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Abstract: The aim of the study was to build a machine learning-based predictive model to discriminate
between hospitalized patients at low risk and high risk of bloodstream infection (BSI). A Data Mart
including all patients hospitalized between January 2016 and December 2019 with suspected BSI
was built. Multivariate logistic regression was applied to develop a clinically interpretable machine
learning predictive model. The model was trained on 2016–2018 data and tested on 2019 data. A
feature selection based on a univariate logistic regression first selected candidate predictors of BSI.
A multivariate logistic regression with stepwise feature selection in five-fold cross-validation was
applied to express the risk of BSI. A total of 5660 hospitalizations (4026 and 1634 in the training
and the validation subsets, respectively) were included. Eleven predictors of BSI were identified.
The performance of the model in terms of AUROC was 0.74. Based on the interquartile predicted
risk score, 508 (31.1%) patients were defined as being at low risk, 776 (47.5%) at medium risk, and
350 (21.4%) at high risk of BSI. Of them, 14.2% (72/508), 30.8% (239/776), and 64% (224/350) had
a BSI, respectively. The performance of the predictive model of BSI is promising. Computational
infrastructure and machine learning models can help clinicians identify people at low risk for BSI,
ultimately supporting an antibiotic stewardship approach.

Keywords: bloodstream infections; machine learning; prediction

1. Introduction

Hospital-acquired (HA) bloodstream infection (BSI) is a frequent and challenging clini-
cal condition worldwide with a documented considerable impact on hospitalization length
and healthcare costs. In 2019, a systematic review of the literature estimated 4.95 million
deaths associated with bacterial antimicrobial resistance (AMR) and 1.27 million deaths
attributable to bacterial AMR, BSI being the second most frequent infectious syndrome [1].

Without treatment, evolution from BSI to sepsis, a complex life-threatening syndrome
caused by a dysregulated host response to infections, is highly probable [2,3]. As pooled
mortality of sepsis can reach 40% in critically ill patients [4,5], the early recognition of
sepsis and initiation of antibiotic and support therapies are recommended to increase life
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expectancy [6]. On the other hand, clinical recognition of BSI or sepsis can be challenging.
Therefore, clinicians, guided by the fear of an unfavorable evolution of the patient, are
prone to prescribe empirical antibiotic overtreatments with possible consequences such
as adverse drug effects, the emergence of multidrug-resistant infections or Clostridioides
difficile infection, and an increase in healthcare costs [7], rather than opting for a watchful
waiting approach [8] to save useless antibiotics when BSI is not confirmed. Given that
antibiotic therapy is lifesaving and, at the same time, the major driver of antibiotic-resistant
microorganism selection, it is of great importance to distinguish those clinical situations for
which the initiation of antibiotic therapy should be started as soon as possible from those
for which it could be delayed or even avoided.

Machine learning (ML)-based approaches are considered more accurate than tradi-
tional clinical scores [9,10], thanks to the larger amount of data split into two different
datasets (training and validation) and the flexible nature of the algorithm. While numerous
ML-based predictive models for early sepsis identification have been developed, show-
casing impressive accuracy, those specifically designed for patients with BSI are relatively
scarce. Some studies have focused on the prediction of mortality of patients with BSI.
The Bloomy score [11] demonstrated a good performance in predicting the 14-day and
6-month mortality of an ML model on patients with BSI caused by multidrug-resistant
organisms. Other studies showed similar good performance of ML-based models for
the prediction of mortality in people with BSI [10,12–14]. Few studies investigated the
accuracy of models to predict the probability of having a BSI in people undergoing blood
cultures (BCs). These models demonstrated acceptable performances in patients admitted
to the triage of an Emergency Department [15,16], in patients admitted to the Intensive
Care Unit [17], in febrile children [18], and in hemodialysis patients [19]. In a study of
an ML-based model, the authors predicted BSI and estimated the performances in sub-
groups stratified by causative pathogen, where Acinetobacter baumannii, Escherichia coli, and
Klebsiella pneumoniae showed high accuracy for bacteremia prediction [20].

Therefore, the objective of the study was to build a predictive model for HA-BSI in
patients admitted to ordinary wards. To achieve this aim, we conducted the following:
(i) several parameters were automatically extracted from electronic health records (EHR)
to build a multidimensional BSI Data Mart; (ii) a machine learning-based pipeline was
implemented, and several predictors of HA-BSI were identified; (iii) we assigned a proba-
bilistic risk level for HA-BSI (categorized as low or high risk) for each hospitalization. This
predictive model serves to support an antibiotic stewardship approach in managing and
optimizing the use of antibiotics.

2. Materials and Methods
2.1. BSI Data Mart Building Procedures

The implementation of the ML-based pipeline was performed by the Generator Center
at the Fondazione Policlinico Universitario A. Gemelli IRCCS (FPG), Rome, Italy. The
Generator Real World Data (RWD) lab is responsible for extracting, standardizing, and
integrating the huge amount of both structured and unstructured healthcare data, which
are heterogeneously stored in the hospital’s Data Warehouse (DWH) and in the archives
of individual departments. Both ontology-based systems and information technology
(IT) procedures were implemented to build an integrated pseudo-anonymized database,
ensuring data ownership and patient privacy. Then, predictive models were developed
and implemented with the aim of supporting clinical diagnosis [21]. The first step of the
pipeline construction was the development of an integrated and multidimensional database
(Data Mart). The Data Mart was based on an ontology defined by an interdisciplinary
group of clinicians, who identified an extensive list of variables usually considered in
clinical practice and in the treatment of possible BSI. Starting from these selected variables,
the corresponding data sources in the EHR archives were identified. Specific extraction,
transformation, and loading (ETL) procedures were developed for structured and free-text
reports to integrate all the relevant data sources and save the variables under study in a
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single multidimensional database. In the case of structured variables, such as laboratory
analyses and unique identification codes, material and units of measurement were defined
and extracted for each variable. For the variables generally reported in free-text clinical
reports, such as clinical/nursery diaries, a dedicated extraction process was developed.
Natural Language Processing (NLP) was implemented based on text mining procedures,
including sentence/word tokenization, a rule-based approach supported by annotations
defined by clinical experts, and the use of semantic/syntactic corrections. The Data Mart
was developed using the SAS Institute software analysis tool, the SAS® Vyia® environment
V.03.05. The Open-Source R® environment version 4.0.4 was used for rapid prototyping
and modeling.

2.2. Ontology and Study Design

The Data Mart consists of all patients for whom BCs were performed during the
hospitalization. All BCs performed from peripheral access (PA) and/or central venous
catheter (CVC) during the same calendar day were considered representative of a single
event. Only the first event per single patient, i.e., collected within the first 24 h of the onset
of signs and symptoms, was included, whereas those following the initial event were a
priori excluded. Second and further episodes of BSI during the same hospitalization were
excluded because the risk of further BSI could have been influenced by the first episode. The
presence of BSI was defined as the growth of a clinically relevant microorganism in at least
one BC or as the growth of a potential contaminant (i.e., coagulase-negative staphylococci,
Bacillus spp., viridans group streptococci, Corynebacterium spp., Propionibacterium spp., and
Micrococcus spp.) in multiple BCs. For each hospitalization, demographics, comorbidities,
vital signs, devices, and laboratory data were queried from the Data Mart. The information
gathered on clinical signs, devices, and laboratory values was closest to the date of the
BC request. Specifically, only values recorded within two days before or after the BC
date were considered. Preference was given to data on the same day as the request or on
previous days.

2.3. Cohort Selection

To identify clinical predictors of BSI, hospitalizations were selected from the entire
Data Mart with the aim of analyzing as homogeneous a group as possible. Cohort selection
criteria were defined by clinicians and summarized in Figure 1. The cohort included all
patients (age ≥ 18 years) hospitalized at FPG for whom BCs were performed within the
period from 1 January 2016 to 31 December 2019 and presenting clinical diary information
within two days from the date of BC collection. Each patient was included at the time of
the first negative or positive BC during the study period. All BCs without procalcitonin
information within two days of the BC collection date were excluded from the analysis.
Moreover, single BCs with contaminants were excluded. To have a cohort as homogeneous
as possible, only hospital-acquired BSI (HA-BSI) were considered for the study. Therefore,
all BCs performed within the first 48 h of hospital admission were excluded.

2.4. Statistical Analysis

The pipeline for the BSI prediction model is illustrated in Figure 2. All variables
included in the study were first analyzed by descriptive statistic techniques. Qualitative
variables were described as absolute and relative frequencies. Quantitative variables were
described as medians and interquartile ranges (IQR). Numerical variables with a percentage
of missing data < 15% were imputed with the median imputation technique. To understand
the effect of imputation, the distribution of the percentages of missing values and the per-
centage of change in the correlation coefficient with respect to the patients with or without
BSI of the imputed and not imputed variables was analyzed. Comorbidities were aggre-
gated by means of an index considering 5 macro-groups (Index CM). The macro-groups
were immunodepression (composed of one or more among cirrhosis, connective tissue
disease, HIV, autoimmune disease, transplantation), neurological pathology (composed of
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one or more among neurological disease, dementia, hemiplegia, stroke, cerebrovascular
disease), neoplasia (composed of one or more among cancer, hematological neoplasia,
leukemia, lymphoma, or treatment with chemotherapy or radiotherapy), renal insufficiency
(kidney failure and/or dialysis), and diabetes. The belonging to each group had the same
weight; the index was given by the sum of the membership in a macro-group and ranged
from 1 to 5. A univariate statistical analysis was performed on the entire dataset using the
chi-square test for categorical variables and the Mann–Whitney test for numerical variables.
The numerical variables were made categorical using both cut-offs derived from clinical
practice and those derived from the distribution of each variable based on the BSI outcome.
In particular, the Kaplan–Meier estimator was used to identify the value that maximizes
the statistical difference between positive and negative BSI. All cut-offs were then clinically
validated. Several steps were followed to build the model. Initially, the entire dataset was
divided into two groups for training and model validation, respectively. In the training
group, a univariate analysis was performed to select features by evaluating the relationship
of each variable with the outcome (univariate logistics), and then the correlation between
variables was analyzed to remove redundancy. Multivariate logistic regression was used
to construct a clinically interpretable multivariate predictive model. Logistic regression
is considered a standard machine learning model in the clinical setting, as it has shown
a good trade-off between predictive performance and clinical interpretability in various
contexts [22,23]. The different steps have been summarized in Figure 2 and detailed below.
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The initial dataset was divided into two groups for model training and validation
based on the BC request date. The model was trained in the first three years of data (1 Jan-
uary 2016–31 December 2018) and tested in the next year (1 January 2019–31 December
2019). A univariate logistic regression was first used on the training set to select candidate
predictors of BSI. The p-value and Odds Ratio (OR) were estimated, and only the features
with p-value ≤ 0.05 and Odds Ratio > 1 were included. A linear cross-correlation analy-
sis (Pearson’s correlation method) of the significant variables was performed to exclude
linearly related variables. Among the pairs of linearly correlated variables (Pearson’s cor-
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relation coefficient > 0.8), we removed variables with lower correlation with the outcome
of interest. A multivariate logistic regression with stepwise feature selection in five-fold
cross-validation was applied to the training set to express the risk of BSI. The out-of-sample
performance of the model was initially estimated on the training set as internal validation
in terms of area under the receiving operator curve (AUROC) and as statistics of the classi-
fication matrix by averaging the results of the fivefold cross-validation. The same metrics
were calculated on the test set to evaluate the performance of the model on a different
set of patients from the training set. A calibration plot was also elaborated to estimate
the accuracy of the model using Hosmer and Lemeshow goodness-of-fit (GOF) test, and
p-values < 0.05 indicated lack of fit of the model. Finally, an analysis of lift and gain graphs
was reported to identify segments of outcome probability where the model proves to be
useful compared to not having the model. Based on the median distribution of the proba-
bilistic predictive values of the training set, the statistics of the classification matrix were
calculated, including accuracy to quantify the percentage of instances classified correctly
among all instances, sensitivity and specificity to measure the proportion of actual positive
or negative instances correctly identified by the classifier, respectively, positive predictive
value (PPV) and negative predictive value (NPV). The threshold was estimated on the
training set and applied to the validation set. Three risk classes (low, medium, and high
risk) were identified based on quartiles of the probabilistic distribution of the prediction.
Specifically, validation prediction values below the first quartile were considered as low
risk, values between the first and third quartile as medium risk, and values above the third
quartile as high risk of BSI. Data analysis was performed with R version 3.6. Data was
stored in SAS Viya V.03.05 and accessed through R with SWAT library version 1.5.0. The
study was done according to TRIPOD guidelines and should be considered a TRIPOD 2b
since it includes a training and testing phase from a single institution [24,25].
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3. Results

The eligible training cohort included a total of 5660 hospitalizations with at least one
BC request during the timeframe from 1 January 2016 to 31 December 2019, more than
48 h from the hospital admission. In the entire cohort, the number of hospitalizations with
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HA-BSI was 1904 (33.6%). The numerical variables that were imputed were as follows:
white blood cells, platelets, creatinine, blood urea, neutrophils, C-reactive protein (missing
value < 8%), and total bilirubin (missing value < 15%). The percentage of missing values in
the positive and negative population is comparable (difference <2.25% for all variables),
and the percentage difference in the correlation coefficient with respect to patients with and
without BSI of the imputed and non-imputed variables is < 10% for all variables analyzed.
Clinical and demographic information of the study population is shown in Table 1. All
numerical variables were categorized according to the cut-offs described in Table S1.

Table 1. Characteristics of patients included in the training and validation subsets.

Characteristic
All Patients Training Subset Validation Subset

N = 5660 BSI
(N = 1904)

Non-BSI
(N = 3756) N = 4026 BSI

(N = 1369)
Non-BSI

(N = 2657) N = 1634 BSI
(N = 535)

Non-BSI
(N = 1099)

Demographics

Age, years,
median (IQR) 71 (58; 80) 72 (62; 81) 70 (57; 79) 70 (58; 80) 72 (61; 81) 69 (56; 79) 71 (60; 80) 73 (63; 81) 71 (58; 80)

Male (%) 3248 (57.4) 1063 (55.8) 2185 (58.2) 2343 (58.2) 770 (56.2) 1573 (59.2) 905 (55.4) 293 (54.8) 612 (55.7)

Length of stay,
days, median
(IQR)

19 (12; 30) 25 (16; 41) 17 (11; 26) 20 (13; 32) 27 (17; 43) 18 (11; 27) 17 (11; 27) 22 (14; 35) 15 (10; 23)

Death (%) 1169 (20.7) 562 (29.5) 607 (16.2) 848 (21.1) 410 (29.9) 438 (16.5) 321 (19.6) 152 (28.4) 169 (15.4)

Time to BSI, days,
median (IQR) 6 (3; 12) 10 (5; 18) 5 (3; 9) 7 (3; 13) 10 (5; 19) 5 (3; 10) 5 (3; 10) 9 (4; 15.5) 5 (3; 8)

Number of
previous
hospitalization,
median (IQR)

0 (0; 1) 0 (0; 1) 0 (0; 1) 0 (0; 1) 0 (0; 1) 0 (0; 1) 0 (0; 1) 0 (0; 1) 0 (0; 1)

Previous BSI (%) 232 (4.1) 107 (5.6) 125 (3.3) 149 (3.7) 66 (4.8) 83 (3.1) 83 (5.1) 41 (7.7) 42 (3.8)

Comorbidities

Index CM,
number, median
(IQR)

1 (1; 2) 1 (1; 2) 1 (1; 1) 1 (1; 2) 1 (1; 2) 1 (1; 1) 1 (1; 2) 1 (1; 2) 1 (0; 2)

Diabetes (%) 939 (16.6) 334 (17.5) 605 (16.1) 639 (15.9) 237 (17.3) 402 (15.1) 300 (18.4) 97 (18.1) 203 (18.5)

Immunodepression
(%) 945 (16.7) 339 (17.8) 606 (16.1) 646 (16) 226 (16.5) 420 (15.8) 299 (18.3) 113 (21.1) 186 (16.9)

Renal failure (%) 1050 (18.6) 406 (21.3) 644 (17.1) 744 (18.5) 284 (20.7) 460 (17.3) 306 (18.7) 122 (22.8) 184 (16.7)

Neoplasm (%) 2425 (42.8) 859 (45.1) 1566 (41.7) 1699 (42.2) 600 (43.8) 1099 (41.4) 726 (44.4) 259 (48.4) 467 (42.5)

Neurological
diseases (%) 993 (17.5) 389 (20.4) 604 (16.1) 756 (18.8) 297 (21.7) 459 (17.3) 237 (14.5) 92 (17.2) 145 (13.2)

Vital signs

Hypoxemia (%) 928 (16.4) 345 (18.1) 583 (15.5) 629 (15.6) 228 (16.7) 401 (15.1) 299 (18.3) 117 (21.9) 182 (16.6)

Dyspnea (%) 581 (10.3) 223 (11.7) 358 (9.5) 418 (10.4) 153 (11.2) 265 (10) 163 (10) 70 (13.1) 93 (8.5)

Fever (%) 4347 (76.8) 1542 (81) 2805 (74.7) 3113 (77.3) 1123 (82) 1990 (74.9) 1234 (75.5) 419 (78.3) 815 (74.2)

Hypotension (%) 1221 (21.6) 541 (28.4) 680 (18.1) 880 (21.9) 392 (28.6) 488 (18.4) 341 (20.9) 149 (27.9) 192 (17.5)

Altered mental
status (%) 1857 (32.8) 737 (38.7) 1120 (29.8) 1352 (33.6) 529 (38.6) 823 (31) 505 (30.9) 208 (38.9) 297 (27)

Tachycardia (%) 903 (16) 365 (19.2) 538 (14.3) 624 (15.5) 259 (18.9) 365 (13.7) 279 (17.1) 106 (19.8) 173 (15.7)

Devices

Urinary catheter
(%) 3764 (66.5) 1370 (72) 2394 (63.7) 2718 (67.5) 1008 (73.6) 1710 (64.4) 1046 (64) 362 (67.7) 684 (62.2)

Central venous
catheter (%) 1707 (30.2) 822 (43.2) 885 (23.6) 1233 (30.6) 594 (43.4) 639 (24) 474 (29) 228 (42.6) 246 (22.4)
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Table 1. Cont.

Characteristic
All Patients Training Subset Validation Subset

N = 5660 BSI
(N = 1904)

Non-BSI
(N = 3756) N = 4026 BSI

(N = 1369)
Non-BSI

(N = 2657) N = 1634 BSI
(N = 535)

Non-BSI
(N = 1099)

Laboratory

White blood cells
[WBC], ×109/L 3,
median (IQR)

9.8 (6.7;
14.1)

9.4 (6.3;
13.7)

10.1 (6.9;
14.3)

10.0 (6.7;
14.3)

9.5 (6.3;
14.0)

10.2
(7.0;14.4)

9.7 (6.6;
13.6)

9.2 (6.4;
13.3)

9.9 (6.8;
13.9)

Neutrophils,
×109/L, median
(IQR)

8.0 (5.2;
12.0)

7.9 (5.1;
12.1)

8.1 (5.2;
11.9)

8.3 (5.4;
11.9)

8.3 (5.2;
11.8)

8.4 (5.4;
12.0)

8.0 (5.1;
11.5)

8.0 (5.1;
11.7)

8.0 (5.1;
11.4)

Platelet, ×109/L,
median (IQR)

225 (150;
314)

212 (129;
302)

232 (160;
322)

222 (145;
311)

212 (125;
303)

227 (155;
315)

233 (161;
328)

214 (141;
300)

244 (172;
338)

Blood urea
nitrogen, mg/dL,
median (IQR)

19 (13; 31) 21 (14; 33) 18 (12; 29) 20 (13; 31) 21 (15; 34) 19 (13; 29) 18 (12; 29) 21 (14; 30) 17 (12; 28)

Creatinine,
mg/dL, median
(IQR)

0.9 (0.7;
1.3) 0.9 (0.6; 1.4) 0.9 (0.7;

1.3) 0.9 (0.7; 1.3) 0.9 (0.6;
1.4)

0.9 (0.7;
1.3) 0.9 (0.7; 1.4) 1.0 (0.6;

1.4)
0.9 (0.7;

1.3)

Total Bilirubin,
mg/dL, median
(IQR)

0.7 (0.5;
1.3) 0.7 (0.5; 1.5) 0.7 (0.5;

1.2) 0.9 (0.5; 1.7) 1 (0.5; 1.7) 0.9 (0.5;
1.7) 0.8 (0.5; 1.7) 0.9 (0.5;

1.7)
0.8 (0.5;

1.7)

C-reactive
protein, mg/L,
median (IQR)

123 (59;
187)

116 (59;
184)

126 (58;
188)

135 (66;
176)

132 (67;
171)

135 (64;
178)

131 (60;
186)

123 (55;
188)

135 (63;
186)

Procalcitonin,
ng/mL, median
(IQR)

0.38 (0.15;
1.62)

0.91 (0.25;
5.22)

0.28 (0.13;
0.89)

0.41 (0.15;
1.71)

0.95 (0.26;
5.33)

0.31 (0.13;
0.94)

0.32 (0.13;
1.41)

0.8 (0.22;
5.19)

0.23 (0.11;
0.75)

BSI, bloodstream infections; IQR, interquartile range; Index CM, comorbidity macro groups; Tachycardia (heart
rate > 100/min); Dyspnea (respiratory rate > 20/min); Hypoxemia (SpO2 < 92); Fever (temperature > 37 ◦C);
Hypotension (systolic blood pressure < 90 mmHg).

The dataset was divided into two groups for training and validation: 4026 (71%)
hospitalizations with BC requests between 1 January 2016 and 31 December 2018 were
used to train the model, while 1634 (29%) hospitalizations with BC requests between
1 January 2019 and 31 December 2019 were used to test the model. The occurrence of
HA-BSI was 34.0% for the training set and 32.7% for the test set. Characteristics of the
population belonging to the two groups are shown in Table 1. The subset of univariate
significant variables and the final predictors of the multivariate analysis are shown in
Table 2. Age > 80 years, fever, hypotension, altered mental status, central venous catheter,
blood urea nitrogen > 13 mg/dl, procalcitonin > 1 ng/mL, total bilirubin > 2 mg/dl, time
from admission to BSI > 12 days, 2 or more index comorbidities and platelets < 50,000/mm3

were associated with an increased risk of having a BSI.

Table 2. Predictors of bloodstream infection (BSI) positivity. Features selected with univariate logistic
regression (p-value ≤ 0.05 and Odds Ratio > 1) and multivariate logistic regression with stepwise
feature selection in five-fold cross-validation.

Variables
Univariate Analysis Multivariate Analysis

p-Value Odds Ratio Coefficients 95% CI p-Value

Time BSI > 12 days <0.05 3.42 1.15 0.99–1.31 <0.05

Procalcitonin > 1 ng/mL <0.05 3.07 1.14 0.99–1.29 <0.05

Presence of a CVC <0.05 2.42 0.72 0.56–0.88 <0.05

Platelets < 50 × 109/mm3 <0.05 2.3 0.59 0.28–0.91 <0.05
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Table 2. Cont.

Variables
Univariate Analysis Multivariate Analysis

p-Value Odds Ratio Coefficients 95% CI p-Value

Hypotension <0.05 1.78 0.27 0.09–0.44 <0.05

Blood urea nitrogen> 13 mg/dl <0.05 1.71 0.35 0.17–0.55 <0.05

Presence of urinary catheter <0.05 1.55

Fever <0.05 1.53 0.72 0.53–0.90 <0.05

Tachycardia <0.05 1.47

Altered mental status <0.05 1.4 0.22 0.05–0.38 0.01

Total bilirubin > 2 mg/dl <0.05 1.35 0.19 −0.03–0.41 0.09

Index CM ≥ 2 <0.05 1.33 0.25 0.08–0.41 <0.05

Serum creatinine > 3 mg/dl 0.04 1.32

Age > 80 years <0.05 1.28 0.36 0.18–0.54 <0.05
BSI, bloodstream infection; CVC, central venous catheter; Index CM, comorbidity macro groups.

Five-fold cross-validation resulted in an AUROC of 0.74 on the training set. The
respective statistics of the classification matrix are shown below: accuracy 0.66, sensitivity
0.74, specificity 0.62, NPV 0.82, and PPV 0.50. The model was then tested on the validation
set. The performance in terms of AUROC was 0.74, and the confusion matrix was as follows:
accuracy 0.69, sensitivity 0.69, specificity 0.69, NPV 0.82, and PPV 0.52. No statistically
significant difference (p > 0.05) was observed between actual and predicted BSI and the
corresponding calibration plot, as shown in Figure S1. A lift and gain analysis of the
validation set is shown in Figure S2. The lift plot on the testing data showed that for the
first decile of predictions, the model performs more than two times better than random
guessing based on prevalence only.

Three risk groups were selected based on the interquartile predicted risk score on the
training set to better categorize the patient risk and minimize antibiotic treatment of those
without a true BSI. Of the entire validation set, 508 (31.1%) patients were classified at low
risk, 776 (47.5%) at medium risk, and 350 (21.4%) at high risk of BSI (Figure 3).
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Figure 3. Distribution of the training set prediction index and definition of risk classes.

The percentages of BSI associated with each risk class were 14.2% (72/508 patients) for
low risk, 30.8% (239/776 patients) for medium risk, and 64% (224/350 patients) for high risk.
Among low-risk patients in the validation set, 436 patients (85.8%) classified as negative
were true negatives, while 72 patients (14.2%) had a BSI and were classified as negatives.
In the medium-risk class, 324 patients were true negatives (41.7%), 93 patients were false
negatives (12%), 146 patients were true positives (18.8%) and 213 were false positives
(27.5%). Among high-risk patients, whom all were predicted as positive, 224 patients (64%)
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were true positives while 126 patients (36%) had no BSI and were classified as positive
(Figure 4).

Diagnostics 2024, 14, 445 10 of 14 
 

 

patients (64%) were true positives while 126 patients (36%) had no BSI and were classified 
as positive (Figure 4). 

 
Figure 4. Risk groups with prediction information for positive and negative bloodstream infection 
(BSI) on the validation set. Positive BSIs are represented by the blue outline, of which the predicted 
positive ones are represented by the purple fill and the predicted negative ones by the light blue fill. 
Negative BSIs are represented by the red outline, of which the predicted negative ones are 
represented by the green fill and the predicted positive ones by the red fill. 

4. Discussion 
In the present study, a machine learning-based model was built to predict the 

probability of having an HA-BSI at the time a BC was requested. On 5660 patients 
hospitalized from 1 January 2016 to 31 December 2019, for which at least a BC was drawn, 
the model showed that age > 80 years, fever, hypotension, an altered mental status, the 
presence of a CVC, BUN > 13 mg/dl, procalcitonin >1 ng/mL, total bilirubin > 2 mg/dl, time 
from admission to BSI >12 days, 2 or more index comorbidities and platelets < 50,000/mm3 
were associated with an increased risk of having an HA-BSI. Three risk level groups were 
identified: low risk, with a BSI prevalence of 14.2%; medium risk, with a BSI prevalence 
of 30.8%; and high risk, with a BSI prevalence of 64%. The AUROC of the model in the 
validation set was 0.74, suggesting moderate discriminatory ability. The AUROC result of 
our study is in line with those reported in other studies, ranging from 0.54 [26] to 0.82 [10]. 
However, this value, together with the NPV = 0.82, describes a good prediction of true 
negatives, which is of considerable importance from an antibiotic stewardship point of 
view. Indeed, the good reliability of true negatives may allow antibiotic therapy not to be 
administered or, at most, to be delayed in at least 31.1% of patients considered at low risk. 
Interestingly, the variables included in our model coincide with two of the three major 
criteria and four of the eight minor criteria of the non-machine learning-based decision 
rule proposed by Shapiro et al. in 2008 [27], which remains one of the highest-performing 
predictive models. 

As previously noted, physicians tend to overestimate the probability of BSI for many 
patients [28]. From a practical point of view, assuming to treat all patients for which a BC 
was required and applying the present model, 86% of antibiotic therapy in patients at low 
risk would have been saved and delayed in 14% of patients. In the middle-risk group, 
41.7% of antibiotic therapies would have been saved but delayed in 12% of patients. In the 
high-risk group, no antibiotic therapies would have been delayed. 

While machine learning-based models built for an early prediction of sepsis are 
numerous [29,30], especially in Intensive Care Unit (ICU) populations, machine learning-

Figure 4. Risk groups with prediction information for positive and negative bloodstream infection
(BSI) on the validation set. Positive BSIs are represented by the blue outline, of which the predicted
positive ones are represented by the purple fill and the predicted negative ones by the light blue fill.
Negative BSIs are represented by the red outline, of which the predicted negative ones are represented
by the green fill and the predicted positive ones by the red fill.

4. Discussion

In the present study, a machine learning-based model was built to predict the probabil-
ity of having an HA-BSI at the time a BC was requested. On 5660 patients hospitalized from
1 January 2016 to 31 December 2019, for which at least a BC was drawn, the model showed
that age > 80 years, fever, hypotension, an altered mental status, the presence of a CVC,
BUN > 13 mg/dl, procalcitonin >1 ng/mL, total bilirubin > 2 mg/dl, time from admission
to BSI >12 days, 2 or more index comorbidities and platelets < 50,000/mm3 were associated
with an increased risk of having an HA-BSI. Three risk level groups were identified: low
risk, with a BSI prevalence of 14.2%; medium risk, with a BSI prevalence of 30.8%; and high
risk, with a BSI prevalence of 64%. The AUROC of the model in the validation set was 0.74,
suggesting moderate discriminatory ability. The AUROC result of our study is in line with
those reported in other studies, ranging from 0.54 [26] to 0.82 [10]. However, this value,
together with the NPV = 0.82, describes a good prediction of true negatives, which is of
considerable importance from an antibiotic stewardship point of view. Indeed, the good
reliability of true negatives may allow antibiotic therapy not to be administered or, at most,
to be delayed in at least 31.1% of patients considered at low risk. Interestingly, the variables
included in our model coincide with two of the three major criteria and four of the eight
minor criteria of the non-machine learning-based decision rule proposed by Shapiro et al.
in 2008 [27], which remains one of the highest-performing predictive models.

As previously noted, physicians tend to overestimate the probability of BSI for many
patients [28]. From a practical point of view, assuming to treat all patients for which a BC
was required and applying the present model, 86% of antibiotic therapy in patients at low
risk would have been saved and delayed in 14% of patients. In the middle-risk group,
41.7% of antibiotic therapies would have been saved but delayed in 12% of patients. In the
high-risk group, no antibiotic therapies would have been delayed.

While machine learning-based models built for an early prediction of sepsis are
numerous [29,30], especially in Intensive Care Unit (ICU) populations, machine learning-
based prediction models of BSI among people for which a BC was required are rare [20]. In
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a recently published paper, Mahmoud et al. [26] presented a machine learning-based model
with a very high specificity but low sensitivity. Unfortunately, almost 90% of the study
patients started antibiotic therapy at least 24 h before BC, probably influencing the result.
Surprisingly, in the model by Mahmoud et al. [26], procalcitonin level was not correlated to
positive BC. In a recent paper, Ratzinger et al. [31] screened 3370 patients with Systemic
Inflammatory Response Syndrome (SIRS) in a prospective cohort study and built a random
forest model with good performance (AUC 0.738). However, the model did not perform
better than procalcitonin alone (AUC 0.729). Other machine learning-based models with
high accuracy were built [32], even though only in ICU patients.

Since models such as those presented in this paper are implemented into Electronic
Health Records (EHR), real-time processing of the data provides an immediate and seamless
calculation of the likelihood of having a BSI. The instant translation of a mathematical
model into an explainable and implementable score for clinical decisions enhances its
usability in daily practice. This can be especially useful in settings where the healthcare
system is overloaded, or decisions need to be made very quickly, such as in the Emergency
Department. Machine learning-based models allow us to analyze a large amount of data
directly extracted from EHR, overcoming the limitations of many published BSI probability
models [33].

A predictive model may assist the clinician in investigating a suspected BSI or might
be useful in identifying patients for more expensive diagnostic techniques. However, the
present model was not designed as a warning system (detecting the onset of sepsis as early
as possible) but as a support for clinicians to decrease unnecessary exposure to antibiotics
when the probability of having a BSI is very low. The main driver of antimicrobial resistance
(AMR) is the inappropriate use of antimicrobials [7]. According to the antibiotic stewardship
perspective, a predictive model of BSI, such as that of the present study, has the potential to
support a wise watchful waiting approach [8]. The present model may also contribute to
better selecting patients with a high pre-test probability of BSI for whom a BC might be
requested [34].

This study has some limitations. First, the model was built on retrospective data from a
single clinical center. Even though the amount of analyzed data is relevant, the results of the
study cannot be generalized to other clinical centers. Moreover, the study is observational,
and the impact of its use on daily clinician decision-making (external validation) was not
assessed. Similarly, the cut-offs of the numerical variables that were categorized using
thresholds derived directly from the data need external validation. Further studies should
evaluate whether the routinary implementation of this model in daily practice may result in
significant savings of useless antibiotics and reduction of costs. Finally, due to the variable
reliability of data capture within our EHR, we did not include the source of infection, a
component correlated to the likelihood of positive BC.

5. Conclusions

Our predictive model gives an example of how EHR-based clinical decision support
(CDS) systems are promising tools in an antibiotic stewardship approach to thin out
unnecessary antibiotic treatments. The study highlights how computational infrastructure
and machine learning models, updated in real-time, can continuously inform clinicians
of the best clinical decisions, representing a supplement and never replacing the clinical
judgment. If the low number of patients with false negative results is confirmed by future
studies, clinicians may be supported, in situations of uncertainty or in low-risk patients,
not to administer antibiotic therapy or, at most, to delay it. Simple prognostic scores are
probably dated, and more advanced multimorbidity models should be considered. We
strongly support the 3PM approach: predictive, preventive, and personalized medicine.
The availability of tools to prescribe antibiotics more precisely could be a step towards this
purpose. Finally, data and models may be shared among centers to refine analyses and
improve the fight against antimicrobial resistance using methodology that preserves data
ownership and patient privacy [35].
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