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Abstract: The challenges of respiratory infections persist as a global health crisis, placing substantial
stress on healthcare infrastructures and necessitating ongoing investigation into efficacious treatment
modalities. The persistent challenge of respiratory infections, including COVID-19, underscores the
critical need for enhanced diagnostic methodologies to support early treatment interventions. This
study introduces an innovative two-stage data analytics framework that leverages deep learning
algorithms through a strategic combinatorial fusion technique, aimed at refining the accuracy of
early-stage diagnosis of such infections. Utilizing a comprehensive dataset compiled from publicly
available lung X-ray images, the research employs advanced pre-trained deep learning models to
navigate the complexities of disease classification, addressing inherent data imbalances through
methodical validation processes. The core contribution of this work lies in its novel application of
combinatorial fusion, integrating select models to significantly elevate diagnostic precision. This
approach not only showcases the adaptability and strength of deep learning in navigating the
intricacies of medical imaging but also marks a significant step forward in the utilization of artificial
intelligence to improve outcomes in healthcare diagnostics. The study’s findings illuminate the
path toward leveraging technological advancements in enhancing diagnostic accuracies, ultimately
contributing to the timely and effective treatment of respiratory diseases.

Keywords: respiratory infections; deep learning; convolutional neural network (CNN); lung X-ray
images; combinatorial fusion

1. Introduction

Respiratory infections, including COVID-19, SARS, and pneumonia, present signifi-
cant global health challenges. The widespread use of RT-PCR, acknowledged as the gold
standard for SARS-CoV-2 diagnosis, faces limitations such as supply shortages and com-
plexity, leading to delays in test results [1]. This highlights the need for complementary
diagnostic approaches, especially valuable in later stages of the infection where imaging
becomes crucial [2]. Additionally, the challenges in the supply and implementation of
RT-PCR testing underscore the urgency for alternative methods [3].
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Radiological imaging, particularly chest X-rays, is pivotal in diagnosing COVID-19
pneumonia. The interpretation of these images, however, is complicated due to their
similarity to other respiratory conditions, coupled with the high workload and potential for
diagnostic errors among radiologists [4]. Furthermore, the need for a standard diagnostic
method becomes crucial in mitigating patient congestion and healthcare bottlenecks [5].
Misdiagnoses not only affect patient care but also increase the risk of exposure and add to
the overall burden on healthcare systems [6]. The uncertainty in distinguishing COVID-19
from other viral pneumonia types can lead to delayed treatment and increased healthcare
strain [7].

1. In addressing the diagnostic challenges of respiratory infections, the application
of artificial intelligence (AI) and deep learning is gaining prominence. Specifically,
convolutional neural networks (CNNs) are employed to enhance the accuracy and
efficiency of medical imaging diagnoses [8]. This study aims to leverage AI and
deep learning to develop a more effective diagnostic tool for COVID-19 pneumonia,
addressing the gaps and challenges in current diagnostic methodologies [9].

2. The field of medical imaging has extensively adopted CNNs due to their utility in
symptom identification and learning [10]. Furthermore, with the advent of deep
CNNs and their successful application in various areas, the use of deep learning
techniques with chest X-rays is becoming increasingly popular. This is bolstered by
the availability of vast data sets to train deep-learning algorithms [11].

3. The deep learning model significantly simplifies the diagnostic process by enabling
rapid retraining of CNNs with minimal data [12]. Additionally, the idea of feature
transfer within a machine-learning framework has been utilized effectively to distin-
guish pneumonia from other infections [13].

4. Given the ongoing development of vaccines and treatments for COVID-19, deep
learning-based techniques that assist radiologists in diagnosing this disease could po-
tentially enable faster and more accurate assessments especially in remote areas [14].

2. Related Works

COVID-19 is an epidemic disease. The World Health Organization(WHO) is concerned
and announced it is a worldwide pandemic health incidence because it rolls out all over
the world and causes many deaths worldwide. It is a different kind of virus for detecting
deep learning techniques that are helpful with clinical images [15]. In the literature we
analyzed, researchers utilized chest X-ray data sets for the identification of COVID-19 and
other respiratory infections in such a way:

A custom-built CNN approach known as VGG16 was employed by A. Ranjan et al. [16]
to get lung region recognition and various pneumonia categorizations. Huge hospital-
scale X-ray images were used by Wang et al. [17] for the categorization and diagnosis
of specified affected regions. Ronneburger et al. [18] employed compact and augmen-
tation data sets to instruct a feature transfer scheme for image segmentation cases and
enhance the functioning. Rajpurkar et al. [19] described the deep learning model Ch-
eNet with 121 feature extraction over the chest X-ray images to achieve 14 pathologies
dictation as pneumonia and others with the help of rendition of various CNN. P. Lakhani
et al. [20] employed transfer learning to categorize 1427 chest X-rays image sets, including
224 COVID-19, 700 bacterial pneumonia, and 504 Normal X-rays with correctness, sensitiv-
ity, and specificity of 96.78%, 98.66%, and 96.46% respectively. Many individual pre-trained
deep-learning CNNs were analyzed; the presented outcomes were founded on a limited
set of images. Ashfar et al. [21] reported a Capsule Network, COVID-CAPS, instead of a
conventional neural network trained on a smaller amount of Image data. COVID-CAPS
was recorded with a correctness of 95.7%, sensitivity of 90%, and specificity of 95.8%.
Abbas et al. [22] introduced a pre-trained CNN model (DeTraC-Decompose, Transfer, and
Compose) that was employed on a smaller database of 105 COVID-19, 80 Normal, and
11 SARS X-ray images for the findings of COVID-19. Indicate that it would assist in making
more homogenous classes, reduce the space in memory, and obtain the accuracy, sensitivity,
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and specificity of 95.12%, 97.91%, and 91.87%, respectively. Wang et al. [23] produced
a COVID-Net deep learning network for COVID-19 cases from approximately 14k chest
X-ray images, in a split of 83.5% accuracy was obtained. Ucar et al. [24] have adjusted
a pre-trained CNN model with Bayesian optimization, named SqueezeNet, to analyze
COVID-19 images and obtained encouraging results on a minimal amount of image dataset.
From the perspective of achieving promising accuracy, using this approach should exercise
spacious COVID and non-COVID images. Khan et al. [25] employed a features detection
process on 310 normal, 330 bacterial pneumonia, 327 viral pneumonia, and 284 COVID-19
pneumonia images. Nonetheless, only some deep learning approaches and the empirical
obligation fuzzy in this study were examined in this approach. In summary, a few recent
studies were reported on the feature transfer approach for classifying COVID-19 X-ray
images from a limited dataset with encouraging outcomes. However, it is necessary to
investigate it on many images. Some approaches have modified the pre-trained deep
learning models to enhance their accuracy and efficiency and some studies operate capsule
algorithms [26]. We have explored additional approaches, examining various researchers’
perspectives on analyzing the impact of respiratory disease, as shown in the Table 1.

Table 1. Key Findings.

S. No Papers Deep Learning Classifier Diseases Accuracy %

1 Asmaa Abbas [22] DeTraC (Decompose, Transfer and Compose) COVID-19 95.12%

2 Kesim and Dokur [27] New CNN model COVID-19 86%

3 Aras. M. Ismael [28] Resnet-18, Resnet-50, Resnet-101, VGG-16, VGG-19 COVID-19 and Normal 94%

4 Yujin Oh [29] New CNN Model based on ResNet -18 Normal, Pneumonia,
COVID-19 76.9%

5 Zhang [30] Resnet-18 COVID-19 and
non-COVID-19 95.18%

So, in these studies, we have organized an extensive CXR database of normal, SARS,
COVID-19, and abnormal from the openly accessible data so that most explorers can take
advantage of this work. Furthermore, two different data sets were used to train, test,
and validate five pre-trained CNN models. The encouragement for the investigation is
to deploy deep learning algorithms in such a way that it excellently classifies COVID-19,
SARS, and normal and abnormal chest X-ray images by combining deep learning and com-
binatorial fusion analysis for early age detection of these diseases that is highly prominent
for humankind survival in this crucial pandemic situation. It is acknowledged that CXR
images include a lot of noisy errors bound to them during the prediction of diseases along
with inferior-density grayscale pictures [31]. Consequently, the contradistinction between
CXR images acquired from specific radiology machinery and borderline depictions may be
feeble [32]. To detract features from that CXR image is thoroughly challenging. The quality
of these CXRs can be enhanced by deploying some contrast enhancement procedures and
increasing the image dataset. Hence, feature extraction from these CXRs can be executed
proficiently and smoothly [33]. Our study centers on addressing the imbalance in chest
X-ray (CXR) datasets and enhancing the accuracy of deep learning models. Utilizing his-
togram equalization, a powerful image processing method for optimal contrast in Python,
we augmented the data. This approach resulted in two distinct datasets: the original and
the enhanced (augmented) dataset. We then applied these datasets to prominent deep
learning models for the extraction of feature vectors. A driving force behind our research is
the evident gap in existing studies dealing with data imbalance and the scarcity of research
utilizing feature extraction via deep learning models to increase accuracy, particularly
through combinatorial fusion analysis. Our study, therefore, makes a significant contri-
bution in these areas, offering new insights and methodologies for enhancing diagnostic
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accuracy in medical imaging, our research contribution can be succinctly summarized
as follows:

• Classified the diseases with five art of states pre-trained convolutional neural network
using CXR images.

• To resolve data imbalance, the study employs a fivefold cross-validation approach,
ensuring a balanced data representation and consistent model evaluation.

• Enhanced the deep learning model testing accuracy using combinatorial fusion analysis.

The present study is additionally organized into distinct subsections, including
Section 3—dataset, models used, and Section 4—materials and methods. In
Section 5—performance and evaluation matrix. In Section 6—further, the evaluation of
results regarding training and testing for models used is discussed along with future scope.
Finally, This work is concluded in Section 7.

3. Datasets and Model
3.1. Datasets

This study used two different CXR datasets to diagnose COVID-19, SARS, and normal
and abnormal diseases. Among these databases, the COVID-19 database was developed
using publicly available research articles, while others are generated from the publicly
available Kaggle and GitHub datasets.

Three prime sources have been used for the COVID-19 dataset creation; one is the
Novel Corona Virus 2019 Dataset: Joseph Paul Cohen and Paul Morrison, and Lan Dao
have generated a public database on GitHub by accumulating 319 radiographic images of
COVID-19, Middle East respiratory syndrome (MERS), Severe acute respiratory syndrome
(SARS) and ARDS from the published articles and online resources. The second is the
Italian Society of Medical and Interventional Radiology (SIRM). SIRM presents 384 COVID-
19-positive radiographic images (CXR and CT) with commuting motion. We have collected
60 COVID-19-positive chest X-ray images from the various recently published articles, we
deposited 30 positive chest X-ray images from Radiopaedia, which were not itemized in the
GitHub repository. Also, images from the RSNAPneumonia-Detection-Challenge database
and the CXR Images database using Kaggle were used to create the normal and abnormal
sub-databases. RSNA-Pneumonia-Detection-Challenge The Radiology Society of North
America (RSNA) constructed an artificial intelligence (AI) challenge to disclose pneumonia
using CXR images. This database included normal chest X-ray images and non-COVID
pneumonia images. The third is Chest X-ray images (pneumonia): Kaggle CXR database is
the most plausible database, which has more than 5000 chest X-ray images of normal, viral,
and bacterial pneumonia organized from disparate subjects. So, the original dataset that
we have prepared from GitHub, Kaggle, and some other resources as publicly available
data is used to generate an augmented dataset that also contains the higher chest X-ray
images; both datasets are represented as follows in Tables 2 and 3.

Table 2. Distribution of chest X-ray original dataset over training and testing for all rounds in
this study.

Rounds Classes Training Total Training Testing Total Testing Training + Testing Total Images

Round-1

COVID-19
Normal
SARS
Abnormal

113
1073

7
1103

2296

28
268

1
275

572

141
1341

8
1378

2868

Round-2

COVID-19
Normal
SARS
Abnormal

113
1073

7
1103

2296

28
268

1
275

572

141
1341

8
1378

2868
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Table 2. Cont.

Rounds Classes Training Total Training Testing Total Testing Training + Testing Total Images

Round-3

COVID-19
Normal
SARS
Abnormal

113
1073

7
1103

2296

28
268

1
275

572

141
1341

8
1378

2868

Round-4

COVID-19
Normal
SARS
Abnormal

113
1073

7
1103

2296

28
268

1
275

572

141
1341

8
1378

2868

Round-5

COVID-19
Normal
SARS
Abnormal

113
1073

7
1103

2296

28
268

1
275

572

141
1341

8
1378

2868

Table 3. Distribution of chest X-ray augmented (correct) dataset over training and testing for all
rounds in this study.

Rounds Classes Training Total Training Testing Total Testing Training + Testing Total Images

Round-1

COVID-19
Normal
SARS
Abnormal

1243
1073
1267
1103

4686

28
268

1
275

572

1271
1341
1268
1378

5258

Round-2

COVID-19
Normal
SARS
Abnormal

1243
1073
1267
1103

4686

28
268

1
275

572

1271
1341
1268
1378

5258

Round-3

COVID-19
Normal
SARS
Abnormal

1243
1073
1267
1103

4686

28
268

1
275

572

1271
1341
1268
1378

5258

Round-4

COVID-19
Normal
SARS
Abnormal

1243
1073
1267
1103

4686

28
268

1
275

572

1271
1341
1268
1378

5258

Round-5

COVID-19
Normal
SARS
Abnormal

1243
1073
1267
1103

4686

28
268

1
275

572

1271
1341
1268
1378

5258

3.2. Original Dataset

The original dataset was organized with five rounds of sub-datasets with equal images.
All the rounds included four classes as shown in Figures 1 and 2, as well as all the classes,
contain 113 images of COVID-19 for training and 28 images for testing, the normal class
contains 1073 images for training and 286 images for testing, SARS class contain seven
images for training and one image for testing and abnormal class contain 1103 images for
training and 275 for testing as shown in Table 2. Finding a publicly available data set is
quite arduous; as we know, COVID-19 is a novel virus. Given this case, the CXR images in
openly echeloned datasets have united to create the original dataset.
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Figure 1. Overview of dataset structure (a) and class distribution per round (b).

Figure 2. Datasets sample images: Original (left) versus Augmented (right).

3.3. Augmented Dataset

Given the deficit of publicly available data and for the higher performance of the
models, we increased our dataset in augmented form. Data augmentation is an AI evolution
for distending the size and the multiformity of the data using many iterations of the samples
in a dataset. Data augmentation is generally deployed in machine learning to compromise
the class misbalancing issues, detract overfitting in deep learning, and raise convergence,
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which results in finer outcomes in the end. After enforcing augmentation, the number of
entire images in the dataset is introduced in Table 3.

3.4. Deep Learning CNN Model Selection

In this study, we evaluated five deep learning networks: VGG 16, VGG 19, ResNet
50, GoogleNet, and AlexNet, to assess their suitability for our research objectives. Our
aim was to compare the performance of shallow versus deep learning networks, as well
as to examine the effects of employing two variants of the VGG architecture to elucidate
the impact of network depth within a similar framework. To ensure a fair and consistent
comparison across these models, we applied a uniform set of optimization parameters.
Specifically, each model was trained using an image size of 224 × 224 pixels and the
Adam optimization algorithm (adaptive moment estimation) for efficient network updates.
The training was conducted with a batch size of 10 and a learning rate of 5.00 × 10−5

across 100 epochs. This methodological consistency was strategically chosen to isolate and
examine the impact of architectural differences on the performance of each model, thereby
providing a clearer insight into the inherent capabilities and limitations of each architecture.
Additionally, the structure of these pre-trained CNN models, as well as their performance
metrics, are detailed in Table 4.

Table 4. Structure of Models.

Models Size (M) Layers Model Description

VGG 16 520 16 13 conv + 3 fc layers
VGG 19 560 19 16 conv + 3 fc layers

ResNet 50 235 50 49 conv + 1 fc layers
GoogleNet 40 22 21 conv + 1 fc layers

AlexNet 238 8 5 conv + 3 fc layers

3.5. VGG-16

VGG16 is a kind of Visual Geometry Group convolutional neural network, and this
model was presented by K. Simonyan and A. Zisserman from the University of Oxford in
the paper “Very Deep Convolutional Networks for Large-Scale Image Recognition.” The
VGG-16 network accomplishes 92.7% top-5 train and test accuracy in ImageNet, a dataset of
over 14 million images of 1000 classes [34]. In VGG-16, more kernels are changed with the
different numbers of 3 × 3 filters to extract complex features cheaply. VGG-16 network is a
sequence of five convolutional blocks (13 convolutional layers) and three fully-connected
layers [35].

3.6. VGG-19

Visual Geometry Group Network (VGG-19) is grounded in convolutional neural net-
work architecture. It was executed at the 2014 Large Scale Visual Recognition Challenge
(ILSVRC2014). The VGG Net performed extensively on the millions of images [36]. Con-
cerning upgrading image extraction functionality, the VGG Net used smaller filters of 3 × 3,
compared to the AlexNet 11 × 11 filter. VGG19 is deeper than VGG16. However, it is more
extensive and thus more expensive than VGG16 to train the network [37].

3.7. AlexNet

AlexNet is an 8-layer CNN network, and it was reported early in 2012 with an ap-
portion in the ImageNet contest. Later, in this contest, it was substantiated that the image
qualities acquired from CNN architectures can increase the properties gated from the
traditional methods. In this network, Rectified- Linear Unit-(ReLU) is employed to attach
non-linearity, boosting the network. AlexNet has five convolutional layers; three fully
connected layers accompany the output layer and additionally accommodate 62.3 million
parameters [38].
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3.8. ResNet-50

Microsoft Research Team developed the deep learning convolutional neural network
named ResNet, and it received the 2015 “ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC)” challenge, including a 3.57% error rate [39]. In the Resnet, every layer
comprehends various blocks. Along the ResNet model, while the residual layer formation
is seated, the number of parameters computed is decreased compared to the other deep
learning CNN models [40].

3.9. GoogleNet

In 2015, a new CNN model was grounded on the floor, named the GoogleNet deep
learning model, which emerged with the idea that existing neural networks should go
deeper. This CNN model is expressed by the module known as inception, and all the
modules include the various information of convolution and max-pooling layers. Even
though the network dealing with an overall of 9 inception blocks has computational
complexity, the execution and compliance of the network model were enhanced with the
improvements [41].

4. Materials and Methods

The overall workflow of this study is provided in Figure 3. In this work, we have
used five deep-learning models for our experiment due to their interoperability and ease
of use. Furthermore, this methodology section discusses the data preprocessing process
for the deep learning models and the overall workflow of the system architecture and
combinatorial fusion with support vector machine. The dataset structure is given in
Figure 1 while the dataset images are shown in Figure 2.

Figure 3. Overall workflow of the proposed work.

In our methodology, all CXR images underwent preprocessing, which included resiz-
ing to 224 × 224 pixels and normalization through histogram equalization, as illustrated in
Figure 4. The original dataset, referred to as Study-1, did not undergo image augmentation
and consisted of a specific number of images per category: 113 COVID-19, 1073 normal,
7 SARS, and 1103 abnormal images. In contrast, the Study-2 dataset was enriched with aug-
mented data to create a balanced training set that included 1243 COVID-19, 1073 normal,
1267 SARS, and 1103 abnormal images. Both studies were subjected to a stratified 5-fold
cross-validation process, ensuring an 80% training and 20% testing split to prevent over-
fitting. This split was carefully maintained, with augmented data from Study-2 being
strictly utilized for training purposes to improve model robustness, while ensuring that
the validation and testing phases were conducted with unseen, original images only. This
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approach underscores our commitment to methodological rigor and the validity of our
results in the development of deep learning models for CXR image analysis.

Figure 4. CXR image preprocessing and preparation workflow.

Combinatorial Fusion

Combinatorial fusion is a methodology that combines different data sources or decision-
making strategies to achieve a better performance than any individual source or strategy [42].
It seeks the optimal combination from the possible combinations. For showing the strengths
of multiple deep learning architectures, such as VGG16, VGG19, ResNet50, GoogLeNet,
and AlexNet [43]. It enhances our two-stage data analysis by merging the advantages of
individual models (VGG-16, VGG19, AlexNet, ResNet-50, GoogleNet) to boost classification
accuracy. We extract feature vectors from each trained model, representing crucial image
features. The procedure begins by separately loading each of these architectures, each pre-
trained on an augmented dataset, and then using these models for feature extraction. In our
study for each image i ∈ I (where I represents the set of all images) every architecture α ∈ A
(with A = {VGG16, VGG19, ResNet50, GoogleNet, AlexNet}) is employed to extract a
respective feature vector, represented as FVα(i).

Thus, for every image, we obtain a set of feature vectors as shown in Equation (1)

{FVVGG16(i), FVVGG19(i), FVResNet50(i), FVGoogleNet(i), FVAlexNet(i)} (1)

Combinatorial fusion technique is applied to amalgamate the strengths of each model. The
feature vectors from all the models are concatenated to produce a combined feature vector
for each image, represented mathematically as

CFV(i) = FVVGG16(i)⊕ FVVGG19(i)⊕ FVResNet50(i)⊕ FVGoogleNet(i)⊕ FVAlexNet(i).

where ⊕ denotes the concatenation operation.
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With a robust combined feature representation, a Support Vector Machine (SVM)
classifier is trained on these feature vectors for each. The SVM is chosen due to its proven
efficacy in high-dimensional spaces and its ability to handle linear and non-linear data
distributions [44]. The SVM was configured with a Radial Basis Function (RBF) kernel,
chosen for its effectiveness in managing the nonlinear characteristics of our dataset. The
SVM was parameterized with a regularization parameter C = 1.0 and a gamma value of 0.01
for the RBF kernel, optimized via grid search to ensure a balance between model complexity
and generalization, thus preventing overfitting. This strategy aimed to maximize cross-
validation accuracy, enabling reliable classification of images into COVID-19, SARS, normal,
or abnormal categories.

5. Performance and Evaluation Matrix

The application developed for the study was implemented in the Python environment.
The computer running the application has features such as 16 GB RAM, an I7 processor, and
a GeForce 1070 graphics card. Performance metrics are calculated from the confusion matrix
obtained in the experimental results. These metrics include Sensitivity (Se), Specificity (Sp),
F-score (F-Scr), Precision (Pre), and Accuracy (Acc). True Positive (TP), False Positive (FP),
True Negative (TN), and False Negative (FN) values are used to calculate these metrics.

Accuracy =
TP + TN

TN + TP + FP + FN
,

Sensitivity =
TP

TP + FN
,

Specificity =
TN

TN + FP
,

Precision =
TP

TP + FP
,

F1 =
2 × (Recall × Precision)

Recall + Precision
.

6. Results

In this comprehensive study, we focused on classifying lung X-ray images into four
distinct categories: COVID-19, pneumonia, normal, and abnormal, using advanced deep
learning models and combinatorial fusion techniques. Our primary goal was to significantly
enhance the accuracy of these classifications. The performance of various models across
five-fold cross-validation is presented in Table 5. Shown in Tables 6 and 7, GoogleNet and
ResNet, both deep learning models, provided better results in experimental studies with
approximately 98.41% and 99% average training accuracy in all five rounds using both the
original and enhancement datasets compared to other models.

Table 5. Performance Metrics Across 5-Fold Cross-Validation.

Metric Fold VGG16 VGG19 AlexNet ResNet50 GoogleNet

Accuracy (%) 1 90.5 92.3 91.0 95.2 94.8
2 89.7 91.8 90.4 94.6 94.1
3 90.2 92.1 91.2 95.4 94.5
4 89.9 91.5 90.7 94.9 94.3
5 90.0 92.0 90.9 95.1 94.4

Precision (%) 1 87.6 89.9 88.4 92.7 91.9
2 86.8 89.4 87.9 92.2 91.5
3 87.2 89.7 88.1 92.9 91.8
4 87.0 89.2 88.0 92.6 91.6
5 87.1 89.6 88.2 92.8 91.7
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Table 5. Cont.

Metric Fold VGG16 VGG19 AlexNet ResNet50 GoogleNet

Recall (%) 1 86.5 88.7 87.3 91.8 91.1
2 85.7 88.2 86.8 91.3 90.7
3 86.1 88.5 87.0 91.6 91.0
4 85.9 88.0 86.9 91.4 90.8
5 86.0 88.4 87.1 91.5 90.9

F1-Score (%) 1 87.0 89.3 87.8 92.2 91.5
2 86.2 88.8 87.3 91.7 91.1
3 86.6 89.1 87.5 92.2 91.4
4 86.4 88.6 87.4 92.0 91.2
5 86.5 89.0 87.6 92.1 91.3

Table 6. Training accuracy of the original data set.

Model Round 1 Round 2 Round 3 Round 4 Round 5 Avg.

VGG 16 86.12 88.12 84.1 87.12 78.1 84.71
VGG19 97.72 98 97.1 97.4 97.57 97.55
AlexNet 98.01 97.32 96.48 97.8 97.92 97.5
ResNet50 99.7 98.82 99.04 98.68 98.95 99.03
GoogleNet 98.84 98.18 98.95 98.02 98.08 98.41

Table 7. Training Accuracy of Correct data set.

Model Round 1 Round 2 Round 3 Round 4 Round 5 Avg.

VGG16 92.81 93.73 93.24 94.34 93.9 93.60
VGG19 94.41 94.58 94.37 95.33 94.9 94.71
AlexNet 92.92 94.44 94.87 95.1 94.72 94.40
ResNet50 99.14 99.66 98.3 99.25 99.15 99.10
GoogleNet 99.35 99.58 99.33 99.11 99.79 99.43

6.1. Discussion

This study’s integration of deep learning models with combinatorial fusion in a two-
stage analytical approach represents a significant stride in diagnosing respiratory infections
from lung X-ray images. The Table 5, comparative analysis across 5-fold cross-validation
showcases ResNet50 and GoogleNet as the superior models, with ResNet50 achieving
accuracy scores up to 95.4%, precision as high as 92.9%, recall reaching 91.8%, and F1-scores
up to 92.2%. GoogleNet closely follows, with top scores nearly matching those of ResNet50,
slightly lower in accuracy and precision but consistently high across all metrics. In contrast,
VGG16, VGG19, and AlexNet exhibit lower performance, with VGG19 peaking at 92.3%
accuracy, which, while commendable, falls short of the benchmark set by ResNet50 and
GoogleNet. This succinct summary encapsulates the models’ efficacy, positioning ResNet50
and GoogleNet as the preferred choices for high-stakes accuracy-dependent applications.
The average training loss of the original dataset in the case of ResNet and GoogleNet is
0.08624 and 0.05854, respectively, relatively higher because of the data ambiguity, as shown
in Table 8. As we compare it with the correct dataset as shown in Table 9, average training
loss in all the phases, ResNet and GoogleNet both perform better with 0.0174 and 0.0397
average losses and the rest of the other models also perform pretty well in all the rounds
than the original dataset. As shown in Table 10, GoogleNet and VGG-19 performed well
with 93.61% and 93.99% average accuracy, while ResNet and other models are entirely
satisfactory. On the correct data set as shown in Table 11, GoogleNet and ResNet both
models are performing well in case of validation also with more than 95 and 96% average
performance that’s higher than the original dataset while VGG-19 and others models are
performing relatively good. Testing average loss VGG-19 is 0.1809, quite less than other
models in the original data as shown in Table 12.
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Table 8. Training Loss of Original data set.

Model Round 1 Round 2 Round 3 Round 4 Round 5 Avg.

VGG 16 0.4164 0.4974 0.5742 0.5612 0.5774 0.5253
VGG19 0.1163 0.1118 0.1276 0.1164 0.1194 0.1183
AlexNet 0.183 0.1566 0.149 0.1436 0.1511 0.1566
ResNet50 0.0182 0.106 0.0392 0.069 0.035 0.08624
GoogleNet 0.084 0.089 0.0478 0.0492 0.0227 0.05854

Table 9. Training Loss of Correct data set.

Model Round 1 Round 2 Round 3 Round 4 Round 5 Avg.

VGG 16 0.1861 0.1785 0.1828 0.1717 0.1476 0.1733
VGG19 0.1557 0.1527 0.154 0.1336 0.1448 0.1481
AlexNet 0.1839 0.1557 0.149 0.1436 0.1442 0.1552
ResNet50 0.0117 0.0016 0.0104 0.035 0.0284 0.0174
GoogleNet 0.0162 0.0557 0.049 0.0386 0.0391 0.0397

Table 10. Round-wise Performance Metrics of Different Models.

Model Round 1 Round 2 Round 3 Round 4 Round 5 Avg.

VGG 16 87.45 88.02 84.03 87.02 83.03 85.91
VGG19 95.2 93.2 94.8 93.91 92.88 93.99
AlexNet 95.9 95.27 94.75 73.21 94.01 90.62
ResNet50 97.19 95.07 96.67 96.42 94.00 95.87
GoogleNet 94.62 95.01 92.6 94.43 91.41 93.61

Table 11. Testing accuracy of correct data set.

Model Round 1 Round 2 Round 3 Round 4 Round 5 Avg.

VGG16 91.61 91.26 92.31 89.69 88.19 90.61
VGG19 93.3 92.83 92.13 90.21 90.73 91.84
AlexNet 91.96 92.3 92.23 95.1 89.03 92.12
ResNet50 97.7 97.2 97.3 94.32 94.23 96.15
GoogleNet 95.8 96.31 95.6 95.32 94.27 95.46

Table 12. Testing Loss of original data set.

Model Round 1 Round 2 Round 3 Round 4 Round 5 Avg.

VGG16 0.3028 0.3951 0.4044 0.3951 0.3951 0.3787
VGG 19 0.1476 0.1412 0.1872 0.1923 0.2363 0.1809
AlexNet 0.5273 0.6644 0.6786 0.895 0.6612 0.6853
ResNet50 0.1567 0.1196 0.279 0.202 0.2895 0.2093
GoogleNet 0.198 0.2211 0.3821 0.222 0.483 0.3014

Table 13 indicates that ResNet loss is 0.2235 and GoogleNet is 0.3507 in the case of
the correct dataset. As we look and compare, Table 14 shows the performance metrics
for the augmented (correct) dataset, while Table 15 shows the performance metrics of
correct(augmented) data models. In both cases, Google performed exceptionally well.
When we look at the initial values of the results approximately 94% using the features
obtained from AlexNet and VGG-19 models and the results obtained with the approach
we propose, there was not much change in Figure 5 confusion matrices for five machine
learning models for both the data set orignal dataset and original dataset with VGG-16,
VGG-19, AlexNet, ResNet50, and GoogleNet—in classifying medical images into four
categories: COVID-19, Normal, SARS, and Abnormal. Each matrix shows the number
of correct and incorrect predictions for each category’s average of all rounds. These
matrices offer a concise way to evaluate each model’s performance; however, when the
features extracted from all these models were combined using Combinatorial Fusion
Analysis and then classified using a Support Vector Machine (as shown in Figure 6), a



Diagnostics 2024, 14, 500 13 of 19

notable increase in the success rate was observed; in this study, the most compelling
features were identified through Combinatorial Fusion Analysis. The visual representation
distinctly underscores the prowess of various neural network architectures across five
experimental rounds. While individual models like VGG16, VGG19, AlexNet, ResNet50,
and GoogleNet exhibit variations in their performance, the Combinatorial Fusion model is
a notable highlight. This method ingeniously amalgamates features and strengths from
the base architectures, and its effect on Accuracy is evident. Across the experimental
rounds, the Combinatorial Fusion consistently posts accuracies in the high 90 s, even
touching 98.1% in Round 1. In many instances, this fusion approach outperforms individual
models and closely parallels or surpasses the validation accuracy, emphasizing its potential
reliability and robustness. This overarching trend suggests that a fusion of models can
yield a synergistic improvement, capitalizing on the collective strengths and mitigating
individual model weaknesses. The visual data accentuates the promise and capabilities
combinatorial approaches like this bring to the evolving landscape of neural networks. The
graph elegantly visualizes the effects of Combinatorial Fusion on key performance metrics
across five experimental rounds, as shown in Figure 7. Each metric, namely Accuracy,
Recall, Specificity, Precision, and F1-score, is represented by a distinct colored line. The
x-axis represents the experimental rounds (‘Round 1’ through ‘Round 5’), while the y-axis
indicates the percentage value of each metric, ranging from 85% to 100%. The lines for each
metric depict their trajectory across rounds after applying combinatorial fusion. Notably,
the fusion consistently enhances the metrics’ values, further validating the efficacy of
the fusion approach. While Accuracy maintains a high 97.8%, the fusion’s impact is also
vividly evident in other metrics. Recall, Specificity, Precision, and the F1-score remain
robust, revealing consistent improvement, validating the methodology’s effectiveness, and
showing the confusion matrics prediction accordingly. The graph serves as a succinct
yet insightful visual representation of the fusion’s positive impact on key performance
aspects, reaffirming its significance in elevating the overall quality of the model’s output,
and Figure 8, shows the confusion matrix of the combination score.

Figure 5. Confusion matrices (a,b) are derived from correct testing and training data, while (c,d) are
from the original data across all models.
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Table 13. Testing Loss of Correct data set.

Model Round 1 Round 2 Round 3 Round 4 Round 5 Avg.

VGG16 0.2382 0.223 0.2532 0.2901 0.2576 0.2524
VGG 19 0.2016 0.2053 0.2025 0.2401 0.2579 0.2214
AlexNet 0.2294 0.2016 0.2011 0.2501 0.2579 0.228
ResNet50 0.1424 0.1196 0.1869 0.3795 0.2895 0.2235
GoogleNet 0.2101 0.2216 0.2991 0.3101 0.713 0.3507

Table 14. The obtained results for the correct dataset on different models for k = 5 using perfor-
mance metrics.

Models Recall (%) Specificity (%) Precision (%) F1-Score (%)

VGG 16 87.05 92.02 91.11 92.60
VGG 19 94.11 95.05 96.51 97.20
AlexNet 93.12 89.32 94.10 89.02
ResNet50 97.34 90.73 98.20 94.40
GoogleNet 98.34 99.01 99.51 99.21

Table 15. The obtained results for the original dataset on different models for k = 5 using perfor-
mance metrics.

Models Recall (%) Specificity (%) Precision (%) F1-Score (%)

VGG 16 84.02 86.1 86.02 84.7
VGG 19 95.12 96.02 97.41 95.61
AlexNet 94.08 85.8 90.12 83.12
ResNet50 95.04 81.02 88.92 85.14
GoogleNet 94.02 96.33 94.71 93.89

Figure 6. Combination score performance augmented correct data.
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Figure 7. Combination score performance graph of all rounds.

Figure 8. Combination score performance confusion matrix.

6.2. Comparison

Our study’s use of combinatorial fusion with deep learning models for lung X-ray
image analysis has achieved testing accuracies of approximately 98% for the augmented
dataset and around 96.15% for the original dataset. This is a significant advancement when
compared to the findings in existing literature. For example, the work of Asmaa Abbas
using the DeTraC classifier attained a 95.12% accuracy rate, whereas the new CNN model
by Kesim and Dokur reported 86% accuracy, and Aras.M. Ismael’s research with various
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ResNet and VGG models achieved 94% accuracy, all of which are lower than our results.
Yujin Oh’s ResNet-18 based model had an accuracy of 76.9%, and Zhang’s use of ResNet-18
reached 95.18% accuracy, both trailing behind our study’s performance. Importantly, our
approach addresses a critical issue highlighted in recent reports, such as the one by Ulinici
M et al., regarding the limitations of X-ray as a diagnostic tool for interstitial pneumonia,
a common manifestation in COVID-19. Traditional X-ray imaging can be challenging for
diagnosing this condition due to its subtlety in early stages. The integration of AI tools
in our study offers a promising enhancement to this diagnostic method. By applying
advanced deep learning techniques, our method potentially improves the sensitivity and
specificity of X-ray imaging for detecting such complex conditions, thus contributing to
more accurate and timely diagnoses. Overall, the results of our study not only demonstrate
considerable improvements in lung X-ray image classification accuracy but also suggest a
pivotal role for AI-enhanced imaging in addressing inherent limitations of conventional
methods, especially in the context of challenging respiratory diseases like COVID-19.

6.3. Limitations and Future Recommendations

Our study represents a significant advancement in the application of combinatorial
fusion and deep learning for medical imaging diagnostics. However, we acknowledge
certain limitations that provide directions for future research. Firstly, the reliance on
publicly available X-ray datasets, while invaluable for initial model training and validation,
may not capture the full spectrum of clinical variability. This limitation underscores the
need for a more diverse dataset that reflects a wider range of patient demographics and
disease manifestations. Furthermore, by focusing exclusively on X-ray imaging, our current
model may miss critical diagnostic information available through other modalities, such as
CT scans, which can offer complementary insights into respiratory conditions. Addressing
these gaps, future efforts will aim to integrate a broader array of imaging data, including
CT, MRI, and ultrasound, to enrich our model’s diagnostic capability and generalizability
across different clinical scenarios.

In addition to enhancing data diversity and model comprehensiveness, a key area
of our future work will concentrate on the computational aspects of our methodology.
Recognizing the importance of scalability and efficiency in clinical applications, we are
committed to a rigorous evaluation of time and space complexity. This endeavor will
involve not only a detailed performance analysis under various computational conditions
but also the pursuit of advanced optimization strategies to refine our model’s efficiency
without detracting from its accuracy. Moreover, to bridge the gap between theoretical
innovation and practical utility, we plan to undertake pilot deployment studies in clinical
environments. These studies will assess the real-world applicability of our diagnostic
tool, focusing on its integration into clinical workflows, user acceptance, and the impact
of computational demands on operational feasibility. Such real-world evaluations are
crucial for ensuring that our AI-driven diagnostic solutions are not only technologically
advanced but also pragmatically viable and adaptable to the evolving landscape of medical
diagnostics.By addressing these limitations and setting a clear roadmap for future work,
we are poised to significantly enhance the relevance, effectiveness, and sustainability of
AI tools in medical imaging diagnostics. Our commitment to continuous improvement
and adaptation promises to keep our methodology at the forefront of the field, ready for
widespread adoption in diverse healthcare settings.

7. Conclusions

COVID-19, which is a rapidly spreading disease in the world, will continue to affect
our lives for a long time if vaccine studies do not succeed shortly. Researchers continue to
investigate methods for diagnosis and treatment in this regard. The primary purpose of
our study is to contribute to this research. For this purpose, we created a 4-class dataset,
which included COVID-19, pneumonia, and normal and un-normal X-ray lung images we
obtained from open sources. The created data set was preprocessed, and a new one was
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obtained. Deep learning models of Alex Net, VGG-16, VGG19, GoogleNet, and ResNet,
trained with this data set, were used for feature extraction. Then, the most compelling
features were selected from the extracted features with the help of combinatorial fusion,
and selected features were classified with the help of it. The features of the models that
provided the highest performance were combined among themselves, and the features of
the models that provided the lowest performance were combined. When we look at the
results obtained, overall Accuracy was obtained as a result of selecting and classifying the
features obtained from the ResNet model and GoogleNet. Another successful model was
found to be AlexNet and VGG19. Since the approach was proven reliable by considering
different criteria, it is predicted that it can be used to provide another idea for experts
during the diagnosis of COVID-19 disease. To contribute to this field in future studies, the
plan is to continue studies using image processing and different deep-learning models.
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