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Abstract: (1) Background: This meta-analysis assessed the diagnostic accuracy of deep learning
model-based osteoporosis prediction using plain X-ray images. (2) Methods: We searched PubMed,
Web of Science, SCOPUS, and Google Scholar from no set beginning date to 28 February 2023, for
eligible studies that applied deep learning methods for diagnosing osteoporosis using X-ray images.
The quality of studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2
criteria. The area under the receiver operating characteristic curve (AUROC) was used to quantify
the predictive performance. Subgroup, meta-regression, and sensitivity analyses were performed
to identify the potential sources of study heterogeneity. (3) Results: Six studies were included; the
pooled AUROC, sensitivity, and specificity were 0.88 (95% confidence interval [CI] 0.85–0.91), 0.81
(95% CI 0.78–0.84), and 0.87 (95% CI 0.81–0.92), respectively, indicating good performance. Moderate
heterogeneity was observed. Mega-regression and subgroup analyses were not performed due to the
limited number of studies included. (4) Conclusion: Deep learning methods effectively extract bone
density information from plain radiographs, highlighting their potential for opportunistic screening.
Nevertheless, additional prospective multicenter studies involving diverse patient populations are
required to confirm the applicability of this novel technique.

Keywords: osteoporosis; osteopenia; bone mineral density; convolutional neural network; deep
learning; X-ray

1. Introduction

Osteoporosis is a common clinical problem in older adults and a major public health
issue worldwide [1]. Bone strength and structural integrity decline with age, leading to an
increased risk of fragility fractures in older adults. Fragility fractures increase morbidity
and mortality in individuals and impose a huge financial burden on society as a whole [2].
Considering that osteoporosis is often undetected until a fracture occurs, early detection is
essential for its treatment.

According to the World Health Organization (WHO), osteoporosis is diagnosed by
measuring the bone mineral density (BMD) of the femoral neck using dual-energy X-ray
absorption (DXA) [3] and is defined as BMD ≥ 2.5 standard deviations (SDs) below the
average value of the young white female reference population (T-score ≤ −2.5), whereas

Diagnostics 2024, 14, 207. https://doi.org/10.3390/diagnostics14020207 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics14020207
https://doi.org/10.3390/diagnostics14020207
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://doi.org/10.3390/diagnostics14020207
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics14020207?type=check_update&version=1


Diagnostics 2024, 14, 207 2 of 13

low bone mass (or osteopenia) is defined as ≥1.0 SD but <2.5 SDs below the average value
of the young white female reference population (−2.5 < T-score ≤ −1.0) [4]. Despite being
the gold standard for osteoporosis diagnosis, DXA has not been adequately applied in
osteoporosis screening because of its low availability, high cost [5], lack of public awareness
of osteoporosis [6], lack of financial incentives to promote osteoporosis screening [7], and
lack of DXA prescriptions [8].

Given the low rates of DXA screening, opportunistic screening presents an intriguing
solution because it utilizes images obtained for other indications and does not require addi-
tional costs, radiation exposure, or patient time. Previous studies mainly used computed
tomography (CT) and magnetic resonance imaging (MRI) to estimate BMD [9], classify
the degree of bone loss [10,11], and predict the risk of osteoporotic fractures [12]. For
example, Pickhardt et al. demonstrated the feasibility of using abdominal CT scans to
estimate the BMD value, providing an area under the receiver operating characteristic
curve (AUROC) of 0.83 and a sensitivity of 0.90 in detecting osteoporosis [9]. Kadri et al.
demonstrated that MRI can be used as an opportunistic screening data resource to identify
patients undergoing spinal surgery who are likely to develop osteoporosis [11].

With the advancement of technology and ease of availability of medical data, computer-
aided diagnostic systems for medical images (such as MRI, CT, and X-ray) have been devel-
oped to improve clinical diagnosis by providing additional information to clinicians [13].
In particular, deep learning methods are increasingly preferred over traditional machine
learning techniques, mainly due to their superior capability for the efficient and automatic
extraction of clinically relevant features. Moreover, their exceptional performance in pro-
cessing and learning from vast, complex, and unstructured datasets further establishes deep
learning as a more effective approach [14]. For osteoporosis screening, plain radiographs
stand out as the more accessible and practical choice in hospitals, primarily due to their
low acquisition cost, reduced examination time, and versatility in covering most body
parts, which also enhances their suitability for opportunistic screening. Although research
has revealed that using artificial intelligence on CT and MRI scans for BMD estimation
is comparably effective to plain radiographs, with CT showing a correlation of 0.84 and
an AUC of 0.97 in diagnosing osteoporosis [15], and MRI demonstrating a correlation
of 0.64 [16], these methods are less practical for screening. This is because of their high
costs, approximately 10 to 15 times higher than plain X-rays in Taiwan, along with limited
availability and longer both waiting and examination times. To this end, several deep
learning algorithms have been developed to infer the presence of osteoporosis from plain
X-rays, such as dental [17,18], chest [19,20], pelvic [21–24], and lumbar [22,25] X-rays.

Lee et al. found that a CNN-based computer-aided system analyzing panoramic
X-rays was highly effective in detecting osteoporosis, outperforming oral and maxillofacial
radiologists with an AUC of 0.858, sensitivity of 0.9, specificity of 0.815, and an accuracy
of 0.84 [18]. Wang et al. developed a method that automatically inferred the BMD of the
lumbar spine from chest radiographs and showed a good correlation (R = 0.84) between the
predicted and ground-truth BMD values, with an AUROC of 0.936 for detecting osteoporo-
sis [20]. Ho et al. reported that DeepDXA, a convolutional neural network regression model
analyzing pelvic X-rays, demonstrates high accuracy in diagnosing osteoporosis, showing a
strong correlation (R = 0.85) between its predictions and the actual BMD measurements [21].
Zhang et al. developed a deep learning model that effectively predicts osteoporosis and
osteopenia in postmenopausal women by analyzing lumbar spine X-rays, achieving an
AUC of 0.767 and a sensitivity of 73.7% [25]. These studies demonstrate that plain X-rays
combined with deep learning can be used for the opportunistic screening of osteoporosis.

The sample sizes of most previous studies were limited; therefore, it is necessary to
conduct a meta-analysis to determine whether X-ray images are viable for the opportunistic
screening of osteoporosis. Given that different studies have inferred bone density using
images obtained from different body parts, it remains unclear whether the efficacy of
inference differs among body parts; hence, conducting subgroup analyses is essential to
determine which body part yields the best performance. In the present meta-analysis, we



Diagnostics 2024, 14, 207 3 of 13

aimed to (1) determine the diagnostic accuracy of plain radiography using deep learning
models, and (2) assess the factors that determine the diagnostic accuracy for osteoporosis.

2. Materials and Methods
2.1. Research Design

This study was conducted according to the guidelines for the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy Studies
(PRISMA-DTA) [26]. The checklist is presented in the Supplementary File.

2.2. Search Strategy

Online databases including PubMed, Web of Science, SCOPUS, and Google Scholar
were used to retrieve potentially eligible studies. The literature search extended to 28 Febru-
ary 2023, with no beginning dates. The search terms employed included “deep learning”,
“convolutional neural network”, “CNN”, “DCNN”, “osteoporosis”, “osteopenia”, “bone
mineral density”, “BMD”, and “low BMD”, along with various X-ray types such as “ra-
diographs”, “X-rays”, “diagnostic X-rays”, “chest X-rays”, “pelvic X-rays”, “lumbar spine
X-rays”, and “dental X-rays”. Boolean operators like “AND” and “OR” were employed for
greater search accuracy, and the scope was broadened through the use of truncations such
as “radiograph*”, “osteoporos*”, and “diagnos*”. All retrieved studies were imported into
EndNote and duplicate publications were automatically identified and removed. The titles
and abstracts were independently reviewed by two reviewers (Y.T.Y and H.C.S), and the
most relevant articles were selected for full-text review. Disagreements regarding study
inclusion were resolved through discussion guided by the PRISMA guideline, and a third
investigator (Y.P.C) was consulted if a consensus could not be reached.

2.3. Selection Criteria

Inclusion criteria for the studies were (1) the use of deep learning methods on X-
ray images for osteoporosis detection or bone density estimation, (2) the utilization of
DXA as the reference standard method for diagnosing osteoporosis, and (3) studies con-
taining information about the sample sizes of the test dataset. Exclusion criteria were
(1) non-English or not peer-reviewed studies; (2) abstracts, conference articles, preprints,
review articles, and meta-analyses; (3) articles using the same patients for model training
and model testing; (4) primary non-diagnostic accuracy (for example, intervention); and
(5) studies with fewer than 30 participants in each of the training and testing datasets.

2.4. Quality Assessment and Risk of Bias

Two reviewers (YTY and HCS) independently assessed the quality and bias of the in-
cluded studies using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2)
tool [27]. This tool includes four domains that assess the risk of bias (patient selection,
index test, reference standard, flow, and timing) and three domains that assess applicability
concerns (patient selection, index test, and reference standard). Each of these domains has
three categories (low-, unclear-, and high-risk bias). Disagreements between the reviewers
were discussed until a consensus was reached.

2.5. Data Extraction

Data were extracted by two independent reviewers (YTY and HCS) following the
PRISMA-DTA guidelines [28]. The following data were extracted: (1) first author;
(2) publication year; (3) study design and center; (4) country of origin of data used;
(5) type of medical images; (6) reference diagnosis; (7) reference standard; (8) deep learning
model; (9) image number; (10) amount of data in training, validation, testing, and external
datasets; (11) confusion matrix; (12) sensitivity; (13) specificity; and (14) AUROC. Differ-
ences in the data extracted between the two reviewers were discussed until a consensus
was reached.
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2.6. Outcomes

The primary outcomes for the overall diagnostic accuracy of the deep learning model
using X-ray images were the estimated summary sensitivity and specificity, and the AUROC
calculated from the hierarchical summary receiver operating characteristic (HSROC) curve.
Variables with a p-value < 0.05 were considered statistically significant.

2.7. Data Synthesis and Statistical Analysis

Review Manager 5 (RevMan 5) [Mac version, Computer program]. Version 5.4. Copen-
hagen: The Cochrane Collaboration, 2020 and Stata 17.0, Stata Corporation, College Station,
TX, USA were used for statistical analysis. A confusion matrix was extracted for the valida-
tion dataset from each eligible study. In cases where the study did not provide an accurate
number of true positive/true negative/false positive/false negative results, RevMan was
used to calculate the estimated confusion matrix based on the sensitivity, specificity, and
number of validation dataset images.

A coupled forest plot of sensitivity and specificity was constructed based on a bivariate
binomial random effects model using RevMan [29]. We estimated the diagnostic accuracy
parameters based on an HSROC model [30] using the midas command in STATA, which
considers the correlations between sensitivity and specificity, as well as variability in effects
across studies [31]. Furthermore, the model considers two levels of statistical distribution:
within- and between-study variability. Through this approach, the model can represent
variations in diagnostic accuracy and cutoff values, and identify sources of heterogeneity
among diagnostic accuracy tests [32]. The HSROC curve was generated using Stata based
on the bivariate model proposed by Reitsma et al. [33] because the summary ROC curve of
RevMan is based on the Moses−Littenberg method, which does not provide estimates of
heterogeneity between studies [34]. In the HSROC curve, sensitivity was plotted against
specificity to illustrate how the sensitivity and specificity of a test were affected by different
threshold levels.

In diagnostic test accuracy studies, traditional methods like Cochran’s Q test and
Higgins’ I2 statistics are not suitable for assessing heterogeneity, as they do not consider the
threshold effects arising from different cutoff values across studies [35,36]. Heterogeneity
was identified by visually observing the asymmetry of the SROC curve and the pronounced
scattering of data points from individual studies along this curve [35,37]. Subgroup,
sensitivity, and meta-regression analyses were also conducted to explore the potential
sources of heterogeneity, when necessary.

3. Results
3.1. Literature Search

A systematic literature search identified 190 articles from the four databases. A total
of 61 articles were excluded because they were duplicates. The remaining 129 articles were
included in the screening process. After reviewing the titles and abstracts, 102 articles
were excluded due to inconsistencies with our study inclusion criteria. The full texts of
the remaining 27 articles were further reviewed. Then, 20 articles were excluded based on
the exclusion criteria. One study was excluded because it utilized Chinese female subjects
aged 20–40 years as the reference population for DXA evaluation [25]. This reference
demographic does not align with the WHO’s recommended reference standards. Finally,
six studies were selected for this systematic review and meta-analysis [17,19,21,22,38,39].
Figure 1 illustrates the study selection process of this systematic literature review according
to the PRISMA-DTA guidelines.
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Figure 1. Flowchart of the systematic literature search according to PRISMA guidelines.

3.2. Quality Assessment

The QUADAS-2 tool was used to assess the quality of the six included studies. Figure 2
shows a summary and graph of bias and applicability concerns. Most studies had a low risk of
bias and low concern about applicability. In one study [38], a high risk of bias was observed in
‘patient selection’ due to the exclusive inclusion of female participants, with no representation
of male subjects, whereas in the other two studies [19,39], the risk of bias remained uncertain
owing to the skewed gender distribution, with a predominance of female participants. There
was a high risk of applicability concern observed in Zhang et al.’s study [25], as T-scores were
calculated from BMD datasets of young Chinese women aged 20 to 40.

3.3. Characteristics of Included Studies

Six studies were conducted in Asia: three in Korea, two in Taiwan, and one in Japan.
All these studies used a retrospective approach. Four were single-center studies and two
were multicenter studies. Among these studies, the men-to-women ratio was imbalanced,
with the majority of participants being female, and one study contained only female
participants. The study included plain dental panoramic (N = 1), chest (N = 2), pelvic
(N = 3), and lumbar (N = 1) radiographs. The total number of sets of image types was seven
because Hsieh et al. investigated both pelvic and lumbar radiographs. In the included
studies, deep learning methods were used as the index test and DXA-derived BMD served
as the reference standard. All studies diagnosed osteoporosis using DXA as the reference
standard, based on the WHO criteria (T-score ≤ −2.5), and compared the T-score with that
of young white females as a reference value. Various deep learning models were employed
in these studies: three utilized VGG16 [17,22,38], one employed ResNet18 [21], another
utilized ResNet50 [39], and one adopted the OsPor-screen model [19]. Table 1 (at the end of
the document) summarizes the characteristics of the included studies.
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3.4. Descriptive Statistics and Diagnostic Accuracy

A meta-analysis was performed based on the results of a systematic review of six
included studies. The research variables included various image types (dental, chest,
pelvic, and lumbar radiographs), deep learning models (VGG16, ResNet18 and 50, and the
OsPor-screen model) and participant populations (only female or both sexes). The study
conducted by Hsieh et al. [22] achieved the highest performance, with an AUROC of 0.97,
while Jang et al.’s [38] study had the lowest AUROC at 0.7.

A coupled forest plot of the specificity and sensitivity of deep learning models in this
study with an appropriate 95% confidence interval (CI) is shown in Figure 3A. Sensitivity
values for deep learning models in the present study ranged between 0.72 (95% CI: 0.67–0.76)
and 0.90 (95% CI: 0.80–0.96), while specificity values ranged between 0.74 (95% CI: 0.60–0.77)
and 0.95 (95% CI: 0.94–0.96). The highest sensitivity was conducted by Lee et al. using dental
X-ray, and the highest specificity was conducted by Hsieh et al. using pelvic X-ray.
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Table 1. Characteristics of included studies.

Author Publication
Year Study Design/Center Country Medical

Images
Reference
Diagnosis Reference Standard

Deep
Learning
Model

Ho et al. [21] 2021 Retrospective/
Single-center Taiwan Pelvic X-ray DXA Osteoporosis and non-osteoporosis (cutoff T-score = −2.5 SD) ResNet18

Hsieh et al. [22]
2021 Retrospective/

Single-center Taiwan Pelvic X-ray DXA Osteoporosis and non-osteoporosis (cutoff T-score = −2.5 SD) VGG16

2021 Retrospective/
Single-center Taiwan Lumbar

X-ray DXA Osteoporosis and non-osteoporosis (cutoff T-score = −2.5 SD) VGG16

Jang, R. et al. [38] 2021 Retrospective/
Single-center Korea Pelvic X-ray DXA Osteoporosis (T-score ≤ −2.5) and osteopenia (T-score between −1.0

and −2.5) VGG16

Jang, M. et al. [19] 2022 Retrospective/
Single-center Korea Chest X-ray DXA Normal (T-score ≥ −1.0), osteopenia (−2.5 < T-score < −1.0), and osteoporosis

(T-score ≤ −2.5)
OsPor-screen
model

Lee et al. [17] 2020 Retrospective/
Single-center Korea Dental X-ray DXA Osteoporosis and non-osteoporosis (cutoff T-score = −2.5 SD) VGG16

Sato et al. [39] 2022 Retrospective/
Multi-center Japan Chest X-ray DXA Normal (T-score above −1.0), osteopenia (T-score between −1.0 and −2.5),

and osteoporosis (T-score below −2.5) ResNet50

Study ID Image Number Training/Validation/Test/External Dataset TP FP FN TN Sensitivity Specificity AUROC

Ho et al. [21] 5027 3972/1041/0/0 302 47 119 573 0.717 0.924 NA

Hsieh et al. [22] 10,797 (hip) 5633/0/5164/2060 890 208 220 3846 0.802 0.949 0.97

25,482 (spine) 7307/0/18175/3346 6563 1207 1297 9108 0.835 0.883 0.92

Jang, R. et al. [38] 1001 800/100/101/117 51 5 14 31 0.785 0.861 0.7

Jang, M. et al. [19] 14,115 9825/1212/1989/1089 559 246 104 1080 0.843 0.815 0.91

Lee et al. [17] 680 544 (split to 4:1 for training and
validation)/136/0 61 13 7 55 0.897 0.809 0.858

Sato et al. [39] 17,899 12529/1790/3580/0 707 713 163 1997 0.813 0.737 0.84

Note: DXA, dual X-ray absorptiometry; DCNN, deep convolutional neural networks; VGG, visual geometry group; ResNet, residual neural network; TP, true positive; FP, false positive;
FN, false negative; TN, true negative.
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3.5. Threshold Effect and Heterogeneity

Figure 3B demonstrates the HSROC curve plot. A substantial deviation of individual
results from the HSROC curve was observed, indicating moderate heterogeneity in the
present study.

Descriptive analyses were conducted for subgroup analysis due to the limited number
of studies included. However, as there was only one study each for dental and lumbar
X-ray images, subgroup analyses for these categories were not feasible. Sensitivities for os-
teoporosis inference from pelvic and chest X-rays were 0.72–0.80 and 0.81–0.84, respectively,
and the corresponding specificities were 0.86–0.95 and 0.74–0.81 (Figure 4). Sensitivity and
meta-regression analyses were not performed because there were an insufficient number of
studies available for analysis.
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4. Discussion

Based on the meta-analysis of the six included studies, this research aimed to assess
the diagnostic accuracy of deep learning methods in identifying osteoporosis from plain
X-ray images. Our analysis revealed that deep learning achieved a pooled AUROC of 0.88
(95% CI 0.85–0.91), a sensitivity of 0.81 (95% CI 0.78–0.84), and a specificity of 0.87 (95% CI
0.81–0.92), indicating good diagnostic performance (0.8–0.9) [40]. These results indicated
that deep learning methods can effectively extract bone density information from X-rays
and the aforementioned performance suggests their utility for opportunistic screening.

A meta-analysis published in 2021 analyzed the performance of artificial intelligence-
based systems in diagnosing osteoporosis from medical images, and the results showed a
high degree of diagnostic accuracy, with an AUROC of 0.93, a sensitivity of 0.86 to 1.00,
and a specificity of 0.75 to 1.00 [41]. However, this meta-analysis included studies with a
variety of image types (X-ray and CT), AI models (machine learning and deep learning),
diagnostic references (DXA, skeletal BMD examinations, and judgments made by oral
and maxillofacial radiologists), and reference standards (T-score and eroded or normal
mandibular cortex). Therefore, the lack of adequate analyses of deep learning methods for
plain X-ray images makes it difficult to determine their potential for clinical implementation.
To address this issue, the present study focused on the application of deep learning methods
to plain X-ray images. Deep learning is efficient, automated, and scalable, and X-rays offer
lower radiation, faster procedures, and cost-effectiveness. Together, these attributes can
increase osteoporosis detection rates and at a low cost, making this approach essential for
future clinical implementation. Although the number of included studies was limited, the
results have already shown that plain radiography has good performance for inferring
bone density.

We had planned to perform statistical subgroup analysis to compare performance
across different experimental conditions. The present meta-analysis included two covari-
ates: image type (dental, chest, pelvic, and lumbar radiographs) and participant population
(only female or both sexes). However, the number of studies that used different types
of radiographic images was too small to allow for statistical comparisons. Furthermore,
several deep learning methods were applied in these studies, but these studies did not
provide details of the deep learning neural networks, making it difficult to compare their
performances. Future research should focus on expanding the dataset with more stud-
ies and standardizing methodologies, particularly in the image types and deep learning
models used, to enhance the robustness and comparability of findings.

Although the performance of deep learning methods was quite promising in these
studies, further development and optimization are required before successful clinical adop-
tion. Future studies may consider replacing CNNs with transformer models, given their
enhanced accuracy, superior performance in handling noisy or augmented images, and
greater efficiency in computational resource usage and training time reduction [42]. Fur-
thermore, transformers provide a complete understanding of entire images, in contrast
to CNNs, which mainly focus on local feature relationships, thereby enabling more thor-
ough information processing. Another intriguing approach could involve incorporating
clinical covariates into our methodology. These covariates include factors such as age,
sex, body mass index, and additional risk factors like previous fractures, current smoking,
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and femoral neck BMD, all of which are components of the FRAX tool [43]. Previous
studies investigated whether the addition of clinical covariates enhances the diagnostic
performance of image-only models. Yamamoto et al. discovered that incorporating clinical
covariates like age, sex, and body mass index into a pelvic X-ray-based model enhanced
its osteoporosis detection capabilities. This was evidenced by a 0.005 increase in the AUC,
from 0.887 to 0.892 [23,24]. Despite not being included in our current meta-analysis due to
the lack of provided sample size and confusion matrix details in their model, Yamamoto’s
study offers a significant insight. Their methodology, which incorporates various relevant
clinical data, has been shown to enhance the rate of osteoporosis detection. Furthermore, in
clinical settings, the primary focus shifts from solely assessing BMD to a more critical aspect
of predicting fracture likelihood. This shift is crucial as it aligns more closely with clinical
decision-making regarding necessary interventions, emphasizing a more patient-centric
approach in osteoporosis management. To this end, future deep learning studies should
further predict fracture risk while incorporating relevant clinical variables [23].

An important issue is how deep learning methods can be incorporated into screening
programs in real-world clinical settings. In a proposed opportunistic screening process,
patients initially receive X-ray examinations for assorted reasons. If the deep learning
analysis identifies a risk of osteoporosis, clinicians could then refer these patients for
further DXA scans to confirm the diagnosis. This screening pipeline provides a unique
opportunity for the early detection of osteoporosis as the frequency of undergoing plain
radiography increases annually in older adults [44]. Using these deep learning methods,
patients who are unaware of their osteoporosis can be recommended to undergo DXA,
which can result in a significant increase in diagnostic rates. Therefore, early intervention
and fracture prevention can be facilitated, thereby reducing fracture-associated burden and
improving healthcare finance [45].

This study had a few limitations. First, the data of the confusion matrix could not be
retrieved from several studies as these studies did not provide adequate information to
yield the confusion matrix. Although we tried to contact the authors, only authors in some
of these studies responded and provided the information; therefore, these studies were
excluded and thus limited the sample size. Second, the included studies applied a variety
of deep learning methods and image types, which may have introduced a high degree of
methodological bias across studies, thereby affecting generalizability. Specifically, given
that deep learning has been evolving at a fast pace in recent years, it is possible that studies
using more advanced methods could yield a better result. Moreover, the heterogeneity
observed in the HSROC would limit the reliability to yield a solid conclusion. Third, a
few studies did not include external validation datasets and only offered results for their
internal validation data, which could have led to an overfitting of the diagnostic accuracy of
the algorithm. Finally, all included studies were conducted in Asia, which could limit their
applicability to non-Asian populations. Indeed, the prevalence of osteoporosis in Asia is
notably higher than in the USA and Australia [46], a geographic variability that highlights
the need for a broader understanding of osteoporosis as well as the development of deep
learning models that could fit different ethnic groups and different countries. To address
these limitations in future research, it is recommended to ensure more comprehensive data
reporting, utilize consistent and advanced deep learning methodologies, incorporate exter-
nal validation datasets, and expand the geographic scope of studies to enhance applicability
and generalizability.

5. Conclusions

This study demonstrates the potential of deep learning methods that use plain X-rays
to detect osteoporosis. This approach improves the early detection of decreased bone
mineral density, aiding clinicians in planning prompt interventions and reducing the risk of
osteoporosis-related fractures and complications. However, owing to the limited number of
available studies, further research is required to explore their utility in clinical applications.
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