the first course of chemotherapy for predicting  

longer-term efficacy of chemotherapy for women with breast cancer. 

4.3. 18F-Fluoroestradiol 

Levels of ER expression in breast cancer have been shown to have important prognostic information 

and also to predict the likelihood of a response to hormonal therapy [89]. Immunohistochemistry (IHC) 

techniques of fixed tissue are now an available diagnostic tool to measure ER expression in newly 

diagnosed breast cancer. 18F-labeled fluoroestradiol or 18F-FES is a novel radiopharmaceutical that  

non-invasively measures ER expression in tumors and has emerged as a valuable method to predict 

response to hormone therapy in recurrent or metastatic breast cancer patients [90–92]. 18F-FES has also 

shown potential to overcome the sampling errors that arise from disease heterogeneity and are associated 

with in vitro assays for cancer. In addition, it simultaneously measures the in vivo delivery and binding 

of estrogens [89]. Level of 18F-FES uptake predicts the likelihood of a response to tamoxifen and 

aromatase inhibitor treatment, as some studies supported [93,94], and could be of use in treatment 

response assessment in some groups with recurrent or metastatic breast cancer. 

5. Conclusions 

The value of FDG-PET or FDG-PET/CT is mainly limited to staging recurrent or metastatic breast 

disease and in the evaluation of treatment response. However, recent studies, in addition to technological 

developments including better performance in sensitivity enabling the depiction of lesions smaller than 

1 cm, the possibility of having CT that favors anatomical location, dedicated breast PET systems and the 

use, mostly in a pre-clinical or research setting, of more specific radiolabeled tracers, open an 

encouraging future for the usefulness of PET imaging in the management of breast cancer.  

A combination of some of these radiotracers (i.e., 18F-FDG and 18F-fluoride) in an individualized 

approach (patient-by-patient basis) may show a potential inclusion into the algorithm of the different 

stages of the breast cancer work-up. 
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