
Citation: Hermosilla, P.; Soto, R.;

Vega, E.; Suazo, C.; Ponce, J. Skin

Cancer Detection and Classification

Using Neural Network Algorithms:

A Systematic Review. Diagnostics 2024,

14, 454. https://doi.org/10.3390/

diagnostics14040454

Academic Editor: Dechang Chen

Received: 23 December 2023

Revised: 7 February 2024

Accepted: 10 February 2024

Published: 19 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Systematic Review

Skin Cancer Detection and Classification Using Neural Network
Algorithms: A Systematic Review
Pamela Hermosilla * , Ricardo Soto , Emanuel Vega , Cristian Suazo † and Jefté Ponce †

Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241,
Valparaíso 2362807, Chile; ricardo.soto@pucv.cl (R.S.); emanuel.vega@pucv.cl (E.V.);
cristian.suazo.j@mail.pucv.cl (C.S.); jefte.ponce.h@mail.pucv.cl (J.P.)
* Correspondence: pamela.hermosilla@pucv.cl
† These authors contributed equally to this work.

Abstract: In recent years, there has been growing interest in the use of computer-assisted technology
for early detection of skin cancer through the analysis of dermatoscopic images. However, the
accuracy illustrated behind the state-of-the-art approaches depends on several factors, such as the
quality of the images and the interpretation of the results by medical experts. This systematic review
aims to critically assess the efficacy and challenges of this research field in order to explain the usability
and limitations and highlight potential future lines of work for the scientific and clinical community.
In this study, the analysis was carried out over 45 contemporary studies extracted from databases
such as Web of Science and Scopus. Several computer vision techniques related to image and video
processing for early skin cancer diagnosis were identified. In this context, the focus behind the process
included the algorithms employed, result accuracy, and validation metrics. Thus, the results yielded
significant advancements in cancer detection using deep learning and machine learning algorithms.
Lastly, this review establishes a foundation for future research, highlighting potential contributions
and opportunities to improve the effectiveness of skin cancer detection through machine learning.

Keywords: machine learning (ML); deep learning (DL); convolutional neural networks (CNNs); skin
cancer; melanoma; cancer datasets

1. Introduction

In the last decade, the detection and classification of skin diseases, with a particular
focus on oncology, has been a trending topic within the machine learning field. In this
context, among the main advancements, a relevant amount of research has been conducted
on skin cancer diagnosis by the employment of deep learning techniques. The objectives
and designs behind the state-of-the-art proposed approaches aimed from simple image
comparison [1–3] to the adoption of advanced optimization methods, such as Harris’s
hawk optimization [4]. Similarly, quantitative imaging biomarkers have been examined in
the context of metastatic melanoma and immunological treatments [5]. However, to date,
several efforts need to be carried out to prevent this highly mortal disease, as skin cancer is
considered the most prevalent and dangerous type in medical oncology. It can result from
previous exposure to radiation therapy or carcinogenic substances.

In order to fully understand the several scopes that define this pathology and the
respective research evolution, different points need to be addressed and illustrated. Firstly,
a deeper insight into the skin cancer detection process requires outlining the fundamental
steps and crucial aspects involved. In this context, detection begins with a meticulous
visual analysis of the skin conducted by dermatologists, which is complemented by medical
evaluation of one’s family history, along with the yielded exam results, supported by
techniques such as dermatoscopy. Among the most employed initial diagnostic methods
is the ABCDE criteria [3,6,7], which are described in Table 1. Nevertheless, while this
simple, noninvasive, and expertise-based observational approach often leads to an accurate
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diagnosis of between 60 and 90% of malignant tumors [3], there are scenarios where the
certainty of cancer’s presence can only be ascertained through a biopsy.

Table 1. Detailed descriptions of the ABCDE criteria.

Criteria Indicates Description

A Asymmetry The majority of illustrated melanomas exhibit an imbalance
in their features

B Border The borders of melanomas are usually uneven and may have
irregular or scalloped edges

C Color The presence of multiple colors within a melanoma is a warn-
ing sign

D Diameter Melanomas tend to be larger, approximately the size of an
eraser or around 6 mm in diameter or larger

E Evolution This considers any alteration in the shape, size, color, or ele-
vation of a skin spot as a warning sign of melanoma

Thus, it is pertinent to note that, despite the guidelines provided by the employment
of the ABCDE method, the task of visual skin inspection can be inherently complex. This
complexity stems from the difficulty in identifying certain melanoma characteristics. This
challenge is highlighted in Figure 1, which illustrates a randomized selection of images
from the ISIC 2017 dataset (International Skin Imaging Collaboration), encompassing both
melanoma (“mel”) cases and other non-melanoma skin lesions (“nomel”). The resem-
blance between some of these images highlights the inherent difficulties in accurately
distinguishing between malignant and benign skin lesions.

Figure 1. Images from the ISIC 2017 dataset.

Secondly, given the aforementioned situation, hybrid designs become relevant. These
designs are characterized by the integration and interaction of multiple disciplines, with
the aim of achieving improvements and positive outcomes [8]. Therefore, it is crucial to
highlight the key aspects of artificial intelligence (AI), as shown in Figure 2, which include
well-known attributes and various fields that have demonstrated promising results in
identifying distinctive features of malignancy in skin lesions. Hybrid-based architectures
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have been increasingly recognized in research, notably in [4], where a dual deep learning
algorithm merged image and audio analysis through CNNs. One CNN evaluates raw
images for malignancy [9], while another processes audio from image sonification, applying
this dual approach to various image types.

Figure 2. Key aspects of artificial intelligence (AI), machine learning (ML), and deep learning (DL).

Thirdly, it is relevant to understand the evolution behind image processing, which
includes how the given algorithms and models have adequate capabilities to tackle both
modern and well-known issues. For instance, “Dermo-DOCTOR” [10] addresses class
homogeneity and heterogeneity, while modular camera systems automate lesion detection
and tracking [11]. Also, noninvasive methods offer biopsy alternatives for assessing
cellular atypia in keratinocyte cancers [12]. Innovations include CNNs combined with
the Water strider algorithm for melanoma [13] and the Inception network’s use for binary
classification, which was improved by transfer learning and RMSProp optimization [14].
Additionally, a U-Net based CNN and one-class SVM tackled speckle noise and subjective
OCT image interpretation [15].

In general, the articles reviewed not only highlighted the evolution of image pro-
cessing and machine learning techniques but also emphasized improvements in disease
detection, diagnosis, and classification. AI has made significant contributions to breast
cancer detection and monitoring, where techniques like logistic regression, decision trees,
and CNNs have achieved up to 99% accuracy, showcasing AI’s potential in early detection
and treatment, especially in regions like Asia [16]. On the other hand, they illustrated
extended applications, such as Alzheimer’s and retinal disease diagnosis through CNNs,
improving medical image analysis and patient outcomes.

Regarding systematic reviews in the area of skin cancer, relevant contributions were
found between 2019 and 2023, covering between 19 and 100 articles [17–19]. In this scenario,
different aims were achieved, such as works presenting a full disease-focused introduction
for new research focused on the diagnosis process and generalization of advanced method-
ologies for detecting multiple types of cancer. Complementing the information provided,
the objective of this study is focused on the review and analysis of skin cancer detection
algorithms, seeking to identify and evaluate emerging trends, challenges, and opportunities
in this field of research. The selection of scientific articles considered a broad range of
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methodologies and practical applications, enabling a comprehensive understanding of
the evolution and current state of skin cancer detection technologies. Moreover, special
attention was paid to evaluating the effectiveness, accuracy, and feasibility of different
algorithms in various clinical and environmental contexts. This study also includes a
critical analysis of the current limitations in skin cancer detection research, proposing areas
for future research and development. The importance of interdisciplinarity is emphasized,
involving perspectives from dermatology, oncology, informatics, and artificial intelligence
to effectively address the challenges of skin cancer detection.

The purpose of this systematic review is to explore and provide answers to the research
questions (RQ) that directed this study, which are defined as follows:

• RQ 1: What are the types of algorithms applied to detect skin cancer?
• RQ 2: What types of optimizers are used to improve the accuracy of the results?
• RQ 3: What are the datasets used in skin cancer detection studies?
• RQ 4: What metrics are used to validate the effectiveness of these algorithms in skin

cancer detection?

Subsequently, this study includes a comparative analysis of different algorithms,
evaluating not only their individual performance but also their effectiveness in comparison
to each other. This will allow identification of the specific strengths and weaknesses of each
method and their suitability for various clinical situations. Furthermore, the integration
of these algorithms into real healthcare settings will be considered, examining challenges
such as the interpretation of results by healthcare professionals and the integration of these
tools into existing clinical workflows. On the other hand, this study will also explore how
advancements in related technologies, such as artificial intelligence and deep learning,
are influencing the development of new skin cancer detection algorithms, opening up
possibilities for more accurate and efficient methods. Special attention will be paid to the
evolution of diagnostic accuracy over time and how these technological advancements can
contribute to improving the early detection and treatment of skin cancer. Finally, this study
will seek to provide a guide for future research in the field, highlighting areas that still need
development and opportunities for innovation. This will include recommendations for
addressing current limitations and suggestions for future lines of research that could lead
to significant improvements in the detection and treatment of skin cancer.

2. Materials and Methods
2.1. Methodology

The research methodology established for this review seeks to address the core ques-
tions that guide this study, which are framed within the investigation and response to
the previously stated research questions (RQs). To effectively tackle these questions, we
identified two stages. In the first stage, we focused on defining the key concepts that would
aid in selecting the set of articles to undergo review. In the second stage, the research team
analyzed the most significant aspects related to machine learning algorithms in skin cancer
detection. In Figure 3, a representation of the proposed research methodology is presented,
where the stages with their respective tools, activities, and outcomes can be identified.
Through examination of the reviewed articles, relevant aspects were established concerning
the result accuracy, utilized optimizers, validation metrics, and datasets employed in the
studies. This allowed us to establish categories for comparing their scope and contributions
while interpreting the similarities and differences among them.

2.2. Search Strategy

To address the research questions mentioned, this study was organized by first describ-
ing the methodology with which this review was conducted, which included everything
from the collection and selection of articles based on the PRISMA 2020 reference (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses) [20]. This guide lays out a
series of recommendations for presenting systematic reviews and meta-analyses in the
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scientific literature, providing a set of essential elements that should be included in the
preparation and presentation of systematic reviews and meta-analyses.

Figure 3. Research methodology.

For the selection of scientific articles, the WoS and Scopus databases were used,
conducting various queries to search for articles that reviewed the relevant concepts,
named key search terms (KSTs) for this study that contributed to answering the research
questions presented, and that provided important background information related to skin
cancer detection. In Figure 4 search queries (SQs) were defined to guide searches in the
mentioned databases.

Figure 4. Key terms and search queries.

After defining the queries, initial searches were carried out in the WoS and Scopus
databases. These searches yielded a significant number of articles, surpassing the antici-
pated analytical capacity of this study. Confronted with this information, strict selection
criteria were implemented based on thematic relevance, the quality of the publications,
and their publication dates. The process involved refining the information to generate
a manageable dataset. The criteria used to determine which papers were included or
excluded in this review are presented in Table 2.
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Table 2. Inclusion and exclusion criteria.

N° Criteria: Inclusion (IC) and Exclusion (EC) Description

IC1 Area of knowledge

Computer science information systems,
oncology, computer science artificial
intelligence, computer science theory
methods, engineering biomedical,
computer science software engineering,
computer science interdisciplinary
applications, medical informatics,
multidisciplinary engineering,
multidisciplinary sciences

IC2 Language English

IC3 Document type Article

EC1 Year ≤2018

EC2 Key words Systematic review

Considering the initially defined queries and the previously specified eligibility criteria,
a summary of the results obtained from the searches conducted in WoS and Scopus is
provided below. Table 3 presents a summary of the number of articles found before and
after applying inclusion and exclusion criteria.

Table 3. Summary of the number of papers before and after applying the criteria.

Id SQ Description WoS Scopus

SQ1 Algorithm CNN to skin cancer 126 274
61 93

SQ2 CNN in skin cancer detection 185 88
436 171

SQ3 Melanoma cancer detection algorithms 6641 127
180 65

SQ4 Optimization of CNN algorithms for skin cancer detection 23 10
31 19

Preliminary totals 6975 286
921 348

Final Results 634

Afterward, Mendeley Reference Manager was used to eliminate duplicates from each
consulted database. Subsequently, an additional refinement was carried out by selecting
articles from the Q1 and Q2 quartiles. This refers to quartiles that categorize journals based
on their impact factor. The impact factor is a measure that reflects the average number of
citations to recent articles published in a particular journal. Journals in quartiles Q1 and
Q2 have the highest impact factors and are generally well-regarded and influential within
their fields. The details of the results after applying these refinements are shown in Table 4.

Table 4. Summary of the number of papers after applying the refinement criteria.

Refinements WoS Scopus

First refinement: duplicate removal 187 235

Second refinement: filtering by quartiles Q1 and Q2 174 157

Final Results 331
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Finally, a Python algorithm was deployed to merge the articles into a unified list,
which was then sorted by the number of citations. The description of this is as follows:
17 works corresponded to Scopus articles, and 28 were from WoS. Also, it should be noted
that the final search was performed between the second and third weeks of April, and thus
the research was biased toward the articles found up to that moment. To synthesize the
search process we carried out, a scheme in Figure 5 outlines the search and paper selection
process, following the PRISMA 2020 framework for this systematic review.

Figure 5. Search strategy based on PRISMA 2020.

2.3. Analysis Categories

To conduct the review of the selected articles, it was crucial to define the analysis cate-
gories that would be used in the context of this research. These categories and subcategories
would be developed based on the key questions formulated in the study. The primary
purpose of these categories was to guide and structure the analysis process, focusing it on
the search for specific answers. This in turn would enable a more efficient organization of
the gathered information and streamline the extraction of relevant conclusions. Figure 6
provides an outline that aligns the research questions of this study with their corresponding
analysis categories.
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Figure 6. Structure of the systematic review: research questions and categories of analysis.

In order to conduct this systematic review, we identified four essential categories of
analysis in the previous framework. These categories were the types of algorithms em-
ployed for classification, model optimizers used within the training process, skin datasets
available for research, and evaluation metrics used to quantify the performance of algo-
rithms or models. In summary, these four categories covered the most relevant aspects for
conducting analysis related to algorithms in the context of skin-related issues. Each of these
categories played a key role in understanding and evaluating the algorithms used in this
context. In Table 5, each category and subcategory are identified, defined, and described.

Table 5. Categories and subcategories of analysis.

Categories Subcategories Description

Types of
Algorithms

CNN

A convolutional neural network (CNN) is a type of deep neural network specifically
designed for the efficient processing of two-dimensional data, such as images and videos.
CNNs are inspired by the organization and functioning of the biological visual system,
where individual neurons respond to overlapping and superimposed regions of the visual
field. This type of network has been particularly successful, especially in the analysis of
images in the field of medicine [13].

SVM

The support vector machine (SVM) is a widely used machine learning model for
classification and regression tasks. It is considered a supervised learning algorithm, which
means that it is trained using a labeled dataset where the classes or values to be predicted
are known [21].

Hybrids
Other classification algorithms have been identified for skin cancer detection, with deep
neural network-based algorithms, particularly recurrent neural networks (RNNs),
standing out, as well as a decision tree-based algorithm known as XG-Boost [7,22].
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Table 5. Cont.

Categories Subcategories Description

Model
Optimizers

ADAM
The ADAM optimization algorithm combines the advantages of stochastic gradient
descent (SGD) and the momentum algorithm to dynamically adapt the learning rate. It
provides fast and efficient convergence across a wide range of problems [23,24].

SGD
The stochastic gradient descent is a simple algorithm that updates the network’s weights
by using the gradient of the loss function at each iteration. It is the basic optimizer used in
many machine learning applications [22].

RMSprop
RMSprop adapts the learning rate individually for each parameter during training. This
means that parameters with large gradients will experience a smaller learning rate, while
parameters with small gradients will have a larger learning rate [25].

Skin Datasets

HAM10000
HAM10000 (Human Against Machine) is a dataset consisting of 10,015 dermoscopic
images, each of which is a 600 × 450 three-channel RGB image. It provides properly
categorized training images [23,26].

ISIC
ISIC (International Skin Imaging Collaboration) is a publicly available international
collaboration dataset of skin images that contains a variety of properly classified skin
lesions for research purposes [25].

PH2

PH2 comprises dermoscopic image databases. PH2 was acquired at the Dermatology
Service of Hospital Pedro Hispano in Matosinhos, Portugal, and it includes 200 images,
encompassing 40 melanomas and 160 other skin lesions termed nevi (including both
atypical and typical nevi) [23].

Others datasets
Additional datasets, such as the Cutaneous Squamous Cell Carcinoma (cSCC) dataset,
involve patients in the study and feature confocal laser scanning microscopy (CLSM)
images, with each approximately 10,000 × 10,000 pixels in size [23].

Evaluation
Metrics

Accuracy

Accuracy is the ratio of correctly predicted observations to the total observations. For
better understanding in the context of the study, it would be the number of images
correctly classified—positive and negative—divided by the total number of
images [14,27].

Recall

Recall or sensitivity measures the proportion of actual positives that are correctly
identified as such. This is particularly important in medical image processing, where it is
crucial to identify as many true cases as possible. In this context, it would be the
proportion of images that are correctly identified as belonging to a particular class out of
all the images that actually belong to that class [24,28].

Specificity

Specificity is a metric that refers to the model’s ability to generate responses that are not
only accurate but also detailed and relevant to the given context or query. This is
particularly important in tasks that require precision and detail-oriented answers.
Specificity in this sense is often balanced with other metrics like accuracy, fluency, and
relevance [29].

Others metrics

Metrics such as the receiver operating characteristic (ROC), F1 score, and FNR are crucial
in the evaluation of classification algorithms. The ROC curve, along with the area under
the curve (AUC), provides a visual and numerical representation of the algorithm’s ability
to distinguish between different classes. The F1 score, by merging precision and
sensitivity, yields a singular metric that harmonizes these two elements, proving
particularly valuable in scenarios with class imbalances. Additionally, precision, also
known as the positive predictive value, measures the accuracy of positive predictions. It
reflects how many of the items identified as positive are actually positive [23]. The false
negative rate (FNR), quantifying the proportion of true positives incorrectly identified as
negatives, is critically important in fields where false negatives carry significant
consequences, such as in medical diagnostics [24,29].

3. Results

In this section, we illustrate the analysis process, synthesis, and points of view re-
garding the state of the art reviewed. Firstly, a generalized perspective is taken in order to
achieve an overview of the demographic and temporal coverage of the issues. Subsequently,
the main findings identified from the analysis of the previously mentioned categories are
pointed out, also establishing cross-cutting aspects in the reviewed articles in terms of the
subcategories identified. Finally, a summary of this section is provided, highlighting the
most relevant findings within this research.
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3.1. Main Features of the Selected Articles

In Figure 7, a comprehensive geographic mapping is shown to emphasize the efforts
and contributions made in the literature regarding skin cancer detection. The analysis
revealed that the United States, India, Germany, Saudi Arabia, and the United Kingdom
are the leading countries in this field. Various factors, such as health policies, skin cancer
incidence rates, and investment in research infrastructure were taken into account during
the selection process for the fully updated state of the art review. In total, 45 articles
were selected.

The United States’ leadership with nine articles showcases the country’s advanced
medical research capabilities, particularly in the development of diagnostic technologies
such as dermatoscopy, imaging, and machine learning algorithms for early detection.
India’s substantial representation with eight articles may indicate a strategic emphasis on
technology-driven research for skin cancer detection, which is crucial in a country where
access to dermatologists may be limited. Germany, Saudi Arabia, and the United Kingdom,
each with seven articles, indicated their significant investments in medical technology
and research. These contributions likely reflect advanced research on imaging techniques,
molecular diagnostics, and the integration of artificial intelligence in clinical practice for
earlier and more accurate skin cancer detection. Furthermore, the text aims to highlight the
latest efforts in skin cancer detection.

Figure 7. Number of articles per country involved. Note that the total reaches past 45 articles because
more than one country can be involved in a study.

Furthermore, to highlight the latest efforts in skin cancer detection, in Figure 8, we
illustrate the amount of research proposed per year, which can be interpreted as this topic
being a trend and a hot subject within the research community.

The increase in skin cancer detection research in 2019 highlights a global trend toward
adopting artificial intelligence and machine learning, noted for enhancing diagnostic
accuracy. This surge reflects the growing awareness of skin cancer as a major health issue
and the potential of technology in early detection. The decline in 2021 may be attributed to
the redirection of research resources due to the COVID-19 pandemic’s impact on funding
and priorities, or it could represent the cyclical nature of research dynamics. The slight
recovery in 2022 indicates a possible resumption of activities or the advent of new detection
technologies. The lower publication count in 2023 might not fully represent ongoing
research, possibly due to the year’s incompleteness or publication delays. This trend
underscores the necessity of continuous research investment and highlights how global
events can influence research productivity. It stresses the importance of resilience in the
research community to persistently address long-term health challenges like skin cancer.
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Figure 8. Number of articles per year.

3.2. Findings per Analysis Category

In this section, we present a deep analysis organized by the topics illustrated in Table 5
based on the most relevant findings achieved within the literature review. In this regard,
Table 6 provides a summary which identifies several reported algorithms, contributions,
and output metrics.
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Table 6. Findings by analysis category in selected articles.

Algorithms Optimizers Datasets Metrics
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Haenssle et al. [30] x 88.9% 75.7% x
Brinker et al. [31] x x 96% 95% 95.18% x
Munir et al. [32] x x 76% 81.7%

Al-masni et al. [33] x
Saba et al. [34] x x x x x 98.4% 98.25% 98.5% x

Goyal et al. [35] x x x x x 95.67% 92.08% 98.58% x
Brinker et al. [36] x x x x 92.8% 68.2%
Brinker et al. [37] x x 82.3% 77.9%
Mahbod et al. [38] x x x x 96.3% x
Hekler et al. [39] x 68% 76% 60%

Adegun and Viriri [40] x x x x x 99.2% 83.3% 98.6% x
Zhang et al. [41] x 97% 93.5% 92%

Kadampur and Riyaee [42] x 98.99% x
Mahbod et al. [43] x x x x x x
Hekler et al. [44] x
Ashraf et al. [45] 97.9%
Maron et al. [46] x 74.4% 98.8%

Albahar [47] x x 97.49% x
Kumar et al. [48] x x x x 97.4%
Nawaz et al. [49] x x x x 95.6%
Khan et al. [50] x x x x 96.5%

Turani et al. [51] x 98% 97% 98% x
Dey et al. [52] x 96.19% 98.41% 91.16% x
Tan et al. [53] x x x x x x x

Öztürk et al. [54] x x x x 96.92% 96.88% 95.31% x
Gu et al. [55] x x x 82.9% 58.9% 97.1% x

Thanh et al. [56] x 96.6% 96.1% 96.8% x
Amin et al. [57] x x x x x x 99.9% 99.52% 99.62% x

Bakkouri and Afdel [58] x x x x 98.09% 93.35% 98.88% x
Wei et al. [59] x x x x x 96.2% 93.9% 97.4% x

Kaymak et al. [60] x x 94.81%
Khan et al. [61] x x x x 97.74% 97.39% 100% x

Anand et al. [62] x x x x 97.96%
Okur and Turkan [63] x x x 94%
Abbas and Celebi [64] x x 93% 95% x

Rahman et al. [65] x x x x x x 88% x
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Table 6. Cont.

Algorithms Optimizers Datasets Metrics
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Oskal et al. [66] x 92.01%
Sreelatha et al. [67] x 98.64% 99.22%
Olugbara et al. [68] x x

Alizadeh and Mahloojifar [69] x x x x x x 97.5% 100% 96.88% x
Wu et al. [70] x 87.25% x

Shetty et al. [71] x x x 95.18% x
Nasr-Esfahani et al. [72] x x x 95.7% 92.77% 96.3% x
Mohakud and Dash [73] x x 98.33%
Abunadi and Senan [74] x x x 97.91%

Presence in the literature review
(%) 20% 80% 24% 22% 13% 4% 18% 49% 24% 29% 71% 53% 53% 56%
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3.2.1. Types of Algorithms

In this section, we present a comprehensive overview based on the algorithms im-
plemented and reported, which has been designed by means of CNNs, SVMs, and other
hybrid methods. In this context, we can observe a clear predominance of employment of
CNN algorithms, which have contributed novel approaches, such as a three-step cascade
design for automatic skin lesion detection [34], fully convolutional neural network (FCN)
architectures [60], a new epidermis segmentation technique [66], data augmentation plus
the use of a “k-fold” cross-validation technique [71], and the aggregation of new dense
pooling layers for lesion region segmentation in skin images [72]. On the other hand,
interesting results have been reported by hybrid approaches, such as the extraction of deep
features from pretrained networks [57] and the combination of results from each step of
feature extraction [69].

This contextualization emphasizes the diversity, richness, and profitability behind
the state-of-the-art approaches proposed, demonstrating the adaptability and versatility
necessary to address specific challenges associated with melanoma detection. Thus, through
this variety of methodology, we aim to ensure comprehensive coverage that allows for a
thorough and comparative evaluation of the effectiveness of different approaches in the
field of skin cancer detection.

3.2.2. Model Optimizers

Regarding the model optimizers employed, this work addresses the challenge of
local minima stagnation in model training, emphasizing advancements in optimization
strategies. Stochastic gradient descent (SGD) with restarts has been highlighted as a solution
for improving skin cancer detection accuracy [36]. The adaptability and effectiveness of
Adam and SGD optimizers in various CNN architectures were demonstrated in [40,43,53],
with RMSProp discussed as an alternative in [36,65,72]. The versatility of the Adam
optimizer has been showcased across different neural network architectures, including
ResNet-152 [55], and its utility in enhancing training efficiency through dynamic learning
rate adjustments was noted in [59]. Comparative analyses, such as in [62], extend the
optimizer discussion by comparing Adadelta and Adam, while the authors of [65] explored
the impact of learning rate schedulers and dropout percentages. The preference for Adam
due to its simplicity and effectiveness was emphasized in [71], and its strategic role in
addressing with an activation function as a RelU was illustrated in [58].

3.2.3. Skin Datasets

The body of research covered in the literature illustrates significant reliance over
diverse datasets, particularly emphasizing the importance of specialized collections for
advancing the fields of dermatology and medical imaging. Key among these are the
HAM10000, ISIC, and PH2 datasets, which are extensively used for training and validating
AI-driven diagnostic models [30,31,33,50,54]. The links for accessing the mentioned online
datasets are provided in Table 7.

Table 7. Datasets and their online access links.

Dataset Name Link to Dataset (accessed on 23 October 2023)

HAM10000 https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T

ISIC https://challenge.isic-archive.com/data

PH2 https://www.fc.up.pt/addi/ph2%20database.html

Firstly, the HAM10000 dataset concerns a large collection of dermatoscopic images
that has been employed by numerous studies [46,48]. This dataset provides a diverse
range of skin lesion images, making it an invaluable resource for developing algorithms
capable of identifying a wide array of skin conditions. Its comprehensive nature allows for
the creation of robust models that are well versed in recognizing various dermatological

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T
https://challenge.isic-archive.com/data
https://www.fc.up.pt/addi/ph2%20database.html
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issues [55,62]. Secondly, the International Skin Imaging Collaboration (ISIC) archive, which
concerns another pivotal resource that is frequently cited within the literature [43,47], offers
an extensive repository of high-quality dermoscopic images, focusing on melanoma and
other cutaneous skin conditions. The depth and breadth of the ISIC archive make it an
ideal dataset for training deep learning models, particularly in the realm of melanoma
diagnosis [54,59]. Thirdly, the PH2 dataset has been utilized in skin lesion analysis and
has provided valuable data for assessing various types of skin lesions [69,74]. This dataset
improves the diversity and depth of data available for research, contributing significantly
to advancements in the field.

Regarding the science community’s appreciation of the usage of datasets, the
HAM10000, ISIC, and PH2 datasets are not only valuable for their size and quality but also
for their role in fostering open and collaborative research. Their availability to the research
community enables a broad spectrum of studies, from fundamental image classification to
complex pattern recognition tasks. This openness is crucial in facilitating advancements
in medical imaging and in the application of AI in dermatology. In addition to prominent
datasets such as HAM10000, the ISIC, and PH2, the research field has greatly benefited from
a variety of other specialized data collections. In this regard, datasets like MED-NODE,
used for developing automated diagnostic algorithms [36], and DermIS-DermQuest, pro-
viding a wealth of clinical images for dermatological analysis [41,45], have been integral
to advancements in this area. Dermofit, another valuable resource offering high-quality
images for lesion segmentation, further contributes to the depth of available research ma-
terials [40,53]. In the same context, the ALL-IDB2 dataset needs to be considered, mostly
because it has been a key asset in skin cancer research studies [53], and Xiangya-Derm,
with its extensive collection of clinical skin disease images [70] which have significantly
contributed with automated diagnostic techniques. Similarly, MoleMap’s unique focus on
teledermatology imaging and the comprehensive dermatoscopic images from the HAM
dataset have also played crucial roles in recent research endeavors [55]. Thus, these datasets,
with their unique features and specialized content, have enabled more detailed exploration
and understanding of various skin conditions, improving the accuracy and efficacy of
AI-based diagnostic models and paving the way for future research in dermatology and
medical imaging.

3.2.4. Evaluation Metrics

Evaluation metrics in skin cancer research have played a crucial role in revealing
fundamental aspects. The balance between recall (sensitivity) and specificity is emphasized,
underscoring the need for accurate detection of positive cases and the correct identification
of negatives. The comparison between the effectiveness of CNNs and dermatologists’
expertise, as reported in [30], highlighted the importance of collaboration between ar-
tificial intelligence and human expertise. Additionally, the use of standard metrics in
studies like [32] is presented as a common practice to provide a clear assessment of the
model’s accuracy.

The following equations illustrate the standard metrics and measures used in the
calculation of the model evaluation metrics:

Accuracy =
TP + TN

Total Samples
(1)

Precision =
TP

TP + FP
(2)

Specificity =
TN

TN + FP
(3)

Recall =
TP

TP + FN
(4)
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AUC =
∫ 1

0
ROC Curve(t) dt (5)

where TP represents the true positives and illustrates the correctly predicted instances of the
positive class. FP corresponds to the false positives, which denotes the incorrectly predicted
instances of the positive class when they belong to the negative class. TN corresponds
to the true negatives, where the model correctly predicted instances of the negative class.
Lastly, FN represents the false negatives (FNs), which are incorrectly predicted instances of
the negative class when they actually belong to the positive class.

In the literature, the evaluation process carried out over a model has been illustrated
as an arduous and high complexity task. For instance, the accuracy measurement indicated
by classical metrics such as TPs was presented as a fundamental approach to assessing the
efficiency of deep learning models [32]. Also, the need to balance the recall (sensitivity)
and specificity, as addressed in [31], was crucial to minimizing FPs or FNs in accurate
skin cancer diagnosis, highlighting the relevance of achieving balance within this process.
In the same context, other studies, such as [36,37], incorporated metrics like the receiver
operating characteristic (ROC) curve and the quality of image reconstructions, respectively,
to evaluate the model discrimination and visual representation fidelity, carrying out a
diagnosis. The involvement of pathologists in [38] emphasizes the need to evaluate models
in real clinical environments, highlighting accuracy and reliability.

3.3. Summary

Exploring the skin cancer detection field, which includes algorithms, strategies, and
hybrid methods, has revealed a rich tapestry, with the employment of CNNs taking a clear
lead spot within the literature. Notable mentions include the innovative three-step cascade
design and architectures like the FCN, showcasing adaptability for effective melanoma
identification. Also, hybrid approaches such as deep feature extraction and combining
results from multiple steps have demonstrated promise for robust skin cancer detection
models. These findings highlight opportunities for future studies to unravel the synergies
between ensemble methods and specific CNN architectures.

By tackling the intricacies of model optimization, this review sheds light on the
strategic employment of SGD with restarts in order to navigate the local minima during
training. The ubiquitous Adam optimizer, favored for its simplicity and efficiency, takes the
spotlight. However, the exploration of alternatives like RMSProp opens avenues for future
investigations into their applicability. Optimizer selection’s role in overcoming challenges
tied to activation functions suggests a fertile ground for research on optimization techniques
to enhance CNN model efficiency for skin cancer detection.

Regarding the revision of the dataset, the reliance on HAM10000, ISIC, and PH2
underscores their pivotal role in advancing dermatology. Future studies could benefit
from delving into specialized datasets like MED-NODE, DermIS, DermQuest, ALL-IDB2,
Xiangya-Derm, and MoleMap. The collaborative and open nature of these datasets em-
phasizes their significance in research, urging continual diversification for comprehensive
exploration. Future research might explore how dataset characteristics influence model
performance and generalizability.

In the realm of evaluation metrics, this review underscores the delicate balance be-
tween recall and specificity in skin cancer research. Standard metrics like true positives
(TPs), false positives (FPs), true negatives (TNs), and false negatives (FNs), alongside the
AUC, accuracy, precision, specificity, and recall, play crucial roles. Future studies could re-
fine and standardize these metrics, considering the intricate nature of skin cancer diagnosis.
The collaboration between artificial intelligence and human expertise, as indicated by the
inclusion of pathologists in the evaluation process, calls for future research to explore such
partnerships in real clinical settings. The incorporation of classical metrics, ROC curves,
and novel metrics sets the stage for nuanced evaluation approaches in future studies on
skin cancer detection.
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4. Discussion

Considering the findings of this review in relation to the analyzed studies, it is possible
to point out that there are several machine learning approaches, especially those imple-
mented with CNNs, which have been employed independently and in a hybrid manner
with other techniques. These approaches have led to significant and noteworthy results in
terms of model evaluation metrics for skin cancer detection. These studies provide a high
level of precision, which improves the potential applications as an important complement
to the work carried out by experts in the field.

To comprehensively address the final scope of this research, we refer to the questions
that guided this study. These questions provide a clear framework for the aspects to be
addressed and the objectives to be achieved. By answering these questions, we aim to gain
a deeper and more complete understanding of the subject matter, which will enable us to
recognize the implications of the mentioned findings and propose directions for future
work in the field. Subsequently, a detailed account of the implications of the findings
identified in each of the questions guiding this research is provided.

1. What are the types of algorithms applied to detect skin cancer?
According to the reviewed studies, the most commonly used algorithms in the field of
this research are convolutional neural networks (CNNs). In general terms, CNNs are
characterized by having a series of convolutional layers, responsible for extracting the
primary features by combining various kernels to generate feature maps. Additionally,
pooling layers gradually reduce the image size, refining the precision of distinctive
features that will be used to train the model. These layers are applied sequentially,
starting from the original input image in the first layer of the network.
The architecture of a CNN can vary in terms of the number of convolutional or pooling
layers, and it can also incorporate fully connected (FC) layers. FC layers process
prior features for classification, initiating a classification phase that may be repeated
in subsequent layers, continuing the classification process until data are prepared
for the final output and classification [75,76]. These layers can be complemented
with activation layers to introduce nonlinearity. Additionally, techniques such as
“dropout” are employed to prevent overfitting by randomly deactivating certain
neurons during training. “Early stopping” enhances performance by identifying the
model’s equilibrium point and halting training when it no longer learns, optimizing
the use of computational resources. In summary, these techniques complement the
architecture, improving classification and mitigating overfitting issues.
It was also evident that the application of CNNs in conjunction with pretrained
models for skin cancer detection, especially melanoma, has achieved improved ac-
curacy results. Some of these predefined algorithms reviewed in the studies include
ResNeXt, SeResNeXt, DenseNet, Xception, AlexNet, ResNet, SVMs, and random
forests [31,33,43,45,60,74]. Furthermore, in the examined literature, it is pertinent to
note a scarce amount of detailed documentation information concerning the software
libraries utilized for algorithm implementation, a detail that warrants further inves-
tigation for future research endeavors. However, within the scope of the reviewed
studies, TensorFlow and PyTorch were identified as the predominant libraries for the
development and training of neural networks. The following graph illustrates the pres-
ence of the mentioned algorithms in the articles that are part of this research, which
have been considered part of the proposed experimentation or a general reference in
the presented conceptual framework [65,77–79].
Figure 9 illustrates the distribution of various machine learning algorithms used
instead of CNNs. The majority of applications were focused on advanced algorithms
such as ResNet and SVMs, which together represented more than half of the total.
Algorithms like AlexNet and DenseNet also had a significant share. Conversely,
methods such as ResNeXt, SeResNeXt, and random forests were applied to a lesser
extent, indicating a preference for more established or possibly more effective models
in the set of applications under consideration.
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Figure 9. Distribution of application of non-CNN algorithms.

On the other hand, the idea of approaches based on the interaction between pretrained
models with CNNs have been relevant within the literature. In Figure 10, we illustrate
a comparison between purely pretrained models (orange) and hybrid pretrained
models (blue). In this regard, hybrid designs led by algorithms such as ResNet have
been recurrently complemented by CNNs, mostly due to the good results and affinity
when working together.

Figure 10. Comparison between pure and hybrid pretrained models.

At the same time, the use of hybrid algorithms led to the concepts of transfer learning
and fine-tuning, which are interesting techniques to explore in these areas since the
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main idea is to consider the use of a pretrained model and make fine adjustments for
a specific task.
The former refers to a technique where a model developed for one task is reused as the
starting point for a model in a second task. Often, the initial layers of the pretrained
network are frozen. This means that the weights of these layers are not updated
during further training. The frozen layers act as generic feature extractors.
The latter is an additional step in transfer learning. After initializing a model with
weights from a pretrained model, training continues on the new dataset, finely ad-
justing the weights of some or all layers and allowing the model to more specifically
adapt to the characteristics of the new dataset, which can result in better performance
for a particular situation [1,8,76,80].
CNNs applied in conjunction with optimization algorithms constitute a powerful
approach in the field of deep learning, particularly in computer vision tasks such as
image recognition, classification, and segmentation.
Optimization algorithms are also essential for efficiently training a CNN. During
training, the goal is to minimize a loss function, which measures how far the model’s
predictions are from the actual outcomes. In this sense, optimization seeks to adjust
the weights of the neural network in an attempt to reduce the loss function. Among
the most used algorithms are the following:

• Stochastic gradient descent (SGD): This is a classic method that performs updates
after viewing each training sample or a small batch of samples, making it more
robust against local minima [43].

• Momentum: This improves SGD by taking into account the gradient from the
previous update to smooth oscillations and speed up training [43].

• Adam, Adagrad, and RMSProp: These algorithms adapt the learning rate during
training for each weight individually, which can lead to quicker convergence [40,58].

• Optimization algorithms in the learning process of CNNs: This approach enables
the adjustment of weights and biases in pretrained CNN models to enhance
accuracy in the detection and diagnosis of skin cancer [81].

To summarize, the synthesis of CNNs with robust optimization approaches is vital for
the success of contemporary deep learning applications [23,29].

2. What types of optimizers are used to improve the accuracy of the results?
Throughout the extensive analysis of the literature, a range of algorithms designed for
skin cancer detection was evident, featuring a variety of network architectures and
tuning parameters and the integration of optimizers within their training routines.
These elements are crucial in a CNN framework, as they serve to refine and augment
key aspects such as the following:

• Stability and convergence: Different optimizers possess properties that can
impact the stability and rate of convergence during training. Selecting the ap-
propriate optimizer can aid in circumventing issues such as training stagnation
or divergence.

• Efficient learning: Optimizers enable the efficient adjustment of weights and
biases in a CNN throughout the training process. This is vital for developing
a model that can effectively learn from a dataset of skin images, which is often
large and intricate.

• Overcoming local minima: Optimizers assist in navigating past local minima in
the loss function, which is particularly crucial in complex problems like skin can-
cer detection, where the objective function may have multiple local minima [58].

Considering the points discussed, it can be suggested that optimizers are critical to
the effectiveness of CNN algorithms for detecting skin cancer [74], as they facilitate
efficient training, ensure proper convergence, and enable the model to overcome opti-
mization challenges within the neural network’s weight adjustments. The choice of an
optimizer, along with its hyperparameter tuning, is an essential aspect of developing
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a detection algorithm. In general, from the literature analyzed, Adaptive Moment
Estimation (ADAM), stochastic gradient descent (SGD), and root mean square prop-
agation (RMSProp) emerged as the most frequently employed optimizers, Table 8
summarizes the advantages and disadvantages for optimizer mentioned.

Table 8. Optimizers.

Optimizer
Characteristics

ADAM SGD RMSprop

Advantages

– Fast convergence
rate in many deep
learning applica-
tions.

– Automatic learn-
ing rate adaptation
for each parame-
ter.

– Combines first and
second moment es-
timations, making
it robust against
various types of
loss functions [72].

– Simple and easy to
implement.

– Requires less
memory com-
pared with more
complex algo-
rithms.

– Can perform well
with properly
tuned learning
rates.

Adapts the learning rate
individually for each pa-
rameter, making it effec-
tive.

Disadvantages

– May require more
memory to store
first and second
moment estima-
tions.

– Can be sensitive
to hyperparame-
ters such as the
learning rate and
exponential decay
factors.

– May converge
slowly on difficult
problems or be-
come trapped in
local minima.

– Requires fine-
tuning of the
learning rate.

– May require care-
ful adjustment of
the learning rate.

– Not always as fast
as ADAM in con-
vergence.

In the reviewed papers, it was feasible to discern the significance of the outcomes
achieved for various algorithm configurations in conjunction with optimizer integra-
tion, with ADAM being the most commonly employed one. Presented in Figure 11
is an outline of three selected papers, which illustrate three different stages of con-
tributions within the research domain in recent years. For instance, the first work
reported a different design based on CNNs which achieved 68% accuracy, in compari-
son with the 88% accuracy yielded by hybrid pretrained approaches, which illustrates
a relevant improvement.
In the first study, entitled “Deep learning outperformed 11 pathologists in the clas-
sification of histopathological melanoma images” [31], a deep learning method
solely based on CNNs that surpassed 11 pathologists in classifying histopathological
melanoma images was highlighted, achieving 68% accuracy. The second paper, “An
approach for multiclass skin lesion classification based on ensemble learning” [65],
employed an ensemble learning approach to classify skin lesions into multiple cate-
gories, utilizing specific algorithms like ResNeXt, SeResNeXt, DenseNet, Xception,
and ResNet to achieve an average accuracy of 88% on a dataset of 18,730 dermoscopy
images. This result significantly exceeds that of the first study, which solely used
CNNs. Finally, in the third article, “Deep learning techniques for skin lesion analysis
and melanoma cancer detection: a survey of state-of-the-art” [40], a variety of deep
learning techniques for skin lesion analysis and melanoma cancer detection are sum-
marized, highlighting a CNN model optimized with a deep residual network and
CDCNN and achieving 99.2% accuracy in classifying 11,720 images from the ISIC 2018
database, providing an overview of advancements in this field up to the year 2020.
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Figure 11. Summary of relevant aspects of some papers.

Overall, the use of optimizers seems to be a consistent strategy for achieving im-
provements in network performance, with ADAM standing out in several studies,
suggesting its popularity and efficacy in optimizing various CNN architectures. How-
ever, in some cases, SGD or RMSProp may perform equally well or even better,
especially when the hyperparameters are properly adjusted. The final selection often
involves experimentation and fine-tuning, meaning the choice of optimizer algorithms
depends greatly on the specific problem and the architecture of the neural network.

3. What are the datasets used in skin cancer detection studies?
The most commonly used datasets in the reviewed studies were the Human Against
Machine (HAM10000) dataset, primarily created by dermatologists at Harvard and
other institutions, and the International Skin Imaging Collaboration (ISIC) dataset.
Both contain a large number of images (10,015 and 11,720, respectively), compiling a
series of dermatoscopic images of skin lesions, including skin cancer characterized
by high-quality photographs. In the case of the HAM10000 dataset, seven diagnosed
categories are included, with nevus, melanoma, and carcinoma being among the most
frequent ones. These images have been extensively used for training machine learning
models, specifically for classification tasks through CNNs [46,48]. The ISIC dataset
represents a global contribution initiative, featuring a vast collection of images that
include various categories but with a focus on melanoma-type cancer [2,82–86].
Also, both datasets have been utilized for research and development of automatic
diagnostic tools, serving as a standard reference in international challenges and
competitions. They include metadata related to clinical diagnosis, lesion type, and
body location, among other factors. Their open access and the diversity of data
they offer make them highly valuable to the scientific community, in dermatological
research, and in the development of artificial intelligence tools for the diagnosis of
skin diseases as a significant complement to expert diagnosis [87–91]. Additionally,
the PH2 dataset consists of a recompilation of 200 images, focusing on a local objective
rather than being broadly applicable to other case studies [69,74]. Regarding well-
known issues within the source of the dataset employed, although in the minority,
some researchers use non-public databases and internet images, complicating the
replication of results due to data unavailability and potential bias in the selection of
internet images [92–95]. On the other hand, most of the datasets currently available
focus on skin lesions for lighter skin tones, with many of the images in the ISIC dataset
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originating mainly from the United States, Europe, and Australia. Furthermore, in
order to achieve higher degrees of accuracy and effectiveness when working on the
classification, the details transform into key elements to consider, such as training the
model while considering the intensity within the color of the skin [43,47]. The size
of the lesion also plays a crucial role, as lesions that are smaller than 6 mm tend to
be more challenging to identify. As previously addressed in the first question, the
treatment or preprocessing of images [33] prior to their training with convolutional
neural networks (CNNs) is a critical step for enhancing the efficacy and efficiency of a
model. The following key points are suggested for consideration in order to enhance
image processing:

• Quantity

– Data augmentation: This involves applying random transformations (such
as rotation, translation, scaling, flipping, and brightness adjustments) to the
images in the training set. This helps to better generalize the model, making
it more robust to variations in new images [96,97].

– Generative adversarial networks (GANs): These are a synthetic data gen-
eration method that aims to produce samples of images that appear real,
referring to a minimax game between two players: a generator and a dis-
criminator. The generator transforms a distribution of random noise into
realistic images, while the discriminator learns to differentiate between these
generated images and real training data [32].

• Quality

– Color standardization: Ensuring that all images have the same color space
(for example, RGB or grayscale) is crucial for maintaining data
consistency [98].

– Contrast adjustment: Enhancing the contrast of an image can help to high-
light important features.

• Size

– Resizing: Images should be of a uniform size before being fed into a CNN.
Therefore, it is important to verify the size of the entire dataset and choose
one that allows for the preservation of important information without being
excessively large, helping to reduce computational requirements [38,57].

– Cropping: This is used to cut out parts of the image that do not contain
relevant information or to focus on a specific region of the image [38,99].

• Processing

– Normalization: This involves scaling pixel values to have a common range,
such as from 0 to 1 or from −1 to 1. This assists the network to train more
efficiently. Normalization is typically carried out by dividing the pixel
values by 255 (the maximum value for a pixel) [6].

– Noise reduction: In some cases, images may contain noise that can be
detrimental to the model. Applying filters to reduce or eliminate this noise
can be useful [100].

• Transformation

– Whitening: This transforms the image so that it has a mean close to zero and
uniform variance. This can enhance convergence during training.

– Edge detection and feature extraction: In some cases, it may be useful
to preprocess the image to extract specific features, such as edges, us-
ing techniques like Sobel or Canny filters. The Sobel filter uses convo-
lutions with two 3 × 3 matrices: one to detect changes in pixel intensity
in the horizontal direction (Sobel X) and another for the vertical direction
(Sobel Y) [101]. The Canny filter is a more sophisticated approach to edge
detection and is considered one of the best due to its accuracy. This process
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may include various steps and techniques [102]. Both filters have their own
strengths, as the Sobel filter is simpler and faster to compute, while the
Canny filter is more robust and effective in precise edge detection, especially
in the presence of noise [103].

The selection of preprocessing techniques is largely contingent upon the nature of the
problem and the particular dataset in question [104,105]. In addition to the aforemen-
tioned points, the inclusion of clinical data such as race, age, gender, and skin type in
classification systems could substantially improve their precision, offering dermatolo-
gists valuable supplementary information for decision-making processes. Therefore,
it is essential to consider the metadata of the datasets available, conducting an analysis
and review of the intersection of information with images. These aspects are crucial
for future research in this application domain. Moreover, it has been noted that deep
learning tends to be more efficacious than traditional machine learning methods,
especially in datasets with a substantial number of images per class. This efficacy can
also be replicated in smaller datasets, utilizing data augmentation techniques.

4. What metrics are used to validate the effectiveness of these algorithms in skin
cancer detection?

Regarding this question, it is important to mention that in the summary of Table 6,
which integrates data from the reviewed studies, various values stand out, mainly cor-
responding to the metrics of accuracy, recall, and specificity. These metrics are crucial
indicators that provide significant information about an algorithm’s performance, and
together, they offer a comprehensive overview of the performance of the algorithms ana-
lyzed in the documents [106–109]. This allows for a robust evaluation of their predictive
capacity and reliability. However, there are other metrics that can more comprehensively
complement the analysis of algorithm results for skin lesion detection. In this context, a set
of metrics focused on this area of study, considering its importance in the sensitivity of the
data used, should consider the following:

• Recall: This is primarily for detecting the majority of malignant lesion cases, as failing
to identify a melanoma can have severe consequences [110].

• Specificity: This reduces false positives, which is crucial to avoid unnecessary biopsies
and the anxiety associated with a misdiagnosis [111].

• F1 score: This is important for achieving a balance between sensitivity and precision,
especially when working with imbalanced data, as is common in skin lesions where
melanoma cases may be less frequent than benign ones [112].

• AUC-ROC: This provides a comprehensive measure of model performance across
all classification thresholds, aiding in selecting the most appropriate threshold for
malignant lesion detection [113].

The combination of these metrics can provide a comprehensive assessment that reflects
both the algorithm’s ability to detect malignant lesions and its efficiency in ruling out false
positives, both of which are critical aspects in the clinical context of dermatology.

5. Conclusions

In this work, a systematic literature review was carried out in order to fully understand
relevant contributions, designs, strategies, and datasets illustrated for skin cancer detection.
In this regard, it is relevant to highlight the contributions of machine learning within the
field, where all design-based approaches have demonstrated their effectiveness in skin
cancer detection [4,114,115]. Advanced skin cancer detection methods use various data
sources and complex features, which have significantly improved the accuracy and pre-
dictive capability of models. Incorporating artificial intelligence techniques has enhanced
the evaluation metrics of models and provided valuable support to dermatologists and
oncologists. Combining automated tools and expert knowledge can lead to faster and more
accurate diagnoses, resulting in more effective treatments. These advancements open new
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avenues for research in teledermatology, providing quality diagnoses even in areas with a
shortage of specialists.

Reflecting on the discussion, several avenues for future research emerge, notably
in the optimization of hybrid CNN models, effective handling of unbalanced datasets,
extending studies to additional databases, and investigating novel network architectures.
A promising area involves enhancing feature fusion in deep convolutional neural networks
(DCNNs) through the exploration of more efficient techniques, possibly incorporating
physics-based methods such as entropy. Furthermore, addressing challenges related to low
contrast and signal-to-noise ratios (SNRs) is crucial for improving CNN efficacy in medical
images. Advancements in pre- and postprocessing methods, alongside innovative data
augmentation strategies, hold significant potential for boosting CNN performance. The
application of advanced optimization algorithms during image preprocessing and model
training phases could markedly elevate model effectiveness. Additionally, the adoption of
adaptive learning schedules and architecture optimization techniques may refine lesion
feature extraction and classification within deep networks. In the realm of multimodal
image integration, analyzing complementary clinical data, employing generative adver-
sarial networks (GANs), leveraging transfer learning, and integrating text analysis could
facilitate more thorough and accurate assessment in skin lesion detection.

Finally, it is crucial to address and mitigate biases in data and models to ensure that
AI solutions are fair and equitable. This requires careful selection and analysis of data, as
well as ethical consideration in the development and application of these technologies. In-
terdisciplinary collaboration among engineers, data scientists, dermatologists, and patients
is essential to achieve significant and ethically responsible advancements in skin cancer
detection using artificial intelligence.
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