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Abstract: This study attempts to identify and briefly describe the current directions in applied
and theoretical clinical prediction research. Context-rich chronic heart failure syndrome (CHFS)
telemedicine provides the medical foundation for this effort. In the chronic stage of heart failure,
there are sudden exacerbations of syndromes with subsequent hospitalizations, which are called acute
decompensation of heart failure (ADHF). These decompensations are the subject of diagnostic and
prognostic predictions. The primary purpose of ADHF predictions is to clarify the current and future
health status of patients and subsequently optimize therapeutic responses. We proposed a simplified
discrete-state disease model as an attempt at a typical summarization of a medical subject before
starting predictive modeling. The study tries also to structure the essential common characteristics of
quantitative models in order to understand the issue in an application context. The last part provides
an overview of prediction works in the field of CHFS. These three parts provide the reader with
a comprehensive view of quantitative clinical predictive modeling in heart failure telemedicine with
an emphasis on several key general aspects. The target community is medical researchers seeking
to align their clinical studies with prognostic or diagnostic predictive modeling, as well as other
predictive researchers. The study was written by a non-medical expert.

Keywords: prediction; model; heart failure; telemedicine; prognosis; diagnosis; detection; monitoring;
characteristic

1. Introduction

Digital data are currently available in abundance in all healthcare facilities. Once
automated analysis and prediction systems are built, researchers could realize a complete
real-time analytical and decision support system. The widespread presence of electronic
health records (EHRs) is also changing clinical prediction and analytical research. The new
possibilities of data-driven research are pointed out in [1].

Modern applied and theoretical clinical prediction research bridges medicine, statistics,
machine learning (ML) and engineering. All these areas have their own methods and
terminology. A researcher trying to understand this field must become familiar with the
minimum basics in these fields.

In order to gain a representative sample of already applied predictive models, we
focused on the well-studied topic of telemedicine care for patients with chronic heart failure
syndrome. We were driven by expectations that this approach, with some modifications,
would form the framework for identifying cutting-edge topics and procedures in clinical
predictive modeling. We found that a wide variety of statistical and machine learning
models have been used in this area. In order to grasp the topic in its entirety, we have
divided the study in accordance with the title into three parts.

In the first part, basic information about chronic heart failure syndrome and its tele-
medicine was compiled primarily from medical journals. In addition to this, we aimed for
a systematized description of CHFS and other diseases allowing the deployment of quantita-
tive models. The answer we propose takes the form of disease-specific UML-style modeling
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consisting of discrete disease states with descriptions of the transitions between them. This
type of modeling appears to be a needed abstraction layer between accepted quantitative
models and the body of medical knowledge. In literature, analogous modeling is considered
the basis for primarily prognostic predictions. However, when we investigated the time-
unfolded version of this model, we found that it closely corresponds to the known schematic
of CHFS disease progression. We consider this schematic as the continuous counterpart of the
time-unfolded discrete-state disease model. Its continuous nature provides the foundation
for early diagnosis of ADHF decompensation. We consider observed correspondence to be
an indication of the viability of the model development approach.

Quantitative models are part of an abstraction layer that is more distant from the body
of medical knowledge than the disease-specific models mentioned above. Understanding
their characteristics allows the researcher to mutually compare the predictive properties of
the available models, such as those reviewed in the third part of the study, and consider
their new clinical applications. In the second part of the study, we try to encompass these
quantitative models into a structure consisting of a single mathematical or algorithmic
core “surrounded” by its external determinants, speaking in figurative manner. These
determinant elements are prediction inputs, prediction outputs, ability of prognostic or
diagnostic predictions and some other properties of prediction models. The traits of the
determinants are relatively independent of the inner core of the quantitative prediction
model, so we will call them here common characteristics of quantitative models. These
common characteristics are of primary concern to clinical trial designers, and they strongly
determine the overall utility and benefit of the prediction.

Special attention is given to the diagnostic process in telemedical settings. Patient
monitoring includes repetitive and frequent partial diagnostics of the early stages of ADHF
decompensation and we propose to name this type of diagnostic process recurrent diag-
nostics. The process can be used for a timely and optimal therapeutic response. We seek
to develop a determinant-based model classification framework to aid current prediction
efforts to optimize predictive classifiers for higher performance.

The classification of prediction models, but in a different way, was made in [2,3] and
general modeling recommendations were formulated in [4,5]. In this study, we do not deal
with the methodology of model construction and deployment. The details of the calcu-
lation procedure and machine learning algorithms are also perceived to be of secondary
importance here.

The primary purpose of the third part is to provide an overview of statistical and machine
learning models with special emphasis on heart failure syndrome and the specifics of diagnostics
in telemedicine settings. The review can provide a starting point for predictive research,
modification of existing research, and complete model redesign based on predictive approaches
used in other areas of medicine. After completing the review of publications on the prediction
of CHFS, we expanded the literature search to include additional directions. First, it was the
direction of the early warning systems used in emergency rooms (ERs) and intensive care units
(ICUs) that were selected for time-repeated diagnostics analogous to that in CHFS telemedicine.
Another direction concerned the subsection dedicated to advanced statistical models used
mainly in the prediction of other types of diseases. The last direction was related to the
subsection describing additional modeling approaches. This was conducted in an attempt
to enable an understanding of the theoretical limits of the predictive ability of the models
reviewed before.

1.1. Content and Structure of the Study

The study was organized as follows. In the Section 2 we present an introduction to
the clinical basis of chronic heart failure syndrome and the telemedicine of the syndrome.
We describe the syndrome and its decompensation denoted as ADHF from a medical and
modeling point of view. These subsections are followed by a description of telemedical
patient remote monitoring. Section 3 provides the reader with a general description and
guidelines for medical prediction research. Section 4 presents a classification of prediction
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models according to their outer characteristics. In it, we elaborate on topics such as the
object of prediction, the form and timeline of predictive information, timelines of target
and predictor data, and groups and types of prediction data. We discuss prognostic and
diagnostic alternatives to model focus. At the end of the section, we discuss the machine
learning approach in relation to traditional statistical modeling. Section 5 first provides
an overview of remote monitoring with attempts to perform diagnostic or detection pre-
diction of decompensations. Next, it provides a reference to several review studies that
prognostically predict patient decompensations. This is followed by a subsection describing
advanced statistical models and other statistical models. At the end of the section, we sum-
marize prognostic and diagnostic predictions carried out by machine learning researchers.
Sections 6 and 7 provide the closure of this study.

1.2. Literature Search Method

The publication database MEDLINE represents an overwhelming variety of medical
topics and directions. In our opinion, no single review study can fully satisfy a reader
interested in a particular field.

In order to meet the objectives formulated in the abstract, we tried to conduct our
searches as cross-sectional as possible. Our literature review selects only a few publications
from a particular research direction that we hope are the most recent or the most compre-
hensive. We are not trying to conduct a complete review of any specific direction. The most
numerous articles on predictive modeling are those in which the modeling is based on data
present in the EHR. They usually predict ADHF decompensation and hospital readmission
as a prognosis for CHFS. These prognostic predictions are mainly based on biomarkers,
one-time medical examinations and demographic data.

Not many reviews have been published on the topic of detection or predictive diagno-
sis of ADHF in telemedical settings. This prediction is based on data that are collected with
a relatively high repetitive rate and the data constitutes a special kind of EHRs.

In the field of advanced statistical models, we found only a few articles dealing with
the prognosis of CHFS yet, but we present these models for a more complete review. We
included two publications dealing with the prognostic prediction of CHFS incidence or
incident heart failure.

Our review is based on searches performed primarily in the MEDLINE database via
the PubMed search engine. The results were confronted with the findings in Google Scholar.
We consider the scope of the topic under investigation to be so diverse that we have not
attempted to cover our findings within some unifying search query and search scheme.
Naturally, in the early stages of the search, we created a complex search query that included
words such as forecast, model, heart failure, telemedicine, or remote monitoring, but later
we focused on other search methods, such as snowballing through article links.

2. Medical Domain Description

The content of this section was compiled by a non-medical expert and is intended for
modeling purposes.

2.1. Chronic Heart Failure Syndrome and Its Decompensation

Chronic heart failure syndrome is a frequent and long-term disease that burdens the
patient’s life and represents a burden on the medical care system. The syndrome arises
as a result of various worsened underlying cardiovascular health conditions. In general,
after the appearance of typical signs and symptoms, comprehensive examinations of CHFS
are performed before the diagnosis is finally confirmed [6,7] (in our age of powerful
computerized translators also [8] might be considered). CHFS is often grouped into two
categories according to the status of left ventricular ejection fraction (LVEF). Heart failure
in patients with reduced LVEF is referred to as HFrEF, and in patients with preserved LVEF
as HFpEF. Patients are further classified according to the NYHA scale and the score of the
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KCCQ-12 questionnaire. Many patients progress to a stage called advanced heart failure
characterized by persistent symptoms [7].

In addition to the slow continuous deterioration of the quality of life, the patient’s
life is disrupted by a sudden worsening of symptoms, which is called acute decompensation
of heart failure or ADHF. For simplicity, in this work, we will adopt the terminology used
in [6]. In the European guidelines [7] there is a term acute heart failure or AHF and acute
decompensation is referred to as only one of four different types of acute presentations.
In addition to acute decompensation, the other three presentations are acute pulmonary
edema, isolated right ventricular failure, and cardiogenic shock.

We could now say that our broader definition of ADHF now includes four distinct
presentations [9] with different temporal characteristics of progression. We will discuss the
implications of these issues in the modeler’s subsection. The differences in terminology
mentioned above were addressed in [10].

At the end of this section, we could mention that the worsening of symptoms requiring
hospitalization as the beginning of CHFS is called de-novo acute heart failure [9,11]. It is a sepa-
rate topic and we do not deal with it here. If one wants to understand the extent of the medical
and biochemical models of CHFS, one should look at the works of D. L. Mann et al. [12].

2.2. Disease-Specific Prognostic and Diagnostic Models

In addition to biochemical modeling, two additional modeling processes exist related
to the CHFS prediction task. The first additional modeling process tries to grasp the
anatomy of the disease and the diagnostic-prognostic issues. The person performing this
activity should be called a medicine domain expert and should describe the investigated
problem in some form of modeling language such as UML. The second modeling process
refers to quantitative predictive modeling, where a mutual combination of predictors
and a mathematical formula provides the value of the predicted parameter. The person
performing this modeling process is a statistical or machine learning expert. In the study,
we do not always strictly distinguish between these two versions of modeling.

The modelers do not necessarily need to know every detail of the biochemistry of the
investigated health condition, but they need to know the basics about timelines, predictors,
manifestations and all possible outcomes of the disease. They should also be aware of
the fact that ADHF decompensation is a relatively autonomous biomedical pathological
sub-process of CHFS with a more or less well-defined onset and end. It would also be
useful to know whether ADHF is triggered by some random cause (external or internal),
or whether decompensation occurs as a natural internal progression of CHFS. A list of
probable random causes triggering ADHF decompensation and their statistics are given
in [13] (we should note that we have not found much independent support for these
observations in literature yet).

It seems reasonable to concentrate compiled medical knowledge about a disease
on some disease-specific diagrams or models. As we will see later, all the main points
for this are already present in the literature. First, we present a model for heart failure
syndrome, which is the primary prognostic one. Next, we present a schematic of CHFS
from an experienced research team that we propose to represent a disease-specific model
for diagnostic purposes in telemedical and telemetric settings. The diagnostic process
under these settings we call recurrent diagnostics. This model pair stands between medical
knowledge and the purely quantitative, disease-independent models described in Section 4.

The health information about CHFS can be summarized in the form of a four-state
diagram in Figure 1. To the basic three states (compensated state, acute decompensation
state and terminal stage) we added a fourth state, the advanced heart failure state in
accordance with [7]. We did so because this state differs significantly in a diagnostic, and
probably also prognostic, sense from the compensated HF state. For example, according
to ([7], Chapter 4), the weight of the patient in the compensated and advanced state
develops in the opposite direction, which may indicate a significantly different disease
state not only from a diagnostic, but also from a prognostic point of view. A change in
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the patient’s body weight is a key sign of heart failure syndrome. Ignoring the existence
of advanced heart failure state in modeling might be responsible for lower prognostic
predictivity of hospitalization, as mentioned in ([6], Chapter 4).

Compensated
heart failure Advanced

heart failure

Acute
decompensation Terminal

stage

Heart Failure Syndrome States and their Transitions

Figure 1. Diagram of states and transitions of chronic heart failure syndrome. Red straight arrow
indicates state transition. Curved arrow indicates a state recurrence. The terminal stage refers to the
patient’s irreversible progression to death. We are aware of the possibility that the transition between
the state of compensated HF and the advanced state of HF is well defined only through the state of
acute decompensation. The proposed model of HF can be subjected to further modifications.

This is the disease modeling approach advocated by Houwelingen [14] and others. In
their model formulation, transitions are associated with probabilities or rates. These models
are primarily suitable for prognostic quantitative predictions. It should be noted that the acute
decompensation state does not have the so-called memoryless property (the concepts of state
memorylessness and probability-characterized state transitions are present in Markov chain
(MC) modeling). This is related to the fact that the ADHF state is preferentially restored to the
state from which it originated. ADHF can also recur, and then the patient is re-hospitalized
within a month or two of discharge.

The state diagram in Figure 1 can be unfolded into a temporal progression of CHFS
states, as shown in Figure 2. The first transition from the compensated state to the de-
compensated ADHF state is explicitly marked. Towards the end of the diagram, ADHF
recurrence is illustrated.

Compensated
heart failure

Advanced
heart failure

Acute
decompensation

(ADHF)

Terminal
stage

Transition
into ADHF

state

ADHF
recurrence
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Figure 2. Illustration of the progression of chronic heart failure syndrome as a sequence of time-
varying states. The light blue horizontal lines mark the boundaries of the four syndrome states. Dark
blue line indicates patient’s state. Transitions between states are depicted as instantaneous.
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The Figures 1 and 2 together can represent a model of the disease states and events
in a patient with chronic heart failure syndrome. All prognostic studies reviewed in
Section 5 are based on simplifications of this model into two-state forms. Compensated and
advanced heart failure states are merged together and published studies focus separately
on transitions to acute decompensation and on transitions to the terminal stage. In the
latter case, the ADHF state is supposedly a subpart of the terminal stage.

In Figure 2 we see that when the states of the syndrome are arranged by disease
severity on the vertical axis, a striking correspondence with Figure 3 reprinted from [15]
appears. Although the dark blue line in Figure 2 represents the patient’s time-varying
states, the diagram in Figure 2 resembles some form of discretization of the patient’s clinical
status curve in Figure 3. The similarity is even stronger when we take into account that the
disease state Advanced heart failure corresponds in a clinical sense to the label Chronically
decompensated on the left axis. This correspondence is particularly remarkable when we
consider that Figure 2 was produced in accordance with EU guidelines and Figure 3 was
very likely produced in accordance with US guidelines.

Figure 3. Depiction of the heart failure syndrome course as a development of clinical status.
Source: Januzzi and Butler [15]. Reproduced with permission from Elsevier.

We might perceive the depiction of the disease in Figure 3 by a clinical status curve
also as basis for a disease model but of a different type. The clinical status curve in Figure 3
could probably be developed so that the curve represents a disease indicator, such as
that in [16]. The indicator could be carefully engineered as a combination of the patient’s
diagnostic parameters or in other ways, and this could be diagnostically highly predictive.
As we will show later, such a model may be capable of diagnostic prediction modeling
and diagnostic prediction of ADHF under telemedical or telemetric settings. We can thus
come to the conclusion that Figure 3 can be considered as a graphic representation of
a self-contained disease model of substantial diagnostic relevance. We should note that the
authors of [15] do not make any particular claims about their diagram, and the text of their
article interprets the Figure 3 more or less as a kind of convenient depiction of the CHFS
disease development.

To summarize Figures 1–3, we can say that Figure 1 represents a discrete-state disease
model for prognostic prediction, Figure 3 with the hypothesized explanation above, repre-
sents an important type of disease model for diagnostic prediction under telemedical or
telemetric settings, and the unfolded time progression of disease states in Figure 2 shows
a background agreement between these two types of models.

In prognostic and diagnostic prediction, it is important to have clear specifications of
the outcome events, or manifestations of transitions to target clinical states. The basic ones
can be an irregular visit to the ambulance, hospitalization, or death. Each type of event
can have its own optimized set of predictor variables. As previously mentioned, a patient
admitted to the hospital with ADHF may have four quite distinct clinical presentations [7].
Neglecting this variability in modeling can negatively impact model performance. As
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an example, authors of the work [17] show that in the prognostic prediction of new-onset
heart failure syndrome, the exact outcome specification has a significant impact on the
selection of optimized predictors of the final model.

The modelers, especially in diagnostic prediction, should understand the underlying
temporal characteristics of the predicted acute process. There may be several subtypes
of outcome events, and the onset of the event can be gradual (days) or rapid (hours), or
indeterminate ([7], Chapter 11). It might be beneficial for them to have an idea of the nature
of the symptoms and the main clinical manifestations. In the case of a controlled trial, this
may affect the selection of the optimal set of measured medical parameters. In the case of
a retrospective study, clinical knowledge is also important at least to eliminate the presence
of outliers and systemic outliers.

At this point, we should address the existence of insufficiently clear boundaries
between key medical concepts. In this work, we will simply assume that there is no transi-
tion period between the compensated stage of CHFS and the acute decompensated stage
(ADHF). This assumption is in apparent contrast to the designation expressed in the title of
the important and cited publication [18]. We associate the transition period mentioned in
the title with some early stages of the acute decompensation process. These early stages are
manifested, for example, by changes in the patient’s pulmonary arterial pressure.

At the end of the subsection, we mention that the understanding of the field of CHFS
is hindered by the fact that the global medical community follows two rather different
systems of reasoning, characterized by two separate guidelines [6,7]. The modelers should
also be aware that the syndrome is characterized by non-specific symptoms and signs [19],
that there is no single test to establish the diagnosis of CHFS [20] and that 14–29% of cases
are misclassified even after examination in the emergency room [21].

2.3. Telemedical Remote Monitoring of Patients with Heart Failure

Modern telecommunication technologies have also penetrated the field of health care
for patients with chronic heart failure syndrome. These technologies make it possible to use
a hitherto unused set of data describing the patient’s signs and symptoms, which are collected
during the ordinary life of the patient on a daily basis or even more often. These data have
remained unused until now despite its importance [22]. The importance of collecting this type
of data in the home environment is also documented by the CHFS guidelines [7], which says,
for example, that if the patient’s weight increases above a certain level over a certain period,
the therapist or the patient himself should administer an increased dose of diuretics.

Medical staff in telemedicine trials now have unrestricted access to this daily data in
parallel with the patient’s biomarkers and medical examinations obtained during initial or
regular visits. The therapist now has the opportunity to use them to adjust their actions
in order to ensure the best long-term prognosis for the patient. It should be noted that
the primary role of remote patient monitoring in CHFS telemedicine is to improve patient
medical management; decompensation prediction is only a subset of this primary assign-
ment. The authors [23] hypothesize that “it seems plausible that the most potential treatment
effect of telemedicine (TM) comes from a more optimal use of diuretics and the up-titration of heart
failure (HF) medication”. The optimization of medication doses based on CHFS telemedicine
data was investigated in [24].

As can be seen in the review by [25], before 2002, telemedicine data were collected
in a non-invasive way, i.e., without any wearable devices and implants. Currently, the
number of projects using invasive methods of remote monitoring of patients with CHFS
is growing. Recently, review articles [26–28] attempted to evaluate the overall impact of
implant-based telemonitoring on the management of patients with CHFS. It should be
noted that distrustful views have also been expressed about this technology [29]. Wearable
devices in this context have been investigated in [30].

On the other hand, in addition to invasive and device-assisted methods, there are still
many new non-invasive telemonitoring studies in chronic heart failure medicine. A survey [31]
found that CHFS telemonitoring was associated with a 20% reduction in all-cause mortality
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and a 37% reduction in CHFS hospitalization. Other CHFS telemedicine trials were reviewed
in [32–35]. We could consider the work of [36] as the most promising study of non-invasive
telemonitoring, which shows the positive benefits of telemedicine care above a statistically
significant level. It is not self-evident that this outcome can be achieved, and many other
telemedicine studies [37–40] show that CHFS telemedicine improves patient outcomes, but
not as much as required by the 5% level of statistical significance.

The common characteristic of telemetry data is the relative simplicity of their monitor-
ing, their collection is often conducted by the patient himself. The term vital signs usually
refers to heart rate, blood pressure, respiratory rate, and body temperature, but we prefer
to use the term more loosely as a category of data collected at a high repetition rate that
also includes weight change, and oxygen saturation level. We will return to this issue later
in the discussion of grouping data types.

3. Clinical Prediction Models in General

Clinical prediction and clinical prediction tools are an integral part of modern medicine.
A large number of prediction models are published every year. The basics of predictive
modeling in medicine are summarized in [5]. Chapters aimed at a medical audience have
been included, such as “Predictive Modeling Studies”, “Predictive Model Applications”,
and more. Systematic evaluation of the clinical utility of predictive modeling is a complex
task and requires a decision and analytical framework [41]. Another team of authors
evaluated the impact of prediction models in [42]. More work of this kind is needed to
clarify the medical foundations of prediction research and to overcome the doubts that
have been directed at it like in [43].

Given the diversity and complexity of the prediction research community and pre-
diction research itself, there are also efforts to guide the research and reporting process by
specifying a fixed set of rules. Intuitive and disorganized reporting of developed models
can very easily devalue the primary achievements and messages of the authors. Therefore,
a joint effort to structure and regulate the issue of model reporting appeared. An initiative
called “Transparent reporting of a multivariable prediction model for individual prognosis
or diagnosis” or the TRIPOD [44,45] came into existence, in which the basic principles are
explicitly formulated. Methodological guidance for models’ updating can be found in [41].

It is well known that models are often subject to bias. Another initiative emerged and
developed the “Prediction model Risk Of Bias Assessment Tool” or PROBAST tool [46,47].
The tool consists of four fields: participants, predictors, outcome and analysis. These
domains contain a total of twenty signaling questions to assess the risk of bias. The level of
risk of bias generally depends on the study design, conduct and analysis. A high risk of
bias indicates a significantly distorted performance of the model’s predictive output.

Very valuable information about predictive modeling and the properties of statis-
tical models can also be obtained through area-specific guidelines [48] and systematic
reviews [49]. A practical guide to clinical prediction modeling can be found in [2].

4. Common Characteristics of Quantitative Prediction Models

The objective of this part is to provide a structured, unified view of quantitative
predictive models in statistics, engineering, and machine learning. These fields attempt to
solve the prediction task defined in the medical domain of chronic heart failure syndrome,
where the situation is captured by the disease model condensed in Figures 1 and 2. We
consider the introduction of this view as an analogy to the introduction of an additional
type of diagram when describing a domain problem in UML language.

As we have already mentioned, prediction models can be assessed according to their
external elements or characteristics. External model elements or characteristics can be intro-
duced as features of the model that do not belong to the internal statistical or algorithmic core.
They represent a kind of surroundings of the model core interior. They are shown in the lower
part of the Figure 4. Of all the characteristics present in the model, in this part, we focus on the
object of prediction, the time characteristic of diagnostic and prognostic information, target
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and predictor data, and types and groups of prediction data. The set of model characteristics
also includes information on whether the model deals with prognostics or diagnostics and
whether a statistical core or a machine learning core was used. At the end of this section, we
present two simple examples of mathematical model cores.

Model development and training Model deployment

Patient data
 (predictor groups)

Clinical events
(target data)

D
at

a 
re

st
ru

ct
ur

in
g

an
d 

fu
si

on

Real−time patient dataValidation and calibration

Mathematical
or algorithmic
model core

model
constants

*
Prognostic
information

Diagnostic
information

Clinical Model Development and Deployment Progression

Figure 4. Schematic representation of the clinical quantitative modeling and model deployment.

In order to explain the relationship of this section to Section 5, we must state that the
elements or characteristics listed here are also intended to provide an underlying quantitative
modeling framework for the prediction models reviewed later in the aforementioned section.

Before continuing, we would like to remind non-mathematicians that the concept of
probability or risk of developing a disease can be imagined as the proportion of materialized
positive cases within a relevant cohort of patients in a time interval. The next discussed hazard
rate can then be understood as this probability divided by the mentioned time interval.

4.1. Characteristic #1—Object of Prediction

A prediction is a statement about a clinically relevant issue that is in a state of uncertainty
at the moment of prediction. The concept of mathematical probability is used to quantitatively
express prediction. In clinical practice, there is uncertainty about the presence of the disease
or its stage at the moment of prediction. A prediction can also be a quantitative probability
statement about the occurrence of a disease or its stage in the future.

In the context of already diagnosed CHFS, the focus of prognostic and diagnostic predic-
tions shifts to the occurrence of worsening symptoms, the appearance of a stage of decom-
pensation with admission to the hospital, or the occurrence of death. These are all visible
manifestations of a sudden change in the compensated CHFS state. The primary aim of this
study is to investigate the prognostic and diagnostic prediction possibilities of ADHF in pa-
tients with an already established diagnosis of CHFS who are under telemedicine monitoring.
The model review part also includes works with prognostic predictions of deaths.

4.2. Characteristic #2—Prediction Information Timelines
4.2.1. Diagnostic Information Timelines

Prediction can be aimed at predicting the presence of a disease or its stage in a patient
at the current moment. This is a diagnostic prediction. The meaning of the word prediction
seems to be related primarily to the uncertain nature of the prediction statement. Diagnostic
uncertainty fades over time in two ways. The first is related to the timeline of disease
progression when the disease manifests itself with more intense and visible symptoms. The
second is connected to the timeline of the sequence of diagnostic steps when more accurate
and unambiguous tests are applied later in the sequence.

In the first case, the signs and symptoms of the disease or its new stage are detected
and the diagnosis is predicted. The validity of the prediction is confirmed by the explicit
manifestation of the disease only with a certain time delay, which is clearly shorter than
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the duration of the entire pathological process, which in our case is ADHF. Diagnosis or
detection of ADHF by measurement of pulmonary arterial pressure may precede hospital
admission by approximately twenty days [18]. The certainty of diagnostic prediction is
quantitatively expressed by the values of sensitivity and specificity (quantitative definitions
of sensitivity and specificity are given in Table A2) when larger values mean greater
certainty. The quality of the entire diagnostic method is assessed by the Area Under the
Receiver Operating Characteristic (AUROC) curve.

In the field of CHFS telemedicine, the diagnostic procedure is carried out remotely
regularly with a high frequency of repetition. The moment of diagnosis moves forward, and
as hospitalization approaches, the certainty of diagnosis should change towards higher values.

In the second case, in the case of a sequence of diagnostic tests, the prediction is
refined by applying more accurate additional tests. The therapist makes a decision about
the disease not only on the basis of a more accurate test but also considers the results of
the previous ones. The issue of combining information from several diagnostic tests or
symptoms is of fundamental importance, and its mathematical description is discussed
in Section 4.7.

4.2.2. Prognostic Information Timelines

The presence of ADHF is manifested by the event of the patient’s admission to the
hospital. The decompensations are said to occur randomly, so they are manifestations.

There are two distinct types of prognostic prediction of decompensation in the lit-
erature. The first type of prognostic prediction is the prediction of the occurrence of
decompensation in the near and distant future. The second type concerns only the near
future, which means that the time interval for the rate or probability calculation starts from
the moment of prognostic prediction.

During the modeling process, the prognostic period corresponds to the entire period
of the follow-up study. The prognostic period should be much longer than the typical
duration of decompensation.

For the first type of prognostic prediction, the powerful concept of hazard rate func-
tion [50–52] is widely used. The hazard rate or frequency of decompensations in a patient
cohort may change over a relatively long prognostic period. This is why the time-dependent
function is used to capture the prognostic information as a whole.

A precise definition of the hazard rate function can be made through its relation
to the probability of an event or probability of change in the disease state denoted P.
Mathematically, it can be expressed as follows. First, the randomness of a disease event
is described by a random variable T which represents the time of occurrence of the event.
The hazard rate function h(t) is then defined as the rate of occurrence of events at time t.
Time t is positive and less than or equal to the prognostic period. Using the formalism of
probability equations, this can be expressed as [50–52]:

h(t) ≃ P(t ≤ T < T + ∆t|T ≥ t)
∆t

, (1)

where ∆t is the interval for counting events to obtain an observational estimate of the
probability P and should be long enough to eliminate statistical noise. The ∆t is not directly
related to the duration of the decompensation process (ADHF) but must be reasonably
longer than the duration of its manifestation (e.g., the duration of the hospital admission
acceptance process). It is usually much shorter than the prognostic period.

In the context of CHFS prognosis, the expression (1) reads that the hazard rate h(t) is
the rate at which patients in the cohort experience the occurrence of decompensation. The
condition T ≥ t in the conditional probability says that the calculation of the proportion
takes into account only those patients who did not experience the event and were not
censored until time t.

The hazard rate function can be constant, increasing, U-shaped, or shaped in some
other way, as shown for example in [53]. To obtain a sense of the possible statistical
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noise distortion of the observed hazard rate functions, one should look at the examples
in ([50], Chapter 2). The Kaplan–Meyer, Nelson–Aalen, and Cox models with their variants
are used to calculate the hazard rate function. The hazard rate value obtained for the whole
cohort can be individualized according to individual patient characteristics, as discussed in
Section 4.7. The quality of the prognosis can be evaluated using time-dependent receiver
operating characteristic (ROC) curves [54,55].

If the patient undergoes repeated outpatient or inpatient examinations during the ill-
ness, additional data sets with additional prognostic capabilities are created. Prognosis can
be repeatedly reassessed and the result is a multiple set of hazard functions. This prognostic
situation is systematically addressed by the methods in Section 5.3. As a prediction result,
a fragmented hazard function or otherwise compounded hazard function is obtained.

The second, simplistic type of prognostic prediction is a prediction for the near or
impending future. The prognostic period corresponds to the counting interval ∆t and
a constant value of the hazard rate is assumed. The interval can be as long as a day, a week,
a month, a year, or even as long as the patient’s remaining life. The outcome events are
counted together during the entire follow-up period. In the context of CHFS, the number of
outcome events represents the cumulative incidence of decompensations. During this period,
the group of patients is partially reduced, but the period can be chosen short enough not to
significantly affect the modeler’s quantitative predictions. The cumulative probability of
events p is calculated in the interval ∆t and has the form of a simple equation:

p(∆t) = P(0 ≤ T < ∆t|T ≥ 0) ,

where T is again a random variable assigned to the time of the event. When the time
interval ∆t is reasonably short, the relationship between the cumulative probability p and
the hazard rate function h(t) can be expressed using approximate equality:

p(∆t) ≃ h(t)|t=0 ∆t .

The approximate equality can provide a quick estimate of the hazard rate when
the proportion of the cumulative incidence of events is less than 10–20% of the total
number of patients. The well-established logistic regression is widely used in this type of
prognostic prediction.

4.3. Characteristic #3—Temporal Properties of Target and Predictor Data
4.3.1. Temporal Properties of Target Data

Target data represent basic information about recorded clinical events. In a simple
diagnostic prediction model, the data need not have explicit temporal characteristics. If a
continual diagnosis of the monitored patient is performed, the target data can be bounded
by a sliding time window that moves with the moment of diagnosis.

In case we are building a model specifying the prognostic hazard rate function, we
need to have event time data in the data set. They are present there in the form, e.g., that
a patient event record contains the patient ID, event time, and event type coded into
a categorical variable. The role of this target time-to-event data in models is significantly
different from the role of time data specifying the time of the predictor value. A simpler,
previously defined second type of prognostic prediction model does not require the precise
specification of the time of the event. The length of the follow-up period, which is equal to
the length of the counting interval ∆t, is sufficient.

4.3.2. Temporal Properties of Predictor Data

Incorporating time dependence into predictor variables seems to be one of the primary
challenges of prediction models in contemporary prediction research. We call statistical
models that directly include the time dependence of predictors advanced models due to
a significant increase in their complexity.
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First, in the simplest case, the predictor variables have no significant time dependence
at all. Predictor data are collected over a time period of negligible length. In the context of
CHFS research, this is the case of a patient’s entry into a clinical trial or case of a hospital
entry examination to confirm ADHF diagnosis. Over the course of the clinical trial, data are
not updated, and information about the patient’s ever-changing vital signs and symptoms
are ignored or not collected. This time-free data are termed as cross-sectional data.

The second case occurs when a patient visits a therapist during a clinical trial and their
biomarker and other data are updated on a quarterly or monthly basis. These data usually
contain a time dependence, but the data update frequency is relatively low. These episodic
or regular visit data enter the prediction models in a significantly different way than the
target time-to-event data. These data are called longitudinal data. Models using this type of
predictor data are summarized in Sections 5.3 and 5.4.

The third case occurs when vital signs and disease symptoms are recorded and ac-
tively incorporated into the modeling in a telemedicine clinical trial. These types of data
are collected at a significantly higher repetition rate compared to the previous case. In
telemedicine or home patient care settings, these data are collected daily or almost daily.
For vital ICU signs, the collection rate can be hours or even minutes. The term longitudinal
data is rarely used in the literature for these data, and the term time series data seems to
be preferred. In telemedicine, these data are used in predictive models to diagnose the
coming acute decompensation, or in other words to detect the early stages of ADHF. In the
intensive care unit, these data are used to probabilistically determine, e.g., the 24-h risk of
adverse events such as cardiac arrest.

4.3.3. Temporal Properties of Recurrent Diagnostics

In telemedicine and ICU settings, the diagnostic or detection processes of incoming
decompensation or other adverse events take place repeatedly, and the diagnostic process
differs from others. We proposed the use of the term recurrent diagnostics. In this prediction
setting, the timeline enters the prediction model in three different ways. The first way is
the time dependence of prediction inputs, the second way can be time as a parameter of
prediction result and the last way is that time enters the model as a repeatedly shifting
moment of the act of diagnostic prediction.

During the determination of the sensitivity and specificity of the diagnostic method,
the target input data represent the delayed explicit manifestations of the disease. The
determination requires a certain time interval to compile target data to confirm or disprove
the validity of the disease prediction. We can call the chosen time interval forward target
window, (the descriptiveness of the names assigned to temporal windows depends on the
reference context. As an example, in a similar situation the authors in [56] use a different
notation) and it should be large enough to cover the mentioned manifestation delays. In
the field of CHFS telemedicine, the essence of patient monitoring is a process of recurrent
diagnostics. The moment of diagnosis is constantly shifting in time, as is the beginning of
the forward target window.

Another relevant time interval appears in the predictor data. This interval contains
temporal changes and temporal patterns important for predicting an impending event.
When monitoring a patient recurrently, it is natural to include multiple records from the
recent past. They could also serve to eliminate random noise from recordings. These
previous data are again part of the diagnostic prediction process and can be considered
as part of another time window, which we could call the retrospective predictor window.
This window also shifts with the progress of the diagnostic moment. The two prediction
windows mentioned above could together be termed as sliding time windows [57]. The
introduction of similar windows is also present in other works and in the field of recurrent
diagnostics, it represents an additional form of input data structuring.

The relation of both windows to the development of diagnostic parameters is shown
in Figure 5. The schematic describes a retrospective modeling situation, so we know with
certainty that in this case the hospitalization event definitely occurred. We can rescale the
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time axis so that the moment of hospitalization corresponds to time zero. The retrospective
predictor window specifies the range for the predictor data, which are plotted in the figure
by the blue line. The forward target window determines the range of the target data. The
only target value in the scheme is represented by the act of hospitalization at time zero. The
moment of diagnosis is marked with a dark red arrow. Figure 5 represents a more general
view of recurrent detection-diagnostic prediction process investigated, e.g., in [58].
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Figure 5. Schematic of recurrent telemedical diagnostics against the background of patient decom-
pensation (hatched area). The illustration of the diagnostic parameter development (blue line) is
made in accordance with [16,59].

Provided that the clinical status parameter in the suggested heart failure model in
Figure 3 is linked with the patient’s diagnostic parameters, their model has the ability
to clarify the diagnostic processes of acute decompensation (ADHF) during telemedicine
monitoring. The overall picture of the telemedicine recurrent diagnostics of heart failure
patients can be obtained by gradually superimposing the inverted diagnostic parameter
hump in Figure 5 (blue line) over the pronounced depressions on the patient’s clinical
status curve in Figure 3.

4.4. Characteristic #4—Processing of Different Types and Groups of Predictor Data

The timelines for a typical telemedicine-controlled trial are as follows. The telemedi-
cine study begins with an entrance examination of both the control and intervention groups.
The study continues with telemedicine monitoring of the intervention group, which may
last half a year or longer. Telemedicine data of the intervention group are collected in
the home environment daily or almost daily. Data on regular and episodic visits to the
ambulance are also stored. At the end of the clinical trial, both groups will undergo a final
exit examination and the results will be used for comparison. According to the temporal
characteristics, the data can be classified into several groups and two subsections, as shown
in the Table 1.
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Table 1. Different data groups in a telemedical CHFS trial.

Data Group Temporal Characteristics

Demographic and comorbidity data (baseline) Not changing during the trial
Entry examination data (baseline) Collected at the time of entry examination
Signs and symptoms data (telemedicine data) Time dependent (high repetitive rate)
Episodical or regular visit data Time dependent (low repetitive rate)
Final examination data Collected at the time of final examination

Risk-changing clinical milestones * Episodic or in the patient’s clinical history
Drug dosing and other therapeutic actions Episodic or in the patient’s clinical history

* The term is used, e.g., in [60].

A fundamental aspect of these data groups is their heterogeneity in relation to time. In
the upper part of the Table 1 we can see that some groups of data are collected only once
or twice, another group of data is collected episodically or with a low frequency (monthly,
quarterly), and some data are collected with a high repetition frequency (daily). While entry
examinations, demographics, and comorbidity data serve primarily for prognostic purposes
of ADHF and death, high-frequency signs and symptoms are critical for diagnosing ADHF.
Low-frequency data are primarily used for prognostic purposes and are used mainly by
methods presented in Section 5.3

In addition to the data groups listed in the upper part of the Table 1, there are two other
important groups of clinical factors that influence the therapist’s prediction and decision-
making and are also significant in quantitative prediction. The first type is the possible
presence of “risk-changing clinical milestones” [60]. For example, the dates and number
of hospitalizations significantly affect prognostic and, indirectly, diagnostic predictions.
The second important group of predictors is the types of drugs used and their dosage.
In the case of CHFS, certain types of drugs strongly influence prognostic prediction and
have also been selected by medical experts as part of prognostic scores such as SHFM and
MAGGIC [61,62]. Diuretic dosing affects changes in patient body weight, and therefore, can
strongly influence the diagnostic prediction of ADHF. In addition to drug dosing, there may
be other influential therapeutic interventions that also need to be considered. Neglecting
these additional factors can lead to poor performance of all types of prediction methods.

4.4.1. Increasing Predictive Power by Combining Heterogeneous Groups

To make a suggestion on how to deal with the various groups of data in Table 1 we
take a look into the area of the well-established early warning systems used in ERs and
ICUs. There are obvious similarities between these systems and our ADHF telemedicine
diagnostic system and the heterogeneous data types are present in these systems too. The
combination of several different groups of predictors with different temporal characteristics
into one prediction process has been labeled as a data fusion ([1], Chapter 22). The authors
build on predictive modeling works [63,64] and order their data into groups in the manner
shown in the Table 2. The data fusion method can also be considered as a technique
of combining primarily prognostic data types with diagnostic ones. By developing the
presentation of Table 2, we kept the data structure similar to the original one, but the
medical parameters were changed to correspond to the CHFS area. The presented sets of
CHFS trial data types are for modeling purposes, they are compiled from literature and
project proposals by non-medical experts.

Comparing Table 2 with the upper part of Table 1, we see that the final examination
data group and the low repetition frequency data group are missing. Nevertheless, we
believe that the ideas of the data fusion technique are also applicable to telemedicine trials.

In [65], a Bayesian Belief Network (BBN) methodology is used to combine different
datasets to increase the discriminative power of predictors in telemetry settings. Baseline
data were treated as prior probabilities, and BBN probability tables were used to calculate
the posterior probability of HF decompensation. The authors also propose a BBN-based
discriminator capable of providing a recommendation for different therapies. The proposal
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seems to be mainly about electronic stimulation therapy of the implant device, but the idea
may apply more generally. The baseline group and the signs-and-symptoms group are also
combined in [66] to diagnose ADHF in a telemedicine environment.

Table 2. Data types structured into groups for the data fusion method.

Entry Examination (Baseline Data) * Signs and Symptoms (Highly Repetitive Data)

NYHA II–IV Heart rate
LVEF Systolic blood pressure
ECG Diastolic blood pressure
Haemoglobin Body weight
Serum sodium Oxygen saturation
Serum potassium Symptom intensity level
Serum creatine
NT-proBNP Demographics (baseline data)
CRP Age
BUN Race
KCCQ-12 Gender
6-min walk test

* With the patient home diagnostic box, some biomarkers can be available on a daily basis [65].

4.4.2. Other Methods of Increasing Prediction Ability

For a better prediction success rate, we could compose new predictor variables that
could contain information about the time derivative or time integral characteristics of the
originally observed predictors [67]. Basic statistics literature ([50], Chapter 8) recommends
creating these new variables as well. As an example, the relative time derivative of the
observed variable is created. This new variable served to capture time dependence in
prediction variables in a standard Cox proportional hazards model.

The term feature engineering is used in both the engineering and machine learning com-
munities for the process of creating new, directly unobserved variables. Publications [68,69]
present a list of engineered variables from telemedically monitored daily data of patients with
CHFS in order to diagnose ADHF.

Monitored telemedicine prediction data can be processed to create a predictive alert
signal. In [58,70], an extended moving average method called MACD is used to generate
a warning signal from a single monitored variable such as body weight. The pattern
similarity principle is used to generate an alert signal from monitored patient vital signs
in [57]. The predictive ability of individual signals can be strengthened by combining them
with each other using the naive Bayesian assumption [68,69,71,72].

4.5. Characteristic #5—Distinction between Prognosis and Diagnosis

A natural start to understanding the distinction between the terms of prognosis and
diagnosis is to follow the timelines of these predictions. Prognosis deals with the situation
where the pathological process of the disease is predicted to occur sometime in the future.
Diagnostics deals with the current situation and assesses whether the disease process has
started or not. We could repeat the statement in [41] that “clinical prediction models are
tools that predict health outcomes either at present (diagnostic) or in the future (prognostic)”. The
difference between these two prediction categories is also described in [44,73].

In more complex situations such as continuous patient monitoring of ADHF, the above
distinction is inconvenient to clarify the situation. We prefer to use differences in clinical
parameters. In the classification schematic [73], the authors underscored the observation
of the presence of disease signs and symptoms as the predominant difference between
diagnosis and prognosis. In the case of diagnosis, we can rely on the presence of signs
and symptoms of the disease, while in the case of prognostic prediction we cannot do
this because the patient does not yet have the predicted state of health. For prognostic
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prediction, we should rely only on other patient clinical parameters, such as biomarker
values, clinical examination results, etc.

One should not be confused by applying schematics in [73] for prediction classification
in our CHFS field. In the schematics, the authors use the term cross-sectional to describe
the process of diagnosis. However, the authors use the term to describe the simultaneity
between the moment of the latest prediction data and the moment of the predicted state
of health. This may cause some confusion because the term “cross-sectional” is often
associated with predictor variables, and this type of variable is regularly used in prognosis.

It should be noted that in situations when it comes to a disease with a long and
complex medical history, we are dealing with a relatively long sequence of prognoses
and diagnoses. A diagram of the diagnostic-prognostic sequence undergone by a patient
in the acute decompensated stage is shown in Figure 6. We see that at the beginning,
an impaired cardiovascular condition occurred and was diagnosed. Within the prognosis of
impaired cardiovascular condition, there is a possibility that chronic heart failure syndrome
may occur. Once the CHFS occurs and is diagnosed, the prognosis of the syndrome is
that a decompensated state of ADHF may follow. In telemedicine monitoring, ADHF is
pre-diagnosed (or detected) in an outpatient setting, followed by a confirmatory diagnosis
of ADHF in a medical facility. Again, the ADHF state has its prognoses, such as recovery to
a compensated state, recovery to a chronically decompensated state, readmission relapse,
and unfortunately, death.
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Figure 6. History of diagnoses and prognoses in a patient with ADHF.

Another term, the detection, is associated in the literature with the act of predicting
a medical condition. It may come from the authors’ engineering background as a convenient
substitute for the term diagnosis [57,69,71]. However, the term detection also seems to be
used in situations where the use of the term diagnosis is not easily applicable. This seems
to be the case with early warning systems [74,75].

In this study, when predicting impending acute decompensation, we prefer the term
ADHF diagnosis and follow the use of the term, e.g., in [76]. We prefer to comply with the
recommendations formulated in TRIPOD [44] and in [73].

4.6. Characteristic #6—Statistical Approach versus Machine Learning

The discussion on the relationship between the statistical approach and the machine
learning was started by L. Breiman’s article with valuable comments that express the
position of several recognized statisticians [77]. Statistical approaches are based on a solid
theoretical data model and the idea of likelihood in the background. Statistics also have
imperfect models called working models. Mathematics is also part of machine learning. One
must admit that there is a certain similarity between the search for maximum likelihood
in statistics and the minimization of the error function in the field of neural networks.
However, machine learning seems to be trying to build a perfect algorithm that provides
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perfect responses in response to input data, rather than building a perfect data model in
the background.

In the area of prognostic survival modeling, these two approaches have been summa-
rized [3] in understandable model hierarchies. Recently, machine learning has attracted critical
attention from researchers with a medical background. In the area of ADHF prediction, a critical
appraisal of ML studies was presented in [78]. Studies [79,80] address the issue of performance
and reliability of machine learning models within a broader clinical perspective.

Despite the criticism, it should be emphasized that machine learning modeling repre-
sents a fundamentally different approach by researchers from different backgrounds. In
theory, their challenges could prevent clinical prediction research from stiffness in method-
ology and concepts. On the other hand, it seems that machine learning researchers do not
pay due attention to the fundamentals of clinical prediction formulated in the TRIPOD
statement and PROBAST tool requirements.

Machine learning researchers have brought new concepts to the field of clinical prediction
research that are not well established in statistics. Some of it comes from their engineering and
especially their software engineering background. The term domain expertise draws attention
to the fact that there is a relatively large area between modeling and medicine that does
not belong to either modelers or medical professionals. Another term conceptual embedding
describes the process of mapping clinical terminology to universal modeling concepts. In our
opinion, this assignment deserves a clear name. Concepts used by healthcare professionals
are formed by clinical practice and require additional specifications before being used in
quantitative modeling. Probably the most intriguing is the introduction of the concept of
feature engineering, which expresses the fact that modelers are not limited by the form of
observed data and are encouraged to use their modifications as predictive variables. Machine
learning experts introduced these concepts, probably because the application domain in their
field often changes and this requires persistent flexibility.

4.7. Mathematics of Quantitative Models: Basic Prognostic and Diagnostic Tasks

Mathematics is present in all prediction models and plays a key role in model formu-
lation and application. In the following text, we present a mathematical approach to two
main problems in clinical prediction research.

4.7.1. Basic Prognostic Model

As an example of mathematical prognostic prediction, we present the Cox proportional
hazards model. The Cox model is widespread; it has become a sub-model in prognostic
joint models [81] and a second stage in so-called two-stage models such as landmarking [14].
It has many variants and extensions [51]. It is challenged only by a model called discrete
time logistic regression [74] developed in [53]. The original logistic regression compares
the Cox model only when the cohort decline is not significant and the hazard rate function
can be approximated by a single value. It should be noted that if cohort attrition is the only
concern, a stepwise Cox method can be used, such as in [61].

The following is not intended to compete with the explanations of the Cox model
available in the current literature [50–52], but merely to provide a tangible example of
a hazard rate function for the interested reader. The Cox proportional hazards model
expresses individualized hazard rate functions from the statistics of the entire clinical trial
cohort. The basic model input is that there are n patients indexed i = 1, 2, . . . n and each
patient has p clinical parameters. The parameters of the ith patient can then be denoted
as xji, j = 1, 2, . . . p. These are the values that are recorded when a patient enters a clinical
trial. The expression for the individualized hazard rate function hi(t) for the ith patient has
the form [50]:

hi(t) = h0(t) exp(β1x1i + β2x2i + . . . + βpxpi) , (2)

where β1, β2, . . . βp are constants determined by the modeling process. Patient characteris-
tics xji may be the result of their clinical tests or may represent their demographic data. The
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function h0(t) is the basal hazard rate function. The adjective basal means that it provides
reference values for all individualized hazard rate functions. In the Cox proportional
hazards model, the ratio between the values of the patient’s hazard rate function and the
basal hazard rate function does not change over time. The ratio is fully determined by
the model constants β and values of patient characteristics xji. The sum of the values of
the predictor xji multiplied by the coefficients β j seen in Equation (2) is called the linear
term. Determining the values of the β coefficients is a key modeling issue and the topic is
discussed in Appendix A.

Patients’ overall risk is often expressed as a patient’s risk score. There are different ways
of expressing its value, the SHFM risk score given in [61] seems most appropriate for the
subsection describing the Cox model. The patient’s risk score is expressed there in a very
convenient way; the risk score called SHFM is simply the linear part of the Equation (2).
Other ways of defining risk scores can be found in the literature.

4.7.2. Basic Diagnostic Model

The widespread availability of electronic health records makes it easy to conduct quanti-
tative research on diagnostic procedures. A review of published sensitivities and specificities
of symptoms for the diagnosis of ADHF was conducted in [21]. As we mentioned earlier,
ADHF is characterized by symptoms of low specificity, and therefore, the issue of combining
diagnostic information from more than one symptom or sign is important.

From a mathematically exact point of view, the therapist performs a set of diagnostic
steps where the initial posterior probability of the presence of the disease is constantly
replaced by new improved posterior probabilities under new evidence. The mathematical
explanation and formulation of the problem is as follows. The probability P1(D|E1) of the
presence of a disease state D at the result of the first diagnostic step E1 can be expressed by
Bayes’ theorem in perhaps the most transparent form as:

P1(D|E1) =
P(E1|D)

P(E1|D)P0(D) + P(E1|¬D)P0(¬D)
P0(D) , (3)

where P1(D|E1) represents the posterior probability of the disease, the expression P0(D) is
the probability of the disease state D in the population. In case D indicates the presence of the
disease, the expression above represents the prevalence of the disease (for further explanation
see Table A2). The term P(E1|D) is the probability of the test result E1 on the disease state D,
P(E1|¬D) is the probability of the test result E1 on the inverted disease state.

We consider the form of the Equation (3) to be transparent because in this form we
can pair it with its clinical interpretations [82,83]. A detailed medical interpretation of the
equation can be found in Appendix B. When the second diagnostic step E2 is performed,
the probability of the presence of the disease in the patient changes to:

P2(D|E2, E1) =
P(E2, E1|D)P0(D)

P(E2, E1|D)P0(D) + P(E2, E1|¬D)P0(¬D)
, (4)

where the pair (E2, E1) represents the state of the combined test. The term P2(E2, E1|D) is the
probability of the result of the combined test (E2, E1) conditional on whether the disease D
is present or not. P2(E2, E1|¬D) is an analogous probability, but under the condition that
the inverted disease state is taken into account. Aspects of combining two diagnostic tests
are described in detail, e.g., in [84].

A tempting approach is to simplify the Equation (4) by assuming that the combined
test (E2, E1) is the set of two independent tests E2 and E1. The assumption of independence
often referred to as naive would transform Equation (4) into the form:

P2(D|E2, E1) =
P(E2|D)P(E1|D)P0(D)

P(E2|D)P(E1|D)P0(D) + P(E2|¬D)P(E1|¬D)P0(¬D)
,
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where P(E2|D) and P(E2|¬D) are the probabilities of the second test result E2 depending
on the disease state D and ¬D, respectively. If test independence is assumed, then it is
possible to formally calculate the positive predictive value of these combined two tests with
knowledge of the individual sensitivities and specificities of the tests and the prevalence of
the disease. Unfortunately, this simplifying assumption, if not well substantiated, will lead
to misleading results in a large number of cases, and the results obtained should not be
considered valid.

5. Overview of Heart Failure Prediction Models

The assumption of all the following prediction models is that the diagnosis of CHFS
has already been made in the patient. We would like to repeat that all the publications
reviewed here do not deal with de-novo acute heart failure [9,11,85]. All reviewed models
assume already diagnosed chronic heart failure syndrome (CHFS) and predict acute de-
compensation (ADHF) or death. The prediction of new-onset heart failure or incident heart
failure is also a separate topic and these models are reviewed in [86].

5.1. Telemedical and Telemetric Diagnostic Prediction of Acute Heart Failure Decompensation

We consider that the primary purpose of these works is early detection or diagnosis
of acute decompensation (ADHF). Prediction models can be distinguished according to
the criterion of whether an invasive or non-invasive method was used in relation to the
patient. The prediction object is the early stage of ADHF. The earliest stage of detection for
diagnosis is achieved by measuring the increase in pulmonary arterial pressure [18]. We
consider, as already mentioned, that the pathological process of decompensation can occur
several weeks before it is clearly manifested by the admission of the patient to the hospital.

5.1.1. Published Samples of Telemedical and Telemetric Data

Weight change due to fluid retention is considered the most important predictor vari-
able in the CHFS telemedicine monitoring system. Considerable work has been devoted to
this matter of fact. To obtain a sense of the weight change of a patient before and after hos-
pitalization with ADHF, one should review the real data or their averaged profiles, which
can be found in [58,69,87,88]. Daily intrathoracic bioimpedance data in the post-discharge
period are presented in [89]. The daily dependence of intrathoracic impedance before
and during hospitalization is presented in [90]. Implanted devices have also been used to
collect daily data from CHFS and other types of cardiac patients. Their characteristics and
averages are listed in [16,59].

5.1.2. Non-Invasive Prediction Methods

Among the first attempts to create a predictive model of the clinical deterioration of
a CHFS patient is work [91]. Data were collected using a patient weight record book. Zhang
et al. [58] used a classification method originating from the financial industry called MACD.
In relation to the input data structuring introduced in Section 4.3.3, we should say that their
forward target window size was chosen to be 14 days; the optimized retrospective window
size for the predictors was found to be 80 days. The method used, at least in our opinion,
is capable of good prediction of the upcoming stage of CHFS deterioration, despite the
authors’ skepticism about the method. Their work influenced later works.

There is a brief review of non-invasive ADHF detection models included in [71] and
will not be repeated here. To enlarge their list of models, we present three more. The
first one is AHDF prediction using wavelet transform [57]. Their predictive recurrent
detection method is based on a sliding window approach and pattern identification. The
development of four different predictor variables was used—and four different pairs of
sensitivities and specificities were obtained. These four parameters were collected daily,
body weight, blood pressure, heart rate and respiration rate. The second work we would
like to add to the list is [69], where a number of proposed features based on a single
time-varying variable were tested as a basis for physiological signal detection and ADHF
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diagnosis. To achieve better alert signaling performance these signals were merged using
a naive Bayesian method and this was used in their ADHF prediction system [72]. The
last non-invasive ADHF prediction method we will mention is the work of [56]. The
performance of Bayesian online change point detection (BOCPD) and retrospective change
point detection (RCPD) methods was evaluated. The former was better for events with
a rapid onset, the latter for events that have slower gradual changes. In the Discussion
section, the authors present a brief overview of approaches in their own and related fields.

5.1.3. Prediction Models Using Implants

The companies Medtronix and Optivol are known for integrating patient monitoring
devices into implantable cardioverter-defibrillators and similar devices. The patient’s clini-
cal parameters were monitored by various sensors. Initially, the threshold zone method [92]
was used and later the Bayesian belief network [65,93] was used to combine the sensor
signals to obtain a decompensation prediction. Their method was named TriageHF™ risk
score [94]. A concurrent effort in predicting ADHF decompensations was made by Boston
Scientific [95]. Patients had to have an implanted defibrillator for cardiac resynchronization
therapy. Their HeartLogic™ multisensor index and alert algorithm provides a sensitive
and timely predictor of impending ADHF decompensation. Details of their signal eval-
uation can be found in [96,97]. Both implant-based prediction technologies have been
comprehensively analyzed and evaluated in [76].

5.1.4. Confirmatory Diagnostics of ADHF

The above methods provide us with only a preliminary diagnostic indication of
decompensation. This prediction is followed by a detailed examination in a medical facility.
Even then, the diagnosis of ADHF is not completely certain. The issue is addressed by
a systematic review of sensitivities and specificities of various diagnostic parameters in [21].

5.2. Prognostic Prediction with Cross-Sectional Predictors

Prognostic tools of this type in the treatment of CHFS are recommended in guidelines
for the management of heart failure ([6], Chapter 4). They should be used both for the
prognosis of death and for the prognosis of hospitalization, but the effectiveness differs.
A brief overview of the tools is also provided in there.

A survey of statistical models was carried out in 2008 [98]. During the study period
(1988–2007), multivariate logistic regression and Cox proportional hazards regression were
mainly used. Less than 15% of the publications use the χ2 test only. An analogous survey
was repeated in 2022 [78]. Similarly, Cox regression, logistic regression, and score methods
were considered typical statistical models. In addition to statistical models, the authors also
investigated machine learning models and we will mention them later. The review [99] also
includes statistical models and machine learning models, the review conducted in [100]
can also be noted.

Prognostic information about the risk of decompensation or death is often encapsu-
lated in a simple scoring system. The developed scores vary in performance and have been
compared in many publications. A comparison of the popular SHFM risk score and the
MAGGIC score can be found in [101]. The SHFM score [61] is the linear part of a stepwise
Cox proportional hazards model, where the model has been adjusted to use a constant
hazard rate function. The MAGGIC [62] score is a converted Poisson regression model
predictor. For further risk score performance comparisons see, e.g., [102,103].

5.3. Advanced Statistical Modeling with Time-Dependent Predictors

The modeling situation becomes unexpectedly complicated when the time parameter
appears not only as an event parameter but also as a part of the predictor variable. In
that case, two different timelines appear. The first comes from the time of events and the
associated data are called time-to-event data. The second timeline is from when the predictor
characteristics (e.g., biomarkers) were collected and the associated data are usually called
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longitudinal data. There are three basic approaches to dealing with this situation from
a statistical modeling point of view [104,105]:

(i) a naive approach—simply use the obtained longitudinal data as predictors in models
such as the Cox proportional hazards model,

(ii) two-stage modeling approach where longitudinal predictors are addressed first and
time-to-event data are incorporated later. The most used model of this class seems to
be the landmarking model [14], a generalized landmark model was recently introduced
in [60],

(iii) true joint model approach, which consists of two models coupled by sharing random
effects [81,104,106].

There is literature that has compared the advantages of the landmarking approach and
joint modeling [105]. Comparison by simulation is conducted in [107,108]. These models
are used for prognostic predictions, but so far we found only a few articles dealing with
chronic heart failure syndrome [109,110].

5.4. Other Advanced Statistical Models

The following are a group of prediction models for one to be aware of, but which
do not belong in any of the previous subsections. The first type of model includes the
phenomenon of long-term changes in the entire population and in the health care system.
This phenomenon results in a temporal and spatial shift of the model constants. Models
need to be recalibrated and the effect of the change is called calibration drift. An overview
of these models is given in [111]. Ref. [112] approaches the topic of model calibration
in general.

Incorporating time-varying coefficients into the Cox model is considered an extension
of it in [51,113,114]. An alternative to obtaining the hazard function by a model like the Cox
model was demonstrated in [53]. The model is presented in the review of early warning
systems [74] and is labeled there as discrete time logistic regression.

5.5. Machine Learning Approaches

Machine learning techniques (often referred to as artificial intelligence) also enter the
field of clinical prediction modeling of CHFS. The application of machine learning methods
to CHFS syndrome is freshly reviewed in [115–117]. It has become an excellent practice
to compare the efficiency of machine learning classifiers with the efficiency of established
and well-researched logistic regression. We should note that recently the performance
advantages of machine learning methods over traditional methods have been reviewed [79].
In the following, we will divide our brief overview of machine learning in the CHFS area
into two parts.

5.5.1. Machine Learning for ADHF Detection and Diagnosis

Short-term prediction of hospitalization using a similarity-based machine learning
(SBM) method was performed in [30]. Patients used a single wearable device during the
clinical trial. The used positive window was 10 days long and corresponds to our forward
target window. As a side note, the authors claim in the abstract that they have developed
a prognostic algorithm to detect CHFS exacerbation. In this study, we would consider their
prediction as part of the diagnostic process of decompensation, and we would prefer to call
the algorithm a diagnostic detection algorithm.

The performance of seven machine learning methods was compared with the perfor-
mance of logistic regression in [118]. The retrospective predictor window was assumed to
be seven days, the forward target window was also chosen to be seven days. The Boruta
method was used to eliminate insignificant predictors. The authors concluded that, among
other methods, the extreme gradient boost (XGBoost) method performs in the best way.

The performance of the long short-term memory network (LSTM) was compared with
logistic regression and the multi-layer perceptron (MLP) method in [66]; LSTM was the best,
and logistic regression ranked second. The forward target window was chosen to be 30 days.
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Three groups of time-dependent predictor data were used. These groups were designated
“fixed time” for demographic data, diagnostic or episodic for biomarker and medical
examination data, and “high resolution” for vital signs data monitored on a frequent basis.
Their method can be analogous to the previously discussed data fusion method.

5.5.2. Machine Learning for CHFS Prognosis

Two hundred and two statistical models were compared with 78 machine learning
models in [78]. Random forests, support vector machine boosting, decision tree, MLP, and
deep learning were listed among the machine learning methods. The authors concluded
that ML models do not achieve significant benefits in event prediction. On the other
hand, the authors of another comparison [119] concluded that machine learning classifiers
perform better, but noted that ML prediction models should, as a rule, be reviewed using
clinical modeling quality standards.

With a cohort of 30,687 adults, the performance of MLP, random forest, and XGBoost
machine learning algorithms was compared with logistic regression in [120]. AUROC val-
ues were compared for 30-day, 90-day, and 365-day predictions for four different predictor
engineering approaches. Except for the 90-day readmission, the XGBoost predictive models
performed better than the other models. Prediction of CHFS 30-day readmission using
LSTM was reported in [121].

To conclude this subsection, we would like to add that the aforementioned work [78]
also contains a critical comprehensive appreciation of machine learning efforts in CHFS
modeling. Using the PROBAST tool, the survey authors concluded that currently, machine
learning models generally have poorer clinical feasibility and reliability compared to
statistical models.

6. Future Directions

The field of heart failure prediction research contains a number of publications that
differ in prediction objectives and the nature of input data and their processing. The most
elaborated is the prognostic prediction of patient death based on cross-sectional input data,
and it is a procedure ready for clinical deployment.

The area of recurrent diagnostics, where the patient is monitored repeatedly and
frequently over time, appears to be the least theoretically and practically investigated. The
digitization and lowering of the price of medical devices together with the development
of telecommunication technologies enables the acquisition of medical information in the
patient’s home environment. From this point of view, the methods of recurrent diagnostics
deserve attention.

Another suggestion is that the vast majority of prediction publications, at least in the
field of CHFS, focus on the prediction of adverse events such as hospital admission or death.
In our opinion, the priority should be shifted to the decision-making process of the therapist.
In the field of telemedical CHFS, this could lead to optimization of decision-making when
administering diuretics or ambulatory up-titration.

As mentioned earlier, there are significant differences between the US and European
heart failure guidelines. We believe that the research on disease-specific models developed
using UML will be helpful in addressing this issue.

Finally, the machine learning community appears to be accepting challenges from
medicine statisticians and has started to accept the rigor and prudence of medicine mod-
eling guidelines. Publications are emerging that directly compare machine learning tech-
niques with well-established statistical methods such as logistic regression. Once these
challenges are met, machine learning can become a reliable clinical prediction technology.

7. Summary and Conclusions

We believe that we succeeded in achieving the objectives formulated in Section 1. In
Section 2, the article provides basic information about CHFS disease, telemedicine and
prediction models in general. We also designed or formulated a disease-specific model
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pair for prognosis and diagnosis in a telemedicine-like setting. The prognostic part of
the pair is a discrete health-state model, the diagnostic part has the form of an accepted
representation of the long-term progression of heart failure. In Section 4, we addressed
the demanding problem of model dimensionality, especially in relation to the various
inclusions of time. In addition, we have listed the groups of predictors and other factors
determining the prediction performance and explored different approaches to increase the
performance of prediction models. The listed characteristics could also serve to classify
the models reviewed in Section 5. This section is a structured review of statistical and
machine learning prediction models, where researchers have dealt with different prediction
situations using a variety of models with an emphasis on chronic heart failure syndrome
and recurrent diagnostics. We hope that all the above parts will help researchers who are
starting, modifying, or completely re-engineering their clinical prediction models or clinical
trial designs.

During our cross-sectional search for articles, we tried not to limit ourselves to a partic-
ular research group or direction of predictive research. Current prediction research appears
to consist of four distinct research communities, each with slightly different methods and
terminology. The first community focuses primarily on the engineering aspects of ADHF
detection and diagnostics. The second appears to be made up of medical statisticians who
use well-established, especially prognostic prediction methods to maximize benefit to the
medical community. The third uses advanced statistical methods to develop a patient
prognosis with maximum use of time-dependent medical parameters. The last community,
the machine learning community, tends to apply machine learning methods to the detec-
tion and diagnosis as well as prognosis of ADHF way similar to that used by the groups
mentioned above.

A search based on a single, albeit well-studied, disease has its limitations in addition
to its advantages. Recurrently performed remote monitoring, which is part of heart failure
syndrome care, revealed to us current efforts to apply new advanced prediction methods.
On the other hand, some directions seem to be marginal in the field of heart failure
syndrome prediction, and pointing them out is one of the suggestions of our work for the
prediction research community.

8. Limitations of this Study

Given the primary purpose of providing a brief insight into the current state of
clinical predictive modeling, we are aware of several limitations of this work. In the
article, we did not explicitly deal with the process of training, validation and calibration
of the prediction models. We also did not address the relation of the prediction models
to analytical therapeutic processes and decision-making therapeutic processes. For the
purposes of the study, clinical information on heart failure syndrome was collected from
both European and US guidelines [6,7]. The guidelines differ from each other, so we refer
to them frequently in the text to avoid misunderstandings. The study was not written by a
medical specialist.

Funding: This publication was supported by the Operational Programme Integrated Infrastructure
(OPII) for the project 313011BWH2: “InoCHF—Research and development in the field of innovative
technologies in the management of patients with CHF”, co-financed by the European Regional
Development Fund.

Institutional Review Board Statement: The study did not require ethical approval.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study.

Conflicts of Interest: The author declare no conflicts of interest.



Diagnostics 2024, 14, 443 24 of 30

Abbreviations
The following abbreviations are used in this manuscript:

EHR Electronic Health Record
TM Telemedicine
UML Unified Modeling Language
HF Heart Failure
CHFS Chronic Heart Failure Syndrome
ADHF Acute Decompensation of Heart Failure
SHFM Seattle Heart Failure Model
ER Emergency Room
ICU Intensive Care Unit
MC Markov Chain
BBN Bayesian Belief Network
AUROC Area Under the Receiver Operating Characteristics
ML Machine Learning
MLP Multi-Layer Perceptron
LSTM Long Short-Term Memory
XGBoost eXtreme Gradient Boosting

Appendix A. Determination of Coefficients in Cox Regression Using the Maximum
Likelihood Estimation Method

Cox’s partial likelihood function L(β) is used to determine the values of the β coefficients
in the Equation (2). The patient leaves the clinical trial at time ti either because of the
occurrence of the investigated event or for another reason usually included under the
term censoring. The coefficients β are determined by maximizing the value L(β) whose
logarithm is given by [50]

log L(β) =
n

∑
i=1

δi

 p

∑
j=1

β jxji(ti)− log ∑
l∈R(ti)

exp

(
p

∑
j=1

β jxjl(ti)

) ,

where δi takes on values of zero for censored patients and unity for a patient experiencing
the investigated event. We could see that if the ith patient is censored, δi nullifies its
contribution in overall summation. Censored patient data values are only partially used
in the internal sum and are accounted for through index l. The inner sum applies to all
patients in subset R(ti), which is the subset composed of patients who did not experience
an event and were uncensored just before time ti [50]. See [50–52] for more details.

Appendix B. Explanatory Information for the Bayes’ Theorem

The clinical interpretation of the Bayes’ theorem in the form of Equation (3) has four
different presentations depending on the state of the variables disease state D and test
result E1. The left side of the equation can have a presentationin that in clinical practice
is called positive predictive value [82,83]. We can construct an explanatory table for all
combinations of D and E1 in the form of Table A1.

Table A1. Explanatory descriptions of Bayes’ theorem terms. D = 1 means the presence of the
disease, D = 0 means the absence of the disease. E1 = 1 means a positive test result and E1 = 0
means a negative test result.

D = 1, E1 = 1 D = 0, E1 = 1 D = 1, E1 = 0 D = 0, E1 = 0

P1(D|E1)
Positive

Predictive Value
False Omission

Rate *
False Discovery

Rate *
Negative

Predictive Value

P0(D) Prevalence 1 − Prevalence Prevalence 1 − Prevalence

P0(¬D) 1 − Prevalence Prevalence 1 − Prevalence Prevalence
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Table A1. Cont.

D = 1, E1 = 1 D = 0, E1 = 1 D = 1, E1 = 0 D = 0, E1 = 0

P1(D|E1)
Positive

Predictive Value
False Omission

Rate *
False Discovery

Rate *
Negative

Predictive Value

P(E1|D) Sensitivity 1 − Specificity 1 − Sensitivity Specificity
P(E1|¬D) 1 − Sensitivity Sensitivity Specificity 1 − Specificity

P(E1|D)P0(D)
Probability

of true positive
Probability

of false positive
Probability

of false negative
Probability

of true negative

P(E1|¬D)P0(¬D)
Probability

of false positive
Probability

of true positive
Probability

of true negative
Probability

of false negative
* It seems, that these terms has not been estabilished in clinical practice yet.

Supplementary information to the Table A1 is given in the Table A2. Definitions of
established medical and statistical terms were taken from the basic literature.

Table A2. Quantitative definitions of key diagnostic concepts.

Concept Name Definition

Prevalence Proportion of a defined group in the population having
a disease at one point in time

Sensitivity Rate of positive responses in a test from persons with
a specific disease, true positive rate

Specificity Rate of negative responses in a test from persons free from a disease, true
negative rate

True positives Number of cases in population correctly identified as diseased
False positives Number of cases in population incorrectly identified as diseased, type I error
True negatives Number of cases in population correctly identified as healthy
False negatives Number of cases in population incorrectly identified as healthy, type II error
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