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Abstract: The accuracy of diagnostic tests with binary end-points is most frequently
measured by sensitivity and specificity. However, from the clinical perspective, the main
purpose of a diagnostic agent is to assess the probability of a patient actually being diseased
and hence predictive values are more suitable here. As predictive values depend on the
pre-test probability of disease, we provide a method to take risk factors influencing the
patient’s prior probability of disease into account, when calculating predictive values.
Furthermore, approaches to assess confidence intervals and a methodology to compare
predictive values by statistical tests are presented. Hereby the methods can be used to analyze
predictive values of factorial diagnostic trials, such as multi-modality, multi-reader-trials.
We further performed a simulation study assessing length and coverage probability for
different types of confidence intervals, and we present the R-Package facROC that can be
used to analyze predictive values in factorial diagnostic trials in particular. The methods
are applied to a study evaluating CT-angiography as a noninvasive alternative to coronary
angiography for diagnosing coronary artery disease. Hereby the patients’ symptoms are
considered as risk factors influencing the respective predictive values.
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1. Introduction

The main purpose of a diagnostic agent is to assess a patient’s true health status, so the probability
of the test giving the correct diagnosis is an important assessment of diagnostic ability. Hereby the
positive predictive value describes the probability that a patient with an abnormal (i.e., positive) test
result is actually diseased and consequently, the negative predictive value represents the probability that
a patient with normal (i.e., negative) test result is actually free of disease. However, these quantities are
only of limited value: the predictive values of a diagnostic agent critically depend on the prevalence of
the disease and, as the prevalence might vary, e.g., between different risk groups, predictive values are
not homogenous within the population. Hence sensitivity and specificity are mostly used to describe the
accuracy of a diagnostic agent because these measures are independent of the prevalence of disease: they
are defined as the probabilities of the test, correctly identifying the diseased subjects or the non-diseased
respectively. In contrast to the predictive values, sensitivity and specificity describe the result of a test
within groups of patients who either have or do not have the condition. Thus they are characteristics of
the diagnostic test itself and are independent of the prevalence of the disease. Even though sensitivity
and specificity are useful and powerful measures to understand how effective a diagnostic test is, they
also involve a main disadvantage: these quantities do not assess the accuracy of a diagnostic agent
in a practically useful way. They concentrate on how accurate the diagnostic test is in discriminating
diseased and non-diseased subjects but fail to give an assessment of a normal or abnormal test result
of an individual patient. This interpretation of the test result is only provided by predictive values.
Hence, predictive values should not be disregarded in the analysis of diagnostic trials, despite all entailed
problems. Instead of avoiding predictive values, they should rather be estimated while carefully taking
the arising problems into consideration.

This paper now provides a new method to calculate predictive values for different risk groups.
As the pre-test probability of disease in different risk groups does not need to be determined in the
same study as the efficiency of the diagnostic agent, this method can even be applied after the diagnostic
study (analyzed by means of sensitivity and specificity) has already been closed. Hence, the approach
is also applicable to case-control studies where, per study design, no prevalence can be assessed.
By this method of analysis, the heterogeneity of predictive values throughout the population is taken into
account because predictive values are estimated for each risk group separately. Reported additionally to
sensitivity and specificity, these predictive values provide a comprehensive review of the strengths and
weaknesses of the investigated diagnostic agent.

In our approach of analysis, we assume that sensitivity and specificity are equal in all investigated
risk groups and that the probability of disease in each group has been estimated in prior studies.
We calculate predictive values by using Bayes’ theorem and determine the asymptotic distribution of
the resulting inferential statistics by using the delta method (Section 2). As many diagnostic studies are
at least two armed trials in which each subject is diagnosed by different tests, we use the multivariate
delta theorem to allow to determine predictive values in factorial designs as well. The idea of using
the delta method to calculate the distribution of predictive values in a univariate set-up was proposed
by Mercaldo I. [1]. In their work the prevalence has to be known by the investigator and cannot be
estimated, which seems to be unlikely in clinical practice. In our approach we hence allow the prevalence
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being a random variable, which cannot easily be neglected as simulations studies (Section 3) show. The
practical relevance of presented methods are illustrated by means of a study evaluating the accuracy of
multidetector CT angiography in the diagnosis of coronary artery disease (Section 4). The paper closes
with a discussion of the proposed procedures (Section 6).

2. Methods of Analysis

In this approach, Bayes’ theorem [2] serves as the theoretical basis for the analysis. This theorem
connects sensitivity and specificity with the predictive values by displaying the positive (p+) and the
negative (p−) predictive value as functions of sensitivity (se), specificity (sp) and prevalence (π), namely,

p+ = f+(se, sp, π) =
se · π

se · π + (1− sp) · (1− π)
(1)

p− = f−(se, sp, π) =
sp · (1− π)

sp · (1− π) + (1− se) · π
(2)

The sensitivity can be estimated by the ratio of the true positive test results to all diseased
subjects, and the specificity can be estimated by the ratio of the true negative test results to all
non-diseased subjects. As we assume that the prevalence of disease in each risk group has been assessed
in prior studies, estimators for the positive and the negative predictive value for each risk group can be
calculated by plugging in the estimators of sensitivity, specificity and prevalence in Equations (1) and (2).

This method is applied, e.g., by Diamond and Forrester [3], who compute the probability of having
a coronary artery disease. They present a table of post-test probabilities depending on the result of an
electrocardiographic stress test (depression of the S-T segment) and depending on the pre-test probability
of disease (categorized into different risk groups by age, sex and symptoms). Their work shows the
importance of distinguishing between different risk groups: for the same depression of the S-T segment,
the positive predictive value varies from 0.938 (high risk group) to 0.003 (low risk group).

Extending the ideas of Diamond and Forrester, our approach will go one step further: we will derive
methods of analysis by which not only the predictive values of two or more modalities are calculated for
different risk groups, but also the difference between the modalities is statistically tested. Furthermore,
different methods to calculate confidence intervals for the positive and the negative predictive value are
provided. As all these methods take the patient’s risk factors into consideration, this approach of analysis
can be regarded as a further step towards personalized medicine.

2.1. Notation

We consider a diagnostic trial involving N subjects, where n0 subjects are classified as non-diseased
by a reliable gold standard and n1 are classified as diseased. In the set-up of this trial, we assume that
each subject is examined by means of m = 1, . . . ,M different diagnostic tests. For each subject the
results are collected in a vector Xik = (X

(1)
ik , . . . , X

(M)
ik ), i = 0, 1, k = 1, . . . , ni, where X(m)

ik = 1, if the
test result of the m-th test is positive and X(m)

ik = 0 otherwise. Within group i (i = 0, 1) the vectors Xik,
k = 1, . . . , ni are independent identically distributed random vectors, following a multivariate Bernoulli
distribution with success probabilities sp = (sp(1), . . . , sp(M))′ for i = 0 and se = (se(1), . . . , se(M))′

for i = 1. Hereby sp and se denote the vectors of sensitivity and specificity for the different modalities.
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2.2. Estimation and Asymptotic Distribution

The sensitivity of the m-th diagnostic test is estimated by ŝe(m), the ratio of the true positive test
results (of test m) to all diseased subjects, and the specificity of the m-th modality is estimated by
ŝp(m), the ratio of the true negative test results (of test m) to all non-diseased subjects. Similarly to
sensitivity and specificity, their estimators are also collected in vectors ŝe = (ŝe(1), . . . , ŝe(M))′ and
ŝp = (ŝp(1), . . . , ŝp(M))′.

For the calculation of the predictive values for a subject, its pre-test probability of disease is required.
We assume that the pre-test probability of disease is influenced by a patient’s individual characteristics
and that each subject can be attributed to a risk group on the basis of these attributes. Hereby, the
prevalences πg, g = 1, . . . , G, in the g-th risk group have been estimated in prior studies by π̂g = kg

mg
,

the ratio of the number of diseased subjects kg in group g to all subjects mg in group g. With the help
of Equations (1) and (2), the positive and the negative predictive value of the m-th modality for the g-th
risk group can be calculated and finally be estimated by replacing sensitivity, specificity and prevalence
by their respective estimates:

p̂
(m)
g,+ = f+(ŝe(m), ŝp(m), π̂g) =

ŝe(m) · π̂g
ŝe · π̂g + (1− ŝp(m)) · (1− π̂g)

and

p̂
(m)
g,− = f−(ŝe(m), ŝp(m), π̂g) =

ŝp(m) · (1− π̂g)
ŝp(m) · (1− π̂g) + (1− ŝe(m)) · π̂g

, m = 1, . . . ,M

Similarly to sensitivity and specificity, the positive and the negative predictive values of each risk
group g = 1, . . . , G are collected in vectors pg,+ = (p

(1)
g,+, . . . , p

(M)
g,+ ) and pg,− = (p

(1)
g,−, . . . , p

(M)
g,− ).

To derive the asymptotic results for the predictive values, the following regularity assumptions
are required:

Assumptions

(1) For all l, r = 1, . . . , d the bivariate distribution of (X
(l)
ik , X

(r)
ik ) is the same for all subjects

k = 1, . . . , ni within group i, i = 0, 1.
(2) Ñ = min(n0, n1,mg, g = 1, . . . , G) → ∞ : Such that N

ni
→ di, i = 0, 1, and N

mg
→ eg,

g = 1, . . . , G as N →∞.
(3) se(l), sp(l), l = 1, . . . , d and πg, g = 1, . . . , G are in (0, 1).

In clinical practice, these assumptions can be interpreted in the following way. The first assumption
means that different subjects are independent replications. The second assumption ensures that the
sample sizes n1 (used for the estimation of sensitivity), n0 (used for the estimation of specificity) andmg,

g = 1, . . . , G (used for the estimation of prevalences for the different risk groups) increase uniformly
when the overall sample size is increased. The third assumption excludes the trivial case that the
sensitivity, specificity or prevalences are equal to 0 or 1.
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These assumptions lead to our main result:

Theorem

For each risk group g = 1, . . . G, the statistics
√
N(p̂g+−pg+) and

√
N(p̂g−−pg−) have, asymptotically,

a multivariate normal distribution with mean 0 and covariance matrices V̂g
+ and V̂g

−, which are defined
in Appendix A.

Proof

The proof is mainly based on the central limit theorem and Cramer’s multivariate delta theorem with
f+ and f− as transformation functions. For details as well as for the expressions of V̂g

+ and V̂g
−, we refer

to the Appendix A.

The idea of using the delta method to calculate the distribution of predictive values was already
proposed by Mercaldo et al. [1] for the univariate case, i.e., in their approach, predictive values of
different diagnostic tests cannot be compared if the tests are carried out on the same subjects. It is
further assumed that the prevalence is a known parameter but no quantity that has been estimated.
If their method is applied in a set-up, when the prevalence is estimated (but incorrectly treated as fixed in
order to meet the requirements for their approach), the variance of the predictive values is systematically
underestimated (see Section 3).

2.3. Inferential Statistics

Based on the asymptotic distribution of
√
N(p̂g+ − pg+) and

√
N(p̂g− − pg−), the usual test statistics

to compare the different diagnostic tests can be statistically tested by formulating the hypotheses in the
same way as in theory of linear models

H0 : p
(m)
g,± − pg,± = 0, ∀m = 1, . . . ,M, where pg,± =

1

M

M∑
l=1

p
(l)
g,±

which equivalently can be written as:

H0 : T · pg± = 0, where T = IM −
1

M
1M1′M

Hereby, IM denotes the M -dimensional unit matrix and 1M the M -dimensional vector of 1s. In this
case, an additive model is assumed but this approach can easily be expanded to a logistic model by again
applying the delta method with a logit-transformation function. Hypotheses can be tested with the help
of the ANOVA-type statistic ([4,5]): Under H0 the statistic

ATS =
N

tr(TV̂g
±)

(p̂g±)′Tp̂g±

can be approximated by a central χ2
f̂
/f̂−distribution with

f̂ =
[tr(TV̂g

±)]2

tr([TV̂g
±]2)
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degrees of freedom. Furthermore, the (1 − α)-confidence intervals for each modality as well as for the
difference between two modalities can be calculated in the usual way:

p̂
(m)
g,± ± z1−α

2

√
v̂g±[m,m]√

N

p̂
(m1)
g,± − p̂

(m2)
g,± ± z1−α

2

√
v̂g±[m1,m1] + v̂g±[m2,m2]− 2v̂g±[m1,m2]√

N

where v̂g±[i, j] denotes the (i, j)-element of V̂g
± and z1−α

2
the (1 − α

2
)-quantile of a standard normal

distribution. For the confidence intervals, as well as for the test statistic, a logistic model can be
applied. Hereby, the logistic model has one main advantage: the resulting confidence intervals are
range-preserving by construction.

For small sample sizes, the distribution of
√
N(p̂

(m)
g,± − p

(m)
g,±)/

√
v̂g±[m,m] can be approximated by

a central tν-distribution (see Appendix B), which increases the coverage probability of the resulting
confidence intervals.

3. Simulation Results

In this section, we investigate the coverage and length of confidence intervals constructed with the
delta method. Hereby, we compare the approach of Mercaldo et al. [1] with the approaches presented
in this paper. There were 48 different combinations for prevalence π ∈ {0.05, 0.25, 0.5}, sensitivity and
specificity se, se ∈ {0.5, 0.75, 0.85, 0.9}. Three different values of n = n0 = n1 ∈ {50, 100, 500}
and mg ∈ {100, 500, 1, 000} were used with each combination to symbolize small, medium and large
study sizes for both the study evaluating the usefulness of the diagnostic test and the study assessing
the prevalence of disease according to risk groups. For each combination of π, se, sp, n,mg, 10,000
binomial samples were generated using the function rbinom of the free software R [6]. Hereby in
each simulation step, the sensitivity was estimated from a contingency table generated by n1 Bernoulli
samples, the specificity was estimated from a contingency table generated by n0 Bernoulli samples, and
the prevalence was estimated by means of mg Bernoulli samples. The positive and negative predictive
values as well as their estimators were calculated by applying Bayes’s theorem to a given set of π, se, sp
and π̂, ŝe, ŝp, respectively.

Simulation results for p+ and p− can be found in Tables 1 and 2 and Tables A1 and A2, respectively.
Hereby, the results for the negative predictive value are presented in Appendix C for reasons of
readability. Due to the great number of input parameters and the number of possible values, these
tables were constructed in the same way as in the paper of Mercaldo et al. [1]: one parameter was held
fixed while averaging over the remaining parameters. If the positive or the negative predictive value is
estimated 0 or 1, the logistic confidence interval is not applicable. In this case the tν-approximation is not
applicable neither, because the denominator of ν is estimated to be 0. The number of times this occurred
was recorded in the last columns of Tables 1 and A1, respectively. As the point estimators for p+ and p−
are equal in all approaches the failure rates of the t-approximation, the logistic normal approximation,
the logistic t-approximation and the logistic method by Mercaldo et al. are the same.
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Table 1. Summary of p+ coverage probabilities where the cell values denote the coverage
probability for one fixed parameter and averaging over the remaining parameters. Hereby
N-Approx and t-Approx are abbreviations for normal and t-approximation. π fix denotes the
method of [1], where π is assumed to be fixed.

Additive Logistic Failure (logistic
Fixed Parameter N-Approx t-Approx π fix N-Approx t-Approx π fix & t-Approx)

π = 0.05 0.9298 0.9525 0.6958 0.9608 0.9657 0.7013 0.234 %
π = 0.25 0.9403 0.9482 0.8250 0.9548 0.958 0.8386 0.045%
π = 0.5 0.9392 0.9472 0.8449 0.9548 0.9576 0.8596 0.047%
se = 0.5 0.9360 0.9477 0.8067 0.9571 0.9606 0.8184 0.105%
se = 0.75 0.9365 0.9496 0.7875 0.9569 0.9605 0.7985 0.111%
se = 0.85 0.9366 0.9498 0.7810 0.9568 0.9603 0.7925 0.107%
se = 0.9 0.9366 0.9501 0.7790 0.9564 0.9602 0.7900 0.111%
sp = 0.5 0.9408 0.9500 0.6897 0.9544 0.9557 0.6909 0.060%
sp = 0.75 0.9394 0.9480 0.7856 0.9552 0.9577 0.7913 0.061%
sp = 0.85 0.9357 0.9473 0.8287 0.9574 0.9623 0.8427 0.077%
sp = 0.9 0.9299 0.9520 0.8501 0.9602 0.9658 0.8745 0.235%
mg = 100 0.9266 0.9512 0.6578 0.9605 0.9646 0.6698 0.233%
mg = 500 0.9404 0.9476 0.8314 0.9552 0.9587 0.8425 0.046%
mg = 1, 000 0.9422 0.9491 0.8764 0.9547 0.9579 0.8873 0.047%
n0 = n1 = 50 0.9307 0.9498 0.8693 0.9608 0.9656 0.8915 0.197%
n0 = n1 = 100 0.9373 0.9474 0.8317 0.9563 0.9608 0.8416 0.065%
n0 = n1 = 500 0.9413 0.9508 0.6646 0.9533 0.9548 0.6664 0.063%
Overall 0.9364 0.9494 0.7885 0.9568 0.9603 0.7998 0.1080%

The approach of Mercaldo et al. assumes that the prevalence is a known fixed parameter and the
variance of πg is 0. But as the prevalence can only be assessed by estimation, we assumed the prevalence
to be a binomial random variable with variance greater than 0. To investigate whether this assumption has
an impact on the quality of the confidence intervals or whether this assumption can easily be neglected
in practice, we also simulated the approach of Mercaldo et al. with πg being a random variable. Note
that we hence investigate the methodology of Mercaldo et al. in set-up, which seems likely in clinical
practice but for which it was not designed. As the assumption that πg is known by the investigator seems
to be unlikely in practice, no simulation with fixed πg was performed.

Simulation results show that the logistic confidence intervals have a slightly higher coverage
probability than the additive intervals. The t-approximation in the additive set-up seems to achieve
the best coverage.

For our approach the overall coverages for the logistic interval are 0.9568 (p+) and 0.9562

(p−), whereas the overall coverages for the additive interval are 0.9364 (p+) and 0.9303 (p−).
The t-approximation increases coverage such that the overall coverages achieve 0.9494 (p+) and
0.9440(p−). The t-approximated logistic confidence intervals tend to be even more conservative than
the normal-approximated logistic confidence intervals. Furthermore, simulation results show that the
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assumption of πg being a fixed parameter is a necessary assumption for a good performance of the
approach of Mercaldo et al. If πg is a random variable, the overall coverage probability only reaches
0.7885 (additive) or 0.7998 (logistic) for the positive predictive value. (Simulations of the negative
predictive values lead to comparable results.) The variance of π̂g decreases when the sample size mg

increases and, hence, the method of Mercaldo et al. achieves better results for large mg.

Table 2. Summary of p+ confidence interval lengths where the cell values denote
the confidence interval length for one fixed parameter and averaging over the remaining
parameters. Hereby N-Approx and t-Approx are abbreviations for normal and
t-approximation. π fix denotes the method of [1], where π is assumed to be fixed.

Additive Logistic
Fixed Parameter N-Approx t-Approx π fix N-Approx t-Approx π fix

π = 0.05 0.2045 0.2204 0.1290 0.2041 0.2216 0.1269
π = 0.25 0.2262 0.2326 0.1782 0.2224 0.229 0.1761
π = 0.5 0.1522 0.1554 0.1219 0.1533 0.1578 0.1232
se = 0.5 0.2006 0.2084 0.1561 0.1994 0.2081 0.1545
se = 0.75 0.1941 0.2027 0.1423 0.1932 0.2028 0.1414
se = 0.85 0.1918 0.2006 0.1379 0.1908 0.2007 0.1371
se = 0.9 0.1907 0.1995 0.1358 0.1896 0.1996 0.1351
sp = 0.5 0.1323 0.1343 0.0772 0.1329 0.1368 0.0770
sp = 0.75 0.1816 0.1856 0.1285 0.1815 0.1873 0.1277
sp = 0.85 0.2181 0.2270 0.1680 0.2165 0.2264 0.1666
sp = 0.9 0.2452 0.2642 0.1984 0.2421 0.2607 0.1968
mg = 100 0.2480 0.2610 0.1415 0.2476 0.2644 0.1407
mg = 500 0.1741 0.1802 0.1437 0.1727 0.1785 0.1426
mg = 1, 000 0.1607 0.1671 0.1439 0.1595 0.1654 0.1428
n0 = n1 = 50 0.251 0.2664 0.2142 0.2484 0.2641 0.212
n0 = n1 = 100 0.1959 0.2017 0.1492 0.1951 0.2021 0.1484
n0= n1 = 500 0.136 0.1402 0.0658 0.1363 0.1421 0.0657
Overall 0.1943 0.2028 0.1430 0.1933 0.2028 0.1420%

As their approach assumed the variance of πg equal to 0, the lengths of the confidence intervals
are noticeably smaller than in our approach (about 25%), whereas for both methods the additive
and logistic approaches yield comparable intervals lengths. For each method, the lengths of the
logistic and the additive confidence intervals are almost equal. By construction, the lengths of the
t-approximated confidence intervals are slightly higher than the intervals constructed by means of the
normal approximation, but the difference is negligible.

We hence recommend using either the t-approximation or the logistic normal approximation when
confidence intervals are computed.
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4. Applications: Diagnostic Performance of Multidetector CT Angiography

As coronary artery disease (CAD) has been recognized as the leading cause of death in the
United States [7], the diagnosis of the presence and severity of CAD is essential in clinical practice.
Conventional coronary angiography reveals the extent, location and severity of obstructive lesions with
high accuracy and thus invasive coronary angiography, despite the associated risks, remains the standard
procedure for the diagnosis of CAD. Multidetector computed tomographic angiography (MDCTA) has
been proposed as a noninvasive alternative to the conventional coronary angiography.

Recently, Miller et al. [8] performed a multi-center diagnostic trial to evaluate the accuracy of
MDCTA involving 64 detectors. In 291 patients, segments of 1.5 mm or more in diameter were analyzed
by means of CT and conventional angiography (gold standard) to assess whether the patient has at least
one coronary stenosis of 50% or more. These data are summarized Table 3.

Table 3. CAD data.

Conventional Angiography
positive negative

positive 140 13
MDCTA

negative 24 114
164 127

From Table 3, the sensitivity is estimated to be 0.85 while the specificity is estimated to be 0.90.
Miller et al. [8] also estimated the predictive values from Table 3. Hereby, they implicitly assumed that
the pre-test likelihood of disease is the same for all patients. They, furthermore, assumed that the study
prevalence is representative. Using this approach, 0.83 is estimated as positive predictive value and 0.91
as negative predictive value. From these results, the authors draw the conclusion that CT angiography
cannot be used as a simple replacement for conventional angiography. For our approach of analysis, we
will regard three risk groups with different pre-test probabilities of disease. Diamond and Forrester [3]
reviewed the literature to estimate the prevalence of CAD depending on sex, age and symptoms. For
reasons of simplicity, we will only concentrate on the patient’s symptoms as risk factor. According to
the patient’s symptoms, Diamond and Forrester [3] provide the pre-test probabilities of disease presented
in Table 4.

Table 4. Prevalence of CAD in symptomatic patients.

Symptom Proportion of Patients Affected

nonanginal chest pain 146/913 (16.0%)
atypical angina 963/1,931 (49.9%)
typical angina 1,874/2,108 (88.9%)
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Using these estimators for the prevalence as well as the estimators of sensitivity and specificity, the
positive predictive values (PPV), negative predictive values (NPV) and the corresponding confidence
intervals were calculated using the described methods. The results are summarized in Table 5.

Table 5. Predictive values of CAD according to symptoms.

Nonanginal Chest Pain Atypical Angina Typical Angina
PPV NPV PPV NPV PPV NPV
0.614 0.97 0.892 0.86 0.985 0.434

standard [0.483,0.744] [0.958,0.982] [0.842,0.943] [0.814,0.907] [0.977,0.993] [0.336,0.532]
with t-approx. [0.480,0.747] [0.957,0.982] [0.840,0.945] [0.814,0.907] [0.977,0.993] [0.335,0.533]

logistic [0.478,0.733] [0.955,0.980] [0.830,0.933] [0.807,0.901] [0.975,0.991] [0.339,0.533]
with t-approx [0.474,0.736] [0.955,0.980] [0.828,0.935] [0.807,0.901] [0.975,0.991] [0.338,0.534]

Taking the additional information of the patient’s individual risk factors of disease into account offers
a more comprehensive interpretation of the study results. For a patient with nonanginal chest pain, a
negative test result from the MDCTA eliminates the need of further examination as well as a positive
test result for a patient with typical angina does. In contrast, for a patient with atypical angina, neither a
positive nor a negative test result from the MDCTA will lead to a clear statement concerning the patient’s
health status.

5. Software

In order to analyze factorial trials, we have developed the R-Package facROC. The software can
be used to evaluate most assessments of diagnostic accuracy in factorial set-ups: the area under the
ROC-Curve (according to [9]), sensitivity and specificity (according to [10]) as well as predictive values
(according to this paper). In most diagnostic trials sensitivity and specificity are analyzed as primary
assessments of diagnostic accuracy. The evaluation of sensitivity and specificity serves as a basis for the
computation of predictive values and can be performed by the facROC function facBinary:

fB <- facBinary(formula, id, gold, data, logit=FALSE)

Hereby the factorial structure of the trial can be taken into consideration with the help
of the formula parameter that specifies the model in the usual way (e.g., formula =

testresult˜rater*method). The parameter “id” indicates the patient’s id and the parameter
“gold” assigns the patient’s true health status. (For more details as well as more options and parameters,
see facROC manual.) To calculate and evaluate predictive values, the result of the analysis of sensitivity
and specificity (i.e., a facBinary object) can be passed to the facPV function:

facPV(fB, prev, logit=FALSE, test=FALSE)

The prevalence parameter “prev” has to be passed to the facPV function as a
two-dimensional vector: prev = c(diseased patients in prevalence study,

number of patients). The options “logit” and “test” are logical flags indicating whether a
logistic model should be fitted and whether hypotheses on the predictive values should be tested.
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If the data of the original study determining sensitivity and specificity is not available and hence the
function facBinary cannot be called, the function facPV can be used instead:

facPV(se, sp, n1, n0, prev, logit=FALSE)

Hereby “se” denotes a vector of sensitivities under different conditions and “sp” denotes the
corresponding vector of specificities. Note that it is also possible to pass one-dimensional vectors to
the function facPV. “n1” and “n0” characterize the sample sizes of diseased and non-diseased patients
used to estimate “se” and “sp”. Again the logical flag “logit” indicates whether logistic confidence
intervals should be computed. If the parameters to determine predictive values are provided without a
facBinary object, the test option is not available. As the covariance matrixes of sensitivity and specificity
are not at hand in this case, the test statistic cannot be computed: it summarizes predictive values of
different conditions and these might be dependent if the corresponding sensitivities and specificities are
dependent. As confidence intervals are computed for each condition separately, they can nevertheless be
calculated.

The package facROC will shortly be available on CRAN. Currently it is uploaded at
http://github.com/KatharinaLange. To install directly from github, the package devtools is needed
(available on CRAN).

install.packages("devtools")

library(devtools)

install github(repo="facROC", username="KatharinaLange")

The build Linux (tar.gz) and Windows (zip) versions of this package are available for download in the
repository at http://github.com/KatharinaLange/facROC-build.

6. Discussion

In this paper, we suggested a new method to translate the results of diagnostic trials for use in
clinical practice by means of predictive values. The proposed method provides an approach to calculate
confidence intervals according to factors influencing the risk of disease. As in our approach the pre-test
probability of disease has been assessed in prior studies, no prevalence needs to be estimated from the
data of the current trial. Thus this method of analysis can also be used for calculating predictive values
in case-control studies where estimating prevalences is not possible. Note that in our approach, we
assume that the prevalence is independent of sensitivity and specificity, which means that sensitivity
and specificity have to be homogeneous in different risk groups. Thus, with this methodology, it is
possible to estimate predictive values for risk groups that are not included in the original trial. Note
that the assumption of homogeneity has to be considered carefully before this method is applied (For
example, the accuracy of imaging devices as well as the risk of disease might depend on the patient’s
BMI. In this case, sensitivity and specificity are no longer equal in the different risk groups and hence
a stratified estimation for each group has to be performed). We, furthermore, considered a set-up in
which it is possible to compare the predictive values of different diagnostic tests by means of the
ANOVA-Type statistic. Many diagnostic trials are imaging studies and therefore the investigation of
the images is mostly carried out by several readers. As our approach uses the multivariate delta theorem,
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this method of analysis can easily be extended to multiple reader diagnostic trials by using a vector of
indices (r,m) indicating the reader and the method. Hypotheses can be tested by choosing appropriate
contrast matrices referring to the theory of linear models. Furthermore, confidence intervals for arbitrary
contrasts c′pg± can be computed. Hence, in multiple reader trials we can assess the difference between
two diagnostic tests by averaging over the different readers [9,10]. In clinical practice, an initial suspicion
is sometimes confirmed not by only one diagnostic test but by several ones. In this case, the pre-test
probability of disease increases with each positive diagnostic result. In order to calculate and analyze
predictive values in these cases, some information is required:

1. the probability of disease before the first test was carried out, i.e., the “pre-testing” probability
of disease, which might depend on several risk factors and has to be determined from
prevalence studies;

2. the sensitivity and the specificity of each diagnostic test performed as well as the correlation
between these tests.

With the help of the second item, a global sensitivity and a global specificity for the whole testing
procedure can be calculated. (This might be a complex problem if different diagnostic tests are
dependent. For more details, see, e.g., [11].) In combination with the pre-testing probability of disease,
predictive values can now be calculated in the way proposed here. Note that a pre-test or a pre-testing
probability is always required when predictive values are computed. The methodology developed might
help to answer two of the most important questions to clinicians: “How likely is it that the patient has
the condition?” and “How likely is it that the patient is free of disease?” Nevertheless, it is important
to point out that predictive values cannot replace sensitivity and specificity. As predictive values have
a more concrete and thus more user-friendly interpretation than sensitivity and specificity, they might
also be considered as accuracy assessments, when the usefulness of a new diagnostic agent is evaluated.
However, because these measurements depend on the prevalence, regulatory authorities advise to be
careful when using predictive values for the evaluation of diagnostic trials. The EMEA states “predictive
values must be reported with caution and only when the study sample is considered to be representative
of the prevalence in the real world” [12] and the FDA recommends that “the trials include the intended
population in the appropriate clinical setting” [13]. Following these recommendations, predictive values
are calculated for a patient with a mean pre-test risk of disease but the results of the evaluation will
not be valid for a patient with a known higher or lower probability of disease. Hence, we achieve a
result for an average patient but no general result. But the main purpose of a diagnostic trial is to
evaluate whether or not a new diagnostic agent increases the probability of a correct diagnosis in general.
In contrast, sensitivity and specificity are able to assess the effect of a new diagnostic agent independent
of any prior probability of disease and any prevalence. Thus sensitivity and specificity allow us to assess
the quality of a new diagnostic agent in general. Therefore, predictive values should rather be avoided
when the usefulness of a new diagnostic agent is evaluated and they should only be calculated for the
use in clinical practice.
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A. Proof: Asymptotic Distribution of p+ and p−

According to the multivariate central limit theorem, we obtain that

√
n1 · (ŝe− se)

L→ U ∼ N(0,Vse) (3)
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where Vse denotes the covariance matrix of X11. Applying the central limit theorem to the estimator of
the specificities similarly leads to

√
n0 · (ŝp− sp)

L→W ∼ N(0,Vsp) (4)

where Vsp = Cov(X01). For the prevalences in the different risk groups, the univariate central limit
theorem leads to

√
mg · (π̂g − πg)

L→ Qg ∼ N(0, σ2
g), g = 1, . . . , G (5)

where σ2
g = πg(1 − πg). As N

ni
→ di, i = 0, 1 and N

mg
→ eg, g = 1, . . . , G by assumption,

Equations (3)–(5) can be rewritten as
√
N · (ŝe− se)

L→ U′′ ∼ N(0, d1 ·Vse)
√
N · (ŝp− sp)

L→W′′ ∼ N(0, d0 ·Vsp), and
√
N · (π̂g − πg)

L→ Q′′g ∼ N(0, eg · σ2
g), g = 1, . . . , G

The estimators of sensitivity, specificity and prevalence are independent random variables and thus
we obtain that:

√
N


ŝe

ŝp

π̂g

−
se

sp

πg


 L→ B ∼ N

(
0, d1Vse ⊕ d2Vsp ⊕ egσ2

g

)
where ⊕ denotes the direct sum.

The functions f+ and f− given in Equations (1) and (2) map sensitivity, specificity and the prevalence
onto the positive and the negative predictive value, respectively. Let

f+ ((se′, sp′, πg)
′) =

(
f+(se(1), sp(1), πg), . . . , f+(se(d), sp(d), πg)

)
and

f− ((se′, sp′, πg)
′) =

(
f−(se(1), sp(1), πg), . . . , f−(se(d), sp(d), πg)

)
denote the multivariate versions of f+ and f− and let Df+ = Df+ ((se′, sp′, πg)

′) and
Df− = Df− ((se′, sp′, πg)

′) denote the corresponding Jacobian matrices of all first-order partial
derivatives at position (se′, sp′, πg)

′. Then, applying Cramer’s δ theorem leads to:

√
N(p̂g+ − pg+) =

√
N

f+
ŝe

ŝp

π̂g

− f+

se

sp

πg


 L→ Bg

+ ∼ N
(
0,Df+

[
d1Vse ⊕ d0Vsp ⊕ egσ2

g

]
Df ′+

)
g = 1, . . . , G

and

√
N(p̂g− − pg−) =

√
N

f−
ŝe

ŝp

π̂g

− f−

se

sp

πg


 L→ Bg

− ∼ N
(
0,Df−

[
d1Vse ⊕ d0Vsp ⊕ egσ2

g

]
Df ′−

)
g = 1, . . . , G
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Now Df+ = Df+ ((se′, sp′, πg)
′) and Df− = Df− ((se′, sp′, πg)

′) are estimated by
D̂f+ = Df+

(
(ŝe′, ŝp′, π̂g)

′) and D̂f− = Df−
(
(ŝe′, ŝp′, π̂g)

′), respectively. The quantities di are
estimated by N

ni
, i = 0, 1 and eg is estimated by N

mg
, for all g = 1, . . . , G. We further estimate the

covariance matrices Vse and Vsp by the sample covariance matrices

V̂se =
1

n1 − 1

n1∑
k=1

(X1k − ŝe)(X1k − ŝe)′

and

V̂sp =
1

n0 − 1

n0∑
k=1

(X0k − ŝp)(X0k − ŝp)′

respectively. We further use the unbiased empirical variance σ̂2
g = mg

mg−1
· π̂g · (1 − π̂g) as the estimator

of σ2
g for the ease of convenience.

Plugging in these empirical counterparts and applying Slutzky’s theorem hence leads to our main
result: for each risk group g = 1, . . . G, the statistics

√
N(p̂g+ − pg+) and

√
N(p̂g− − pg−) have,

asymptotically, a multivariate normal distribution with mean 0 and covariance matrices

V̂g
+ = D̂f+

[
N

n1

V̂se ⊕
N

n0

V̂sp ⊕
N

mg

σ̂2
g

]
D̂f
′
+ and

V̂g
− = D̂f−

[
N

n1

V̂se ⊕
N

n0

V̂sp ⊕
N

mg

σ̂2
g

]
D̂f
′
−

respectively.

B. t-Approximation for Small Sample Sizes

In order to increase the quality of our methods for small sample sizes, a tν-approximation of√
N(p̂

(m)
g,± − p

(m)
g,±)/

√
v̂g±[m,m] is also provided. To assess the degrees of freedom ν of the t-distribution,

we use an approach based on the Box approximation [14]: the distribution of
√
v̂g±[m,m] is

approximated by a scaled χ2
ν-distribution, i.e., by the distribution of a random variable g · Zν , where

Zν ∼ χ2
ν and ν and g are constants such that the first two moments coincide. We hence determine ν by

ν =
2 · E( ∂f

∂se
· d1 · v̂se[m,m] + ∂f

∂sp
· d0 · v̂sp[m,m] + ∂f

∂π
· eg · σ̂2

g)
2

Var( ∂f
∂se
· d1 · v̂se[m,m] + ∂f

∂sp
· d0 · v̂sp[m,m] + ∂f

∂π
· eg · σ̂2

g)

=
2 · ( ∂f

∂se
· d1 · E(v̂se[m,m]) + ∂f

∂sp
· d0 · E(v̂sp[m,m]) + ∂f

∂π
· eg · E(σ̂2

g))
2

∂f
∂se
· d1 · Var(v̂se[m,m]) + ∂f

∂sp
· d0 · Var(v̂sp[m,m]) + ∂f

∂π
· eg · Var(σ̂2

g)
(6)

where v̂se[m,m] and v̂sp[m,m] denote the empirical variances of the X(m)
ik , k = 1, · · · , ni for i = 1 and

i = 0. ∂f/∂se is the partial derivative of f with respect to se at (se(m), sp(m), πg)
′. The partial derivatives

∂f/∂sp and ∂f/∂π are defined analogously. As ν contains unknown parameters, ν itself is unknown
and it has to be estimated. We, hence, estimate the partial derivatives at (se(m), sp(m), πg)

′ by the partial
derivatives at (ŝe(m), ŝp(m), π̂g)

′ and further estimate di by N/ni, i = 0, 1 and eg by N/eg. As v̂se[m,m],
v̂sp[m,m] and σ̂2

g are unbiased by construction, the numerator can be determined easily by means of these
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plug-in estimates. For the denominator, we can estimate the variance of each term separately because
the three parts of the sums are independent. We hence have to estimate the variances of

v̂se[m,m] =
1

n1 − 1

n1∑
k=1

(
X

(m)
1k −X

(m)

1·

)2

v̂sp[m,m] =
1

n0 − 1

n0∑
k=1

(
X

(m)
0k −X

(m)

0·

)2

and

σ̂2
g =

mg

mg − 1
· π̂g · (1− π̂g)

Note that σ̂2
g also is the empirical variance of a Bernoulli distributed random variable and therefore

can be represented in the same manner as v̂se[m,m] and v̂sp[m,m]. Hence, we only have to determine
the variance of the empirical variance of a Bernoulli distributed random variable, which is illustrated by
the example of v̂se[m,m]. By defining the bin(n1, se)-distributed random variable S1 =

∑n1

k=1X
(m)
1k ,

v̂se[m,m] can be represented as

v̂se[m,m] =
1

n1 − 1

n1∑
k=1

(
X

(m)
1k −X

(m)

1·

)2

=
1

n1 − 1

 n1∑
k=1

X
(m)
1k +

1

n1

(
n1∑
k=1

X
(m)
1k

)2
 =

1

n1 − 1

[
S1 +

1

n1

S2
1

]

We, therefore, obtain for the variance of v̂se[m,m]:

Var(v̂se[m,m]) =
1

(n1 − 1)2

[
E
(

[S1 −
1

n1

S2
1 ]

2

)
−
(

E[S1 −
1

n1

S2
1 ]

)2
]

=
1

(n1 − 1)2

[
E(S2

1)−
2

n1

E(S3
1) +

1

n2
1

E(S4
1)− E(S1)

2 +
2

n1

E(S1) · E(S2
1)−

1

n2
1

E(S2
1)

2

]
As the first four moments of a binomial distribution can easily be determined, the estimator of ν can

be obtained by plugging in all estimates in Equation (6).

C. Simulation Results for the Negative Predictive Value

Table A1. Summary of p− coverage probabilities where the cell values denote the coverage
probability for one fixed parameter and averaging over the remaining parameters. Hereby
N-Approx and t-Approx are abbreviations for normal and t-approximation. π fix denotes the
method of [1], where π is assumed to be fixed.

Additive Logistic Failure (logistic
Fixed Parameter N-Approx t-Approx π fix N-Approx t-Approx π fix & t-Approx)

π = 0.05 0.9389 0.9471 0.8441 0.9546 0.9576 0.8590 0.047%
π = 0.25 0.9357 0.9437 0.8231 0.9548 0.9580 0.8384 0.040%
π = 0.5 0.9163 0.9411 0.6851 0.9592 0.9638 0.6982 0.244%
se = 0.5 0.9393 0.9484 0.6872 0.9540 0.9554 0.6900 0.064%
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Table A1. Cont.

Additive Logistic Failure (logistic
Fixed Parameter N-Approx t-Approx π fix N-Approx t-Approx π fix & t-Approx)

se = 0.75 0.9346 0.9432 0.7816 0.9547 0.9573 0.7901 0.064%
se = 0.85 0.9278 0.9399 0.8235 0.9567 0.9617 0.8408 0.076%
se = 0.9 0.9195 0.9446 0.8441 0.9593 0.9648 0.8733 0.245%
sp = 0.5 0.9307 0.9434 0.8031 0.9564 0.9598 0.8173 0.114%
sp = 0.75 0.9301 0.9439 0.7828 0.9562 0.9598 0.7974 0.114%
sp = 0.85 0.9304 0.9445 0.7769 0.9562 0.9598 0.7913 0.110%
sp = 0.9 0.9300 0.9442 0.7736 0.9559 0.9596 0.7881 0.112%
mg = 100 0.9178 0.9416 0.6536 0.9595 0.9636 0.6665 0.244%
mg = 500 0.9351 0.9435 0.8267 0.9544 0.9578 0.8421 0.047%
mg = 1, 000 0.9380 0.9468 0.8720 0.9547 0.9580 0.8870 0.046%
n0 = n1 = 50 0.9217 0.9433 0.8613 0.9600 0.9645 0.8904 0.204%
n0 = n1 = 100 0.9307 0.9406 0.8263 0.9552 0.9599 0.8395 0.065%
n0 = n1 = 500 0.9385 0.9480 0.6648 0.9534 0.9549 0.6657 0.068%
Overall 0.9303 0.9440 0.7841 0.9562 0.9600 0.7985 0.112%

Table A2. Summary of p− confidence interval lengths where the cell values denote
the confidence interval length for one fixed parameter and averaging over the remaining
parameters. Hereby N-Approx and t-Approx are abbreviations for normal and
t-approximation. π fix denotes the method of [1], where π is assumed to be fixed.

Additive Logistic
Fixed Parameter N-Approx t-Approx πfix N-Approx t-Approx π fix

π = 0.05 0.1522 0.1554 0.1219 0.1533 0.1578 0.1231
π = 0.25 0.0798 0.0812 0.0595 0.0822 0.0844 0.0611
π = 0.5 0.0229 0.0243 0.0117 0.0254 0.0289 0.0122
se = 0.5 0.1036 0.1047 0.0632 0.1042 0.1065 0.0630
se = 0.75 0.0910 0.0920 0.0694 0.0920 0.0937 0.0696
se = 0.85 0.0781 0.0801 0.0655 0.0803 0.0832 0.0669
se = 0.9 0.0672 0.0710 0.0593 0.0712 0.0781 0.0624
sp = 0.5 0.1112 0.1137 0.0872 0.1131 0.1173 0.0882
sp = 0.75 0.0824 0.0844 0.0620 0.0844 0.0878 0.0632
sp = 0.85 0.0748 0.0766 0.0555 0.0768 0.0799 0.0567
sp = 0.9 0.0715 0.0732 0.0527 0.0734 0.0765 0.0539
mg = 100 0.1076 0.1101 0.0643 0.1108 0.1159 0.0655
mg = 500 0.0764 0.0781 0.0643 0.0778 0.0804 0.0655
mg = 1, 000 0.0710 0.0727 0.0643 0.0722 0.0748 0.0655
n0 = n1 = 50 0.1100 0.1140 0.0953 0.1136 0.1205 0.0979
n0 = n1 = 100 0.0862 0.0876 0.0675 0.0878 0.0899 0.0683
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Table A2. Cont.

Additive Logistic
Fixed Parameter N-Approx t-Approx πfix N-Approx t-Approx π fix

n0= n1 = 500 0.0587 0.0593 0.0302 0.0594 0.0607 0.0303
Overall 0.0850 0.0869 0.0643 0.0869 0.0904 0.0655 %
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