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Abstract: The facet joint injection is the most common procedure used to release lower back pain.
In this paper, we proposed a deep learning method for detecting and segmenting facet joints in
ultrasound images based on convolutional neural networks (CNNs) and enhanced data annotation.
In the enhanced data annotation, a facet joint was considered as the first target and the ventral
complex as the second target to improve the capability of CNNs in recognizing the facet joint. A
total of 300 cases of patients undergoing pain treatment were included. The ultrasound images
were captured and labeled by two professional anesthesiologists, and then augmented to train a
deep learning model based on the Mask Region-based CNN (Mask R-CNN). The performance of
the deep learning model was evaluated using the average precision (AP) on the testing sets. The
data augmentation and data annotation methods were found to improve the AP. The AP50 for facet
joint detection and segmentation was 90.4% and 85.0%, respectively, demonstrating the satisfying
performance of the deep learning model. We presented a deep learning method for facet joint
detection and segmentation in ultrasound images based on enhanced data annotation and the Mask
R-CNN. The feasibility and potential of deep learning techniques in facet joint ultrasound image
analysis have been demonstrated.

Keywords: ultrasound image; deep learning; facet joint; convolutional neural network; enhanced
data annotation; ventral complex

1. Introduction

Pain is a common medical condition. Pain diseases ranked first among all diseases
according to the Global Burden of Disease study published by the Lancet in 2018, with
lower back pain being the primary cause of motion limitation, causing loss of labor ability,
in most countries [1]. Up to 80% of people experience chronic neck pain and lower back
pain during their lifetime [2]. Facet joint conditions are the most common causes of chronic
spinal-derived lower back pain [3,4].

Each facet joint is located at the junction of the pedicle and the laminae, which consist
of the upper facet joint and lower facet joint of the adjacent vertebrae. Facet joints are
the only synovial joints in the spine, and their surfaces are covered by hyaline cartilage.
The capsule contains synovial fluid. The articular surface consists of the outer fibrous
capsule and the inner synovial capsule. There are non-myelinated notional receptors and
myelinated mechanoreceptors distributed in each joint capsule, which means that the facet
joints play an essential role in maintaining spinal stability and regular physiological activity.

In clinical practice, 15–40% of lower back pain is caused by degeneration of the
lumbar facet joints. Conservative treatment for articular pain of the lumbar facet joints
is mainly used, such as hot compresses, short-wave ultrasounds, and oral nonsteroidal
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anti-inflammatory drugs. Although lower back pain can be temporarily alleviated, the long-
term effect is not so satisfactory. With the development of minimally invasive techniques,
interventional therapy has become a safer and more effective method for the treatment of
lower back pain caused by facet joint conditions. Facet joint injections are one of the most
common procedures performed by pain management anesthesiologists [5]. Injections can
be directed by fluoroscopy, computed tomography (CT), and palpation or loss-of-resistance
techniques [6]. Techniques such as fluoroscopy and CT have significant disadvantages.
For example, the patients will be exposed to ionizing radiation, which means that these
techniques may be not appropriate for patients who are pregnant. In addition, it has
been reported that the palpation and loss-of-resistance techniques for epidural injections
have a failure rate of 6% to 20% [7]. Alternatively, ultrasound, a real-time nonionizing
imaging technique, has the capacity to visualize soft tissues and bony surfaces, and has
been increasingly utilized for facet joint injections in recent years [8,9]. For instance,
Overnauer et al. [10] compared ultrasound-guided and CT-guided facet joint injections.
Their results revealed that injections guided by ultrasound were faster than and presented
the same therapeutic effects as CT-guided injections [10]. Additionally, Wang et al. [11]
compared image guidance technologies for interventional pain procedures. Their study
revealed that although ultrasound guidance is beneficial in spinal injections, the success
rate of the procedure still depends greatly on the experience of the anesthesiologists [11].
It requires a long learning curve for most pain specialists to be familiar with ultrasound
guidance techniques [6]. That means the visualization and identification of ultrasound
imaging, especially for the facet joints, remains a problem for anesthesiologists. Artificial
intelligence (AI) is an emerging technology for addressing the above issues.

AI has become one of the most popular tools for medical image analysis. The convo-
lutional neural networks (CNNs) are among the AI techniques [12,13] which have been
applied to ultrasound images to identify and recognize different target objects, such as
neural vascular structures [14], left ventricles [15], breast tumors [16], and the spine [17].
CNNs may gradually become able to interpret low-level features as if they were high-level
features, which are mainly applied to object detection and recognition in image and video
analysis. Deep learning network models based on object detection are increasingly used
in medical image processing, especially in spinal ultrasounds, including spinal image
recognition, disease detection, and disease prediction. However, deep learning network
models based on object detection need to be based on a large amount of data. In fact, the
current medical image training data scale is significantly smaller than the public data sets
used in other fields such as natural image understanding, which results in lower prediction
performance. The current CNN model is mainly limited to the single region features of
fixed morphology. However, the facet joints are often shown in ultrasonic images with
different scales, unclear edges, and irregular shapes, etc., which cannot be thoroughly
characterized by single region features.

The ventral complex, located in the ventral dural space, is a complex composed
of tissues such as the ventral dural membrane and the anterior longitudinal ligament,
showing a high echo zone on ultrasound. The ventral complex plays an essential role in
the indication of ultrasound-guided intraspinal puncture. Its presence usually indicates
that an ultrasound beam can pass through the tissue, thus indicating that the plane is
suitable for an ultrasound-guided puncture approach. Therefore, the ventral complex plays
an important localization role in lumbar ultrasound. We hypothesized that CNNs might
assist in the detection and segmentation of facet joints in ultrasound images. In this study,
we proposed a deep learning method for recognizing ultrasound images of facet joints
based on enhanced data annotation and CNNs. In the enhanced data annotation, the facet
joint was considered as the first target and the posterior vertebral body as the second or
auxiliary target.
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2. Materials and Methods

Figure 1 shows the proposed deep learning-based ultrasonic image detection and
segmentation method for facet joints. The facet joints were labeled as the primary target and
the ventral complex was used as the auxiliary target. Preprocessing and data augmentation
were conducted for each input ultrasound image. The deep learning network, the Mask
Region-based CNN (Mask R-CNN), refs. [18,19] was used, in which ResNet101 and the
feature pyramid network (FPN) were used as the backbone. The FPN was used to extract
image features. The region proposal network (RPN) was used to find the region of interest
(ROI). The ROI Align was used to transform all the proposed ROIs generated in the RPN
process into a feature map of the same size, which was then reshaped into a one-dimensional
vector, so as to facilitate the subsequent generation of masks, coordinates, and classifications
for facet joint detection and segmentation [20].
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Figure 1. Flow chart of facet joint (FJ) and ventral complex (VC) detection and segmentation using
the proposed method. In FJ/VC classification, the orange box represents the detected FJ (denoted
“F”) and the blue box indicates the detected VC (denoted “E”). FPN = feature pyramid network;
RPN = region proposal network; ROI = region of interest.

2.1. Ultrasound Image Data
2.1.1. Data Collection

In this study, the clinical data were collected from 300 patients. Most of these patients
suffered from lower back pain and were undergoing pain treatment at the Department of
Anesthesiology of Peking Union Medical College Hospital (PUMCH), Chinese Academy
of Medical Sciences. The study protocol was numbered K22C2241 and approved by the
Ethics Review Committee of PUMCH. All the patients received ultrasound scanning before
and after pain treatment. The ultrasound images were captured by one or two expert
sonographers using a SonoSite X-Porte scanner (Fujifilm, Tokyo, Japan), with a 2–5 MHz
curved-array transducer (C60xp/5-2), a scanning depth of 7 cm, and a gain of 50%. The
pixels of the original images in this study were 960 × 720. The collected data had the same
scanning angle and a similar scanning field (Figure 2).
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Figure 2. Examples of collected ultrasound images (a–c).

2.1.2. Enhanced Data Annotation

Two professional anesthesiologists confirmed the inclusion of a facet joint and ventral
complex in all the image data and processed the ultrasound image data to remove the
patient’s name, physician’s unit, and physician’s name. Under the review and proofreading
of the senior anesthesiologist, the annotator marked the outline of the facet joint and the
ventral complex in each image. The marking software used in this study was LabelMe
(version 4.5.13), an open annotation tool. In this study, we proposed an enhanced data
annotation method for the facet joint using the facet joint as the first target and the ven-
tral complex as the second target (Figure 3). In order to evaluate the influence of data
annotation on deep learning, we considered two labeling manners: (i) a local labeling
method (Figure 3b), which only involved facet joints and ventral association; (ii) a full
labeling method (Figure 3a), which involved transverse processes, facet joints and even
bone structures in the median line and ventral association.
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ventral complex.

2.1.3. Data Cleaning

The process of data cleaning was to screen out abnormal data, including (1) images
and marked data that were damaged; (2) data naming formats that did not meet the
requirements; (3) incorrect marks; (4) incorrect association of the original image with the
marked image; (5) images that did not contain a target object. In this study, a total of
391 original ultrasonic images remained after the data cleaning.

2.1.4. Data Classification

The purpose of data classification was to divide the data into training sets and testing
sets for the deep learning model. The 391 original ultrasonic images were divided into a
training set composed of 356 images and a testing set composed of 35 images. Note that all
images from the same patient were assigned to the same subset (training or testing).
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2.2. Image Preprocessing and Data Augmentation

Image preprocessing was conducted to the input image, including image scaling and
data augmentation. Since the input of the CNN must be images with the same width and
height, one of the preprocessing tasks was to scale the original image to 256 × 256 pixels.
In addition, the data augmentation method of horizontal flipping was used in this study
according to medical knowledge. Generally, data augmentation should conform to certain
physical meaning. Otherwise, inappropriate data augmentation may reduce the recognition
accuracy. Specifically, each image in the training set was flipped left to right, so the number
of images in the training set were doubled.

2.3. The Mask R-CNN

In this study, the ventral complex (denoted “E”) and the facet joint (denoted “F”)
needed to be segmented in ultrasonic images. In theory, semantic segmentation and
instance segmentation are both acceptable. Considering that, in some cases, E and F
could be multiple and overlap, instance segmentation was adopted in this work. Mask R-
CNN [18] is the most typical instance segmentation algorithm, in which target segmentation
is achieved on the basis of target detection. Compared with U-Net [21] and its improved
algorithms that can only achieve semantic segmentation, Mask R-CNN is more suitable for
instance segmentation where the number of targets is small and the target occupies a low
proportion of image pixels. This is because when the number of targets is small and the
proportion of pixels is low, U-Net takes the background as an independent segmentation
target and the number of network layers is low. In the training process, U-Net often quickly
converged on a local optimality, ignoring all the targets and identifying the whole image
as the background. In addition, the objective of this study was to detect and segment
facet joints at the same time, for which Mask R-CNN was well-suited, while U-Net was
only suitable for image segmentation. For these reasons, we considered that Mask R-CNN
would be more suitable for the facet joint detection and segmentation task in this work.

2.3.1. The FPN

The FPN is the backbone network of the Mask R-CNN [18], which is mainly used
to extract image features (Figure 4). The FPN was divided into five layers in order to
extract image features. Low-level features usually contain more details, such as textures
and edges, but they may also contain a lot of noise. High-level features generally contain
more semantic information (shape, position, etc.), but the spatial resolution is small, and
the information loss is severe. Suppose the size of the original image is H × W pixels. The
FPN extracted 5 features of different levels from low to high, whose feature sizes were
H/2 × W/2, H/4 × W/4, H/8 × W/8, H/16 × W/16, and H/32 × W/32, respectively. In
this study, H = 256 and W = 256. Standard ResNet [22] networks are usually used along
with FPNs, such as the ResNet50 and ResNet101 networks. In this paper, the ResNet101
network was used.

2.3.2. The RPN

The RPN found ROIs based on image features extracted from the FPN. The RPN can be
understood as fulfilling two tasks. One is a classification task, and the other is a regression
task. The regression task is to obtain the coordinates of the candidate box (the coordinates
of the upper left and lower right of the candidate box), and the classification task is to
determine whether there is a target in the candidate box (the probability of having a target).
After the two tasks were completed, each candidate box with a probability score greater
than 0.7 for an object was retained as a proposal.

2.3.3. The ROI Align

The ROI Align was mainly used to transform all the proposed ROIs generated in the
RPN process into feature maps of the same size. The feature maps are then reshaped into a
one-dimensional vector. The size of the vector was 49 (i.e., 7 × 7) for facet joint detection
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and 196 (i.e., 14 × 14) for facet joint segmentation. Finally, the Mask R-CNN [15] produced
segmentation results (mask), recognition results (coordinates), and categories of images
through three independent fully connected networks (Figure 1).
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2.4. Evaluation Metrics

During the testing phase, the results of the deep learning model were compared with
the labeled data. The performance of the model was evaluated using the following metrics.

(1) True Positive (TP) represents the correct prediction of positive data.
(2) True Negative (TN) represents the correct prediction of negative data.
(3) False Positive (FP) represents the incorrect prediction of positive data.
(4) False Negative (FN) represents the incorrect estimate of negative data.

The Intersection over Union (IoU) score is a standard performance measure for object
segmentation tasks. Given a set of images, the IoU metric gives the similarity between the
predicted region and the ground truth region of the objects presented in the set of images,
and is defined by

IoU =
TP

FP + TP + FN
or IoU =

A ∩ B
A ∪ B

(1)

where A is the area of model-based segmentation and B is the area of the ground truth.
With the deep learning algorithms, the success of the model depends on the result

of the confusion matrix. The success rate of each algorithm for detecting facet joints was
determined. The average precision (AP) was used to evaluate the facet joint detection and
segmentation performance of the proposed method. The AP values of all categories were
averaged to produce mAP as well. Specifically, AP50 and AP@50:5:95 were used. AP50 is
defined as the AP when the IoU equals 50%. AP@50:5:95 is defined as the mean value of
those APs corresponding to IoUs from 50% to 95% with a step of 5%.
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2.5. Experimental Setup

The training platform for the experiments was a self-built server, based on a single
32G V100 PCIe GPU. The number of training iterations was set at 25,000, and completing
all mini-batch trainings took approximately 8 min 50 s multiplied by 25,000 and divided by
20 (batch size = 16). That was approximately 219,166 s or about 61 h. The initial learning
rate was set at 0.0001. The loss function of the Mask R-CNN was a multi-task loss L,
L = LC + LD + LS, where the subscripts ‘C’, ‘D’, and ‘S’ denote classification, detection, and
segmentation, respectively [18]. LS is the average binary cross-entropy loss [18]. The testing
sets were input to the trained deep learning model. A total of 421 ultrasound images were
included in the dataset, and 420 valid data were obtained after data cleaning. Among them,
29 images did not contain any objects, so were deemed to constitute a negative set, and the
remaining 391 image data were divided into a training set composed of 356 images and a
validation set composed of 35 images. Validation sets and training sets were annotated in
coco format.

2.6. Statistical Analysis

Categorical variables were expressed as frequencies and percentages, which were
compared using t-tests. Statistical analyses were conducted using SPSS 20.0 (SPSS Inc.,
Chicago, IL, USA)

3. Results

In Figure 5, the green area is the inspected and segmented facet joint structure, and
the orange area is the inspected and segmented ventral complex. The figure shows that
the results for the facet joint structures inspected and segmented using the proposed
method are close to the results of manual annotations by human experts, indicating the
good performance of the enhanced data annotation method and the deep learning model
adopted in this work.
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Table 1 shows the effects of data augmentation on the AP of facet joint detection and
segmentation using the proposed method. Compared to using no data augmentation, using
horizontal flipping for data augmentation improves the AP50 and AP@50:5:95 values in
both detection and segmentation. Based on the symmetry of the facet joints, we considered
that horizontal flipping is an effective method for data augmentation.
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Table 1. Effects of data augmentation on the average precision (AP) of facet joint detection and
segmentation using the proposed method.

Data Augmentation
Detection Segmentation

AP50 AP@50:5:95 AP50 AP@50:5:95

None 92.17% 54.73% 82.86% 36.71%
Horizontal flip 92.88% 54.95% 90.01% 39.86%

p <0.001 <0.001 <0.001 <0.001

Table 2 shows the effects of data annotation methods on the AP of facet joint detection
and segmentation using the proposed method. Although it is generally believed that using
the full labeling method reduces the false detection rate and improves the recognition
accuracy of the target, our results show that, for the task of facet joint detection and
segmentation in ultrasound images, using the local labeling method produces higher AP50
and AP@50:5:95 values in facet joint segmentation using the proposed method.

Table 2. Effects of data annotation methods on the average precision (AP) of facet joint detection and
segmentation using the proposed method.

Data Annotation Area
Detection Segmentation

AP50 AP@50:5:95 AP50 AP@50:5:95

Full labeling method 92.17% 54.73% 82.86% 36.71%
Local labeling method 98.57% 63.86% 90.75% 44.01%

p <0.001 <0.001 <0.001 <0.001

4. Discussion

The application of AI in ultrasound imaging is currently a hot topic, especially in the
fields of liver, cardiovascular, thyroid, and musculoskeletal systems [23–26]. AI techniques
include conventional machine learning methods and deep learning methods. CNNs are
types of deep learning techniques, biologically inspired neural networks that mimic the
physiology of the visual cortex by responding differently to specific features [27]. CNNs are
composed of a series of convolutional layers, followed by a pooling layer, and finally a fully
connected layer. CNNs have been applied to ultrasound images to identify and recognize
different target objects, such as neural vascular structures [28] (12), left ventricles [29,30],
breast tumors, and the spine [31]. However, CNNs and other deep learning techniques have
not been applied to ultrasound image analysis for facet joint detection and segmentation.

In recent years, musculoskeletal ultrasound has been widely used in the field of
rehabilitation, anesthesiology, orthopedics, and other fields for puncture positioning and
real-time guidance. It is well known that the bony structures of the lumbar spine, including
spinous processes, vertebral arch plates, facet joints and transverse processes, have typical
ultrasound characteristics. Ultrasound scans of the lumbar spine structure can be applied to
minimally invasive treatments such as spinal or epidural anesthesia, lumbar nerve blocks,
quadratus lumborum plane blocks, and endoscopic foraminal surgery. Among them, the
recognition of the bone structure of the facet joint is particularly of interest. On one hand,
the posterior medial branch of the lumbar nerve is close to the rear of the facet joint. On
the other hand, the blocking point of the posterior medial branch is the recess between the
outer side of the upper facet and the proximal edge of the transverse process. The structure
of the facet joint can be accurately identified using the characteristic ultrasound images of
the upper vertebral arch plate, the lower facet, the facet joint, and the transverse process.
Real-time ultrasound guidance can accurately locate the position of the puncture needle
and avoid intravascular injection.

In the early stage of this study, we supposed that the bone structure of the facet joint
would be connected to the transverse process and spinous process, so we labeled all the
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relevant bone structures in the ultrasound images, i.e., using the full labeling method. But
soon we found that this full labeling approach resulted in poor model accuracy. The main
reason may be that the range of bone structures is large in full labeling, and the boundary
is not so clear, resulting in a large boundary error in deep learning. After recognizing this,
we chose a local labeling method, that is, only the bony structure of the facet joint area
was labeled. With this method, the boundary can be relatively clear, and the area that
needs to be labeled is relatively small. It turns out that the local labeling method has better
accuracy. Although we generally believed that labeling more features would reduce the
false detection rate of the target and improve the recognition accuracy of the target, our
experimental results showed that a larger scope of labeling is not better. We should meet
the requirements of medical scenarios and computer vision algorithms.

In this study, we investigated an approach using CNNs and enhanced data annotation
methods for facet joint detection and segmentation in ultrasound images. Specifically,
the Mask R-CNN and enhanced annotation of the facet joint and ventral complex yields
satisfying detection and segmentation performance. To the best of our knowledge, this
work is the first to demonstrate the feasibility of deep learning models in detecting and
segmenting facet joints in ultrasound images.

The considerations of the enhanced data annotation method proposed in this work are
discussed. The ventral complex can assist in the detection and recognition of the facet joint.
For instance, if there are facet joint–transverse process objects appearing in ultrasound
images, with no dura mater appearing, then the facet joint–transverse process object
detection may be true, or false. However, if there are facet joint–transverse process objects
appearing in ultrasound images, with dura mater appearing, then facet joint–transverse
process object detection should be true. The dura mater is the structure inside the spinal
canal. If the dura mater appears in the ultrasound image, it means that the ultrasonic
scanning plane must be at the level of the intervertebral space, and the facet joint–transverse
process is also at the level of the intervertebral space. Therefore, the facet joint–transverse
process must be true at the level where the dura mater can appear. However, if the facet
joint–transverse process appears in the absence of dura mater, it may be that the ossification
and calcification of intervertebral tissue has caused a failure to recognize the dura mater in
ultrasound images, or it may be due to other tissues whose structures are similar to the
facet joint–transverse process. With the enhanced data annotation method and combined
identification of the facet joint and ventral complex, the negative sets can be correctly
recognized (Figure 6).
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It should be noted that facet joint detection and segmentation in ultrasonic images is
not the final goal. Clinicians are concerned about the accuracy of the puncture of each target.
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Based on the segmentation results from our deep learning model, the search inflection
point of the segmentation (binary images) can be computed. As the final detection result
of the target, the positioning error of the facet joint–transverse process can be controlled
within an available range (typically 5 mm). This can effectively improve the accuracy of
each puncture. Specifically, after the target detection and segmentation results are obtained,
the search inflection points of the recognition coordinates can be obtained according to the
recognition coordinates of the lumbar facet joint–transverse process and the dura mater,
and the search inflection point can be added to the recognition coordinates to obtain the
target recognition coordinates.

Finally, this study has some limitations. First, the size of the ultrasound image samples
was relatively limited. It is worth noting that after horizontal flipping was performed on
the training set, the detection AP50 of the test set increased from 93.8% to 94.2%, and the
segmentation AP50 of the test set increased from 66.2% to 69.9%. Our experiments showed
that the accuracy of the model can be increased by enlarging the amount of training sets in
different ways. That is to say, the size of training sets should also be increased to get better
experimental results. In addition, the full labeling method performs better for detection,
and the local labeling method for segmentation (Table 2), so combining the respective
neural network layers/branches for each model may be considered in future work. Last but
not least, the images were collected at a single center with a single scanner. In future work,
more images collected at different centers with different scanners may be used to further
validate and improve the performance of deep learning models in facet joint detection and
segmentation in ultrasound images.

5. Conclusions

In conclusion, this study is the first to present a deep learning method for facet joint
detection and segmentation in ultrasound images based on enhanced data annotation and
the Mask R-CNN. The feasibility and potential of deep learning techniques in facet joint
ultrasound image analysis have been demonstrated. In the future, the proposed method
may be used in the field of pain management and medical education.
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