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Abstract: Gaining the ability to audit the behavior of deep learning (DL) denoising models is of
crucial importance to prevent potential hallucinations and adversarial clinical consequences. We
present a preliminary version of AntiHalluciNet, which is designed to predict spurious structural
components embedded in the residual noise from DL denoising models in low-dose CT and assess
its feasibility for auditing the behavior of DL denoising models. We created a paired set of structure-
embedded and pure noise images and trained AntiHalluciNet to predict spurious structures in the
structure-embedded noise images. The performance of AntiHalluciNet was evaluated by using
a newly devised residual structure index (RSI), which represents the prediction confidence based
on the presence of structural components in the residual noise image. We also evaluated whether
AntiHalluciNet could assess the image fidelity of a denoised image by using only a noise component
instead of measuring the SSIM, which requires both reference and test images. Then, we explored
the potential of AntiHalluciNet for auditing the behavior of DL denoising models. AntiHalluciNet
was applied to three DL denoising models (two pre-trained models, RED-CNN and CTformer, and a
commercial software, ClariCT.AI [version 1.2.3]), and whether AntiHalluciNet could discriminate
between the noise purity performances of DL denoising models was assessed. AntiHalluciNet
demonstrated an excellent performance in predicting the presence of structural components. The RSI
values for the structural-embedded and pure noise images measured using the 50% low-dose dataset
were 0.57 ± 31 and 0.02 ± 0.02, respectively, showing a substantial difference with a p-value < 0.0001.
The AntiHalluciNet-derived RSI could differentiate between the quality of the degraded denoised
images, with measurement values of 0.27, 0.41, 0.48, and 0.52 for the 25%, 50%, 75%, and 100% mixing
rates of the degradation component, which showed a higher differentiation potential compared with
the SSIM values of 0.9603, 0.9579, 0.9490, and 0.9333. The RSI measurements from the residual images
of the three DL denoising models showed a distinct distribution, being 0.28 ± 0.06, 0.21 ± 0.06, and
0.15 ± 0.03 for RED-CNN, CTformer, and ClariCT.AI, respectively. AntiHalluciNet has the potential
to predict the structural components embedded in the residual noise from DL denoising models
in low-dose CT. With AntiHalluciNet, it is feasible to audit the performance and behavior of DL
denoising models in clinical environments where only residual noise images are available.
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1. Introduction

Computed tomography (CT) has established its role as an imaging modality of stan-
dard care in many clinical applications, providing clinicians with a detailed cross-sectional
view of the human body’s internal structures [1,2]. Despite its irrefutable benefits, one
persistent challenge in CT imaging is the trade-off between maintaining low radiation
doses for patient safety and ensuring high-quality image acquisition [3,4]. Minimizing
radiation exposure often results in images riddled with noise, which can potentially mask
vital clinical details, thus diminishing the diagnostic value of the scan [5,6].

Recent years have seen revolutionary advancements in deep learning technology in
medical imaging, especially for DL denoising in low-dose CT. Numerous studies have
shown that DL denoising algorithms outperform the conventional iterative reconstruction
techniques and can make images clearer and more suitable for diagnostic purposes [7–12].
Such advancements have undeniably positioned deep learning as an invaluable tool for
CT denoising.

However, as is often the case with pioneering technologies, the use of deep learning
in CT denoising is not devoid of challenges. It is suspected that DL models could induce
hallucinations due to the possibility of unpredictable behavior, especially during noise
inferencing in cases with a rare anomaly pattern. Indeed, recent studies showed that
some DL applications might introduce artifacts or spurious details that are not present
in the original scan during the image formation process. These inaccuracies, termed
‘hallucinations’, can mislead radiologists, resulting in potential misdiagnoses or erroneous
clinical decisions [13–16].

Furthermore, evaluating the efficacy of deep learning-based CT denoising involves
unique challenges. In traditional CT imaging, image quality assessment (IQA) typically
follows the American Association of Physicists in Medicine task group report-233 (AAPM
TG 233) guideline, using specialized phantoms to assess image quality [17]. This standard
approach includes evaluating image noise, texture, task-based spatial resolution, and the
detectability index. However, these methods are built upon the assumptions that CT
imaging and denoising systems are linear and that their image quality can be evaluated
in a straightforward manner; therefore, they do not provide capabilities to oversee the
non-linear and complex nature of deep learning-based denoising techniques.

On the other hand, some studies accessed the quality of denoised medical images
by relying on IQA metrics from the natural image processing domain [18–20]. These
metrics fall into two categories: full-reference IQA (FR-IQA) and non-reference IQA (NR-
IQA). Typical FR-IQA metrics include the peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM) [21]. A major limitation of FR-IQA is that it necessitates
paired low-quality and high-quality images from the same subject, which is mostly not
possible in real clinical environments. In contrast, NR-IQA provides image quality metrics
from a single input image and does not require a paired image set. Frequently used NR-IQA
metrics include the natural image quality evaluator (NIQE) [22], blind/referenceless image
spatial quality evaluator (BRISQUE) [23], and perception-based image quality evaluator
(PIQE) [24]. However, these metrics only assess how perceptual and natural the images
appear, and therefore, it is unclear whether these metrics can represent the image fidelity
characteristics required to assess the acceptability of denoised medical images for use in
imaging diagnosis. Therefore, there might be blind spots in conventional IQA metrics that
are crucial for accessing image fidelity of DL-denoised images, as well as oversights related
to the potential risk of AI-induced hallucinations we seek to mitigate.

Addressing these challenges requires a novel and comprehensive approach. One
promising alternative is to focus on analyzing the residual noise. The residual noise, which
is the difference between the original image and the denoised image, can enable a new and
realistic control in identifying the behavior of DL denoising models. This is predicated on
the understanding that successful denoising should not introduce structural components
into the residual noise. By examining the residual noise and guaranteeing the absence of
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spurious structures, we can greatly diminish the chances of introducing hallucinations and
ensure more reliable denoising outcomes.

In this paper, we embark on the development of a novel deep learning-based model
designed to predict structures within the residual noise from CT denoising, which we
named AntiHalluciNet. We evaluate the performance of AntiHalluciNet in predicting the
spurious structures embedded in noise images at different noise levels, as well as its ability
to assess the image fidelity of a denoised image by using only a noise component. We com-
pare the image fidelity metric from AntiHalluciNet with those from FR-IQA and NR-IQA.
We also explore the possibility of auditing the behavior of DL denoising models, such as by
discriminating between the noise purity performances of different DL denoising models.

2. Materials and Methods

Figure 1 presents a procedural flowchart outlining the steps involved in assessing
DL denoising models with our AntiHalluciNet. In the first step, we simulate structure-
embedded noise by combining DICOM-based low-dose simulation with artificially intro-
duced spurious structural components using standard-dose CT images. The subsequent
step involves training AntiHalluciNet on the simulated structure-embedded noise images
using a U-net architecture. The structure-embedded noise serves as the input, while the
spurious structure represents the output. The final step involves applying the trained
AntiHalluciNet to audit the behavior of various DL denoising models. This is conducted
by processing low-dose CT images with DL denoising models to obtain the residual noise
(the difference between low-dose and denoised images). AntiHalluciNet then steps in to
conduct a visual inspection and calculate a residual structure index, a metric devised to
quantify the potential distortions or hallucinations.
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Figure 1. A flow diagram of AntiHalluciNet: structure-embedded noise simulation, AntiHalluciNet
training, and auditing the behavior of DL denoising models.

2.1. Generation of Paired Structure-Embedded and Pure Noise Images

Using a total of 160 abdominal CT cases, we created a paired set of pure noise images
and spurious structural component images. Pure noise images were generated using a
realistic CT noise simulation algorithm, and the spurious structural components were
generated by applying random circular masks to the high-frequency components of a CT
image [25,26]. Then, structure-embedded noise images were generated by adding those
spurious structures to the pure noise images.

2.1.1. Base Dataset

A total of 160 patients’ contrast-enhanced liver CT scans were retrospectively collected
for use as a base dataset. The CT scans were acquired using four CT scanners: Scanner 1
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(GE Discovery CT750 HD, GE Healthcare, Milwaukee, WI, USA), Scanner 2 (Ingenuity CT,
Philips Healthcare, Cleveland, OH, USA), Scanner 3 (SOMATOM Definition Flash, Siemens
Healthineers, Erlangen, Germany), and Scanner 4 (Aquilion ONE, Canon Medical Systems,
Otawara, Japan). All CT images were reconstructed with the filtered-back-projection (FBP)
algorithm. Details about the CT scan parameters are shown in Table 1.

Table 1. Acquisition parameters of CT scans.

Scanner 1 Scanner 2 Scanner 3 Scanner 4

Number of cases (Train/Val) 35/5 35/5 35/5 35/5
Tube voltage (kV) 120 100 100 100
Mean tube current (mAs) 135.4 ± 25.3 150.2 ± 24.7 149.7 ± 28.1 152.3 ± 30.6
Reconstruction kernel Standard B B30f FC08
Slice thickness (mm) 2.5 mm 3 mm 3 mm 3 mm

2.1.2. Generation of Simulated Low-Dose CT

We employed a realistic low-dose simulation technique to generate low-dose CT
images of the base dataset. Three sets of low-dose CT images were generated that had
reduced-dose conditions at 75%, 50%, and 25% relative to that of the base data. This
methodology allows for the direct application to DICOM CT images without the necessity
for raw sinogram data or specialized reconstruction systems. It facilitates the generation
of realistic noise patterns characteristic of low-dose CT, leveraging a mathematical model
that encapsulates physical quantum statistics and the CT reconstruction procedure [26].
Previous studies have attested to the realism of this approach, particularly under reduced-
dose conditions, in terms of noise magnitude and textural representation [27–29].

2.1.3. Generation of Pure Noise Images

Mathematically, a simulated low-dose CT image, y, can be treated as the sum of a
standard-dose CT image, x, and an additive noise component, n:

y = x + n (1)

From this relationship, the pure CT noise image, n, can be derived by subtracting the
standard dose CT image, x, from the simulated low-dose CT images, y. As a result, three
sets of pure CT noise images were derived with varying noise strengths corresponding to
the reduced-dose conditions of 75%, 50%, and 25%.

2.1.4. Generation of Structure-Embedded Noise Images

Figure 2 illustrates the procedure of creating structure-embedded noise images. This
study used high-frequency components of a CT image as the structural components. The
given CT image was subjected to Difference-of-Gaussian filtering with random sigma
values ranging from 0.5 to 1.5 pixels. Then, the spurious structural components were
produced by performing element-wise multiplication with randomly paced circular masks.
This process is mathematically represented as:

s = M ∗ (DoG(x, σ)) (2)

wherein DoG denotes the Difference-of-Gaussian filtering operation, σ corresponds to the
sigma value, M represents the random circular masks, ∗ is the element-wise multiplication,
and s is the resultant spurious structural component. We set the diameter of the circular
masks as 3 cm and placed them at five random locations.
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(b) was creating by applying a low-dose simulation technique to (a) the given CT image. High
frequency component image (d) obtained by DoG filtering was multiplied by randomly placed circular
masks (e) to produce spurious structural components (f). Then, the structure-embedded noise image
(c) was obtained by combining the simulated pure noise images and structural components.

Subsequently, to create the structure-embedded noise image z, the obtained spurious
structural component s is superimposed onto the simulated pure noise image n as:

z = n + s (3)

2.2. AntiHalluciNet

We devised AntiHalluciNet, based on a modified U-net framework, to carry out the
dedicated task of predicting the structural components in residual noise images [30]. While
the traditional U-net consists of an encoding path, a decoding path, and a concatenation
path, our modified U-net incorporated four max-pooling and up-pooling layers. Starting
with 32 filters, we doubled the number of filters at each subsequent pooling layer, excluding
a batch normalization layer.

2.2.1. Training

We trained AntiHalluciNet to possess the ability to selectively predict spurious struc-
tural components in structure-embedded noise images. We took a supervised training
approach and fed the network with structure-embedded noise images as the input and
corresponding structural components as the ground truth. The network weights θ̂ are
optimized using the Adam optimizer and an L1 loss function [31] so that

θ̂ ← arg min
θ

1
N

N

∑
i=1

∣∣∣si − f
(

zi; θ
)∣∣∣ (4)

where N is the number of training images, and f is the deep learning model with network
weights θ.
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2.2.2. Residual Structure Index

The residual structure index (RSI) is a novel index we devised to evaluate the potential
distortions or hallucinations of image-denoising processes. It operates on the principle that
residual noise—the difference between an original and a denoised image—can indicate
the structural integrity of the denoised image. Essentially, if the residual noise contains
structural components, this suggests that the denoised image may have introduced halluci-
nations or spurious details.

To calculate the RSI, we first process the residual noise through AntiHalluciNet, which
predicts the structural components within it. We then quantify these predictions by taking
the absolute value of the predicted structural component, averaging it, and dividing this
average by the average absolute value of the residual noise. This calculation yields a value
within the range of [0, 1]. To enhance the reliability of the RSI, we limit the calculation to
the torso region of the image, excluding the background.

The RSI serves as an indicator of confidence of AntiHalluciNet in the presence of struc-
tural components relative to the residual noise. A higher RSI suggests a higher likelihood
of spurious structural regions in the residual noise, implying potential distortions or hallu-
cinations. Conversely, a lower RSI indicates the absence of such regions, suggesting a more
successful denoising process that effectively eliminates noise while preserving the structural
integrity of the image. This is mathematically articulated by the following equation:

RSI =
1
|M| ∑(x,y)∈M|ŝ(x, y)|
1
|M| ∑(x,y)∈M|n̂(x, y)|

(5)

where M denotes the morphology-based torso segmentation mask, and the calculations
are conducted exclusively at the pixel coordinates (x, y) within this mask. Additionally,
ŝ represents the predicted structural component from the residual noise n̂.

2.2.3. Performance Verification

The performance of AntiHalluciNet in identifying spurious structures was verified
by using the RSI along with a visual heatmap representation. The heatmap was created
by systematically superimposing the absolute value of the predicted output onto the
input residual image. The heatmap was intended to facilitate the visual inspection of the
localization performance of AntiHalluciNet.

We employed a total of 20 validation cases, separate from the training dataset. Our
approach comprised two key strategies. Firstly, we evaluated regions with known spurious
structures, using ground truth masks to calculate the RSI and assess the model’s precision.
Secondly, we investigated regions without spurious structures to understand the model’s
behavior and reduce false positives. In these regions, we randomly positioned five circular
masks, ensuring no overlap with the ground truth spurious structure areas, and computed
the RSI.

2.2.4. Performance Comparison with SSIM

For the further identification of spurious structures, we explored the potential of
AntiHalluciNet in evaluating the overall image degradation, including image blurring
and noise corruption. As reported in many previous studies, many conventional and
DL-based denoising techniques are known to suffer from image blurring during the noise
reduction process [32–34]. Previously, the SSIM was employed as a standard metric to
evaluate the overall image degradation, but it has limited applicability due to the fact it
needs a paired set of reference high-quality and degraded denoised images. In clinical
reality, it is difficult to obtain such paired datasets in most cases. Therefore, we evaluated
the potential of AntiHalluciNet in evaluating the overall image degradation using only the
available residual noise image as a difference between the low-dose image and its degraded
denoised counterpart.
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We utilized the 20 validation cases to create three image sets: a reference set with
high image quality taken to represent the reference dose condition; a low-dose set that
underwent low-dose simulation at 50% of the reference dose condition; and a degraded
denoised set, which had 30% less noise compared to the low-dose set with varying degrees
of the image-blurring effect. With the degraded denoised set, we intended to mimic the
imperfect denoising techniques where an image blurring effect was introduced during the
denoising processing, as well as a situation where only a moderate degree of denoising
was achieved. Here, we used Gaussian blurring with a sigma of 0.75 mm and mixing rates
of 25%, 50%, 75%, and 100% to represent varying levels of the blurring effect being caused
by a conventional denoiser.

We calculated the SSIM between the image pairs of the reference set and the degraded
denoised set and used it as a reference measure of the image fidelity of the imperfect
denoising technique. In addition, we measured the RSI of the residual images between the
low-dose set and the degraded denoised set using AntiHalluciNet to consider its use as a
surrogate measure for the image fidelity of the imperfect denoising technique. The SSIM
and RSI values for the different degradation settings were compared to determine if the
RSI could sensitively distinguish the image fidelities as compared to the SSIM.

2.3. Auditing the Behavior of DL Denoising Models

With AntiHalluciNet, we explored the potential of auditing the behavior of DL denois-
ing models, including the prediction of hallucinations and evaluation of image degradation
during denoise processing.

2.3.1. DL Denoising Models

We employed three deep learning denoising models, including two publicly available
pre-trained deep learning models [7,35] and the commercial deep learning-based software,
ClariCT.AI (version 1.2.3, ClariPi, Republic of Korea) [36]. The first deep learning model
was the Residual Encoder-Decoder CNN (RED-CNN). This model features a 10-layer archi-
tecture comprising 5 encoding convolution layers and an equivalent number of decoding
deconvolution layers. The second model, Convolution-free Token2Token Dilated Vision
Transformer (CTformer), was equipped with a tokenization block and a transformer block.
Both models underwent training using the 2016 NIH-AAPM-Mayo Low Dose Grand Chal-
lenge dataset [37]. Contrastingly, the commercial software, ClariCT.AI, was engineered as
a denoising solution built upon a U-net-based convolutional neural network. Its training
paradigm involves the use of noise-added CT images as input, with the aim of predicting
noise components as output, which is subsequently scaled and subtracted from the input
noisy image to produce a denoised CT image.

2.3.2. Real-World Evaluation Dataset

For the evaluation of the auditing of DL denoisers with AntiHalluciNet, we collected a
real-world dataset of 30 patient CT scans consisting of paired standard-dose and low-dose
images obtained simultaneously by using a split-dose technique. The split-dose scan was
achieved by utilizing a 192-channel, third-generation dual-source CT scanner (SOMATOM
Force, Siemens Healthineers, Erlangen, Germany) operated in dual-source mode with a
fixed tube potential of 90 kVp, where the dose was divided between tube A (reference:
220 mAs, contributing 66.7% to the dose) and tube B (reference: 110 mAs, contributing
33.3% to the dose). For the standard-dose CT images, blended images from both tubes
A and B were utilized, whereas for the low-dose CT images, only images from tube B
were employed.

2.3.3. Auditing of DL Denoisers

In exploring the potential of AntiHalluciNet for auditing the behaviors of DL denoisers,
we considered two scenarios: inspecting the potential occurrence of hallucinations and



Diagnostics 2024, 14, 96 8 of 15

monitoring the image fidelity to detect any potential defects in the denoiser causing abrupt
image degradation.

For the first scenario, AntiHalluciNet-derived heat maps were generated for the resid-
ual images from the three DL denoisers, and the potential occurrence of hallucinations
was visually inspected on the heat maps. For the second scenario, RSI values measured
from the residual images of the DL denoisers were compared to determine whether Anti-
HalluciNet could detect the changes in the different DL denoisers during operation. We
also calculated conventional IQA metrics, such as the typical FR-IQA of the SSIM and the
NR-IQA metric of the NIQE. SSIM values were measured using the paired standard-dose
and denoised images as a reference measure of image fidelity. NIQE values were measured
on denoised images.

In this study, the calculation of two IQAs was conducted after normalizing the CT
images to fit within a range of [0, 255]. This normalization process was based on a reference
range from −160 HU to 240 HU, aligning with the standard abdominal window settings.

3. Results
3.1. Generation of Structure-Embedded and Pure Noise Images

Figures 3a and 4a show selected examples of pure and structure-embedded noise
images generated by using the experimental procedure described above. The pure noise
images correspond to the noise strength of the 50% low-dose simulation, and the spurious
structures are those derived using DoG filter with sigma values of 1.0 and 0.75 pixels.

In pure noise images, typical noise appearances are well represented, comprising
streak patterns centering around the high attenuation objects as well as differing noise
strengths depending on tissue attenuation levels. In structure-embedded noise images,
simulated residual spurious structures are represented in an intermixed way along with
background pure noises.

3.2. Verification of Prediction Performance with Heatmap

Figures 3b and 4b show selected examples of the AntiHalluciNet-generated heatmaps
overlayed on the example structure-embedded and pure noise images. As shown in the
examples, the heatmaps have mostly clean backgrounds, while opaque colors are overlayed
on the spots where spurious structures are located. These indicate the performance of
AntiHalluciNet in highly specifically predicting the locations of spurious structures.
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the spots where spurious structures are located in (b).

3.3. Verification of Prediction Performance with RSI Measurements

Table 2 shows the measured RSI values from the output of AntiHalluciNet on ROIs
with embedded spurious structures, which are then compared with those on ROIs with-
out structures. In all three low-dose simulation levels, the RSI values showed distinct
differences between the ROIs with and without structures (0.83 vs. 0.03, 0.57 vs. 0.02,
and 0.36 vs. 0.01 for 75%, 50%, and 25% dose simulation levels, respectively, with
p-values < 0.001). It is noteworthy that the RSI value for the 75% dose simulation noise was
much higher (0.83 vs. 0.36) than that of the 25% dose simulation noise. This indicates that
AntiHalluciNet has higher confidence with regard to an embedded structure in a less noisy
image than in a highly noisy image, which appears to resemble the behavior of human
visual perception.

Table 2. Comparison of RSI measurements on ROIs with and without embedded structures.

ROIs with Embedded Structure ROIs without Structure p-Value *

25% dose simulation 0.36 ± 0.29 0.01 ± 0.02 <0.001
50% dose simulation 0.57 ± 0.31 0.02 ± 0.02 <0.001
75% dose simulation 0.83 ± 0.25 0.03 ± 0.03 <0.001

* p-values were calculated with the Mann–Whitney U test, and p < 0.05 indicates a statistically significant
difference.

3.4. Performance Comparison with SSIM

Table 3 compares the mean SSIM and RSI values derived to indicate the fidelity of
the degraded denoised images. The SSIM values were derived using the image pairs of
the reference set and degraded denoised set, while the RSI values were derived without
using the reference set. As shown in the table, the SSIM values gradually decreased from
0.9603 to 0.9333 as the mixing rate of the image blur component increased from 25% to
100%, whereas the RSI values increased more rapidly from 0.27 to 0.52 for the same mixing
rates. This indicates that both the SSIM and RSI are able to distinguish the image fidelities
of the degraded images from imperfect denoisers with different degradation settings, and
there is a possibility that AntiHalluciNet could be more sensitive in the differentiation of
image degradation levels.
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Table 3. Comparison of RSI and SSIM values derived to indicate the fidelity of the degraded denoised
images. While the SSIM values were derived using the paired reference set and degraded denoised
image set, the RSI values were derived using only the residual noises of the degraded denoised set
without using the reference set.

SSIM ↑↑ RSI ↓↓
25% mixing 0.9333 ± 0.0133 0.27 ± 0.08
50% mixing 0.9490 ± 0.0130 0.41 ± 0.08
75% mixing 0.9579 ± 0.0146 0.48 ± 0.08
100% mixing 0.9603 ± 0.0169 0.52 ± 0.07

3.5. Auditing of DL Denoisers

Figure 5 illustrates an example of denoised images generated by the three DL denoisers
employed in our experiments. A low-dose abdomen image used for input, its standard-
dose counterpart, and denoised images from RED-CNN, CTformer, and ClariCT.AI are
compared. The image quality of the images from the three DL denoisers appears to be fairly
good, and it is difficult to differentiate between them at first glance in a visual evaluation.
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and (e) ClariCT.AI. The display window is [−160, 240] HU.

The SSIM values calculated using the paired standard-dose CT images showed slight
differences among the three denoisers with 0.9112, 0.9263, and 0.9301 for the RED-CNN,
CTformer, and ClariCT.AI, respectively, while that of the low-dose image was distinctly
inferior at 0.8727.
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Figure 6a presents an example of residual noises from the three DL denoisers. Each
residual noise was derived by subtracting the denoised image from the corresponding low-
dose CT image. The structural components predicted by AntiHalluciNet were converted
into heat map representations and were superimposed upon the denoised images in
Figure 6b,c. It is evident that the AntiHalluciNet-derived heat map facilitates a more
comprehensive visual inspection to identify the potential occurrences of hallucinations.
The RSI values from AntiHalluciNet were 0.26, 0.22, and 0.14 for RED-CNN, CTformer,
and ClariCT.AI, respectively, showing more distinct differentiation compared with the
SSIM values.
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Figure 6. An example of (a) residual noise and (b) structure prediction heat maps (c) overlaid on
denoised images from the three DL denoisers.

Table 4 presents a comparison of the RSI with the typical FR-IQA of the SSIM and NR-
IQA of the NIQE across three different denoisers—RED-CNN, CTformer, and ClariCT.AI.
The SSIM mean values exhibit only marginal differences among the denoisers (RED-CNN
(0.8725), CTformer (0.8916), and ClariCT.AI (0.9005)). On the contrary, more distinct
distributions are observed in the RSI mean values, which were 0.28 for RED-CNN, 0.21 for
CTformer, and 0.15 for ClariCT.AI. Notably, the SSIM values were in increasing order, while
the RSI values were in decreasing order. The NIQE values, however, revealed a discrepancy
in the performance order of denoising models: RED-CNN was 9.58, CTformer was 9.93,
and ClariCT.AI was 9.06.
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Table 4. Comparison of RSI with FR-IQA and NR-IQA metrics across three denoisers—RED-CNN,
CTformer, and ClariCT.AI.

RSI ↓↓
FR-IQA NR-IQA

SSIM ↑↑ NIQE ↓↓
RED-CNN 0.28 ± 0.06 0.8725 ± 0.0279 9.58 ± 0.32
CTformer 0.21 ± 0.06 0.8917 ± 0.0254 9.93 ± 0.30
ClariCT.AI 0.15 ± 0.03 0.9005 ± 0.0248 9.06 ± 0.27

4. Discussion

While we have experienced the remarkable potentials of DL denoising models in
recent years with regard to their ability to improve the image quality in low-dose CT,
suspicions that DL models could cause hallucinations due to the possibility of unpredictable
behavior also arose, especially during noise inferencing in cases with a rare anomaly
pattern [13–15]. Therefore, gaining the ability to audit the behavior of DL denoising models
is crucial in order to further advance the quality improvement cycle in clinical environments,
thereby widening clinical applications. In this study, we presented a preliminary version
of AntiHalluciNet, which is designed to predict the structural components embedded
with the residual noise from DL denoising models in low-dose CT. With AntiHalluciNet,
we explored the possibility of auditing the behavior of DL denoising models in clinical
environments where only residual noise images are available.

Throughout our investigation, a significant emphasis was placed on inspecting the
integrity of anatomical and pathological structures in the denoised images to compare how
different DL denoising models perform against each other in this respect.

One of the most notable findings from our results was the relationship between the
AntiHalluciNet-derived RSI and SSIM. Given our initial hypothesis that efficient denoising
should not introduce structural components in the residual noise, we expected a high SSIM
value, reflecting a retained image structure post-denoising, to align with a lower RSI value,
signifying fewer structural components in the residual noise. Our empirical findings largely
validated this, marking a step forward in assessing denoising methods beyond mere visual
assessments and toward more concrete, quantifiable metrics.

For comparison purposes, we incorporated a frequently used NR-IQA metric, the
NIQE, which does not require a paired image set. Unlike the SSIM, the NIQE values
revealed a discrepancy in the performance order of denoising models. In both the RSI and
SSIM, the performance order of the three denoising models was RED-CNN, CTformer, and
ClariCT.AI in increasing order. However, in the NIQE, the orders were switched between
CTformer and RED-CNN. Based on our understanding that the SSIM is an established
reference method for image quality assessment, our results indicate that the NIQE as an
IQA metric does not exhibit sufficient reliability for the purpose of evaluating DL denoisers.
These findings reassure that the AntiHalluciNet-derived RSI can be the most reliable and
practical image quality metric, which can be accessed using only low-dose images.

Furthermore, our research underscores the indispensable role of visual inspection
in denoising, in which AntiHalluciNet assists in generating heatmaps from structural
components of residual noise, superimposing them onto denoised images for clear image
evaluation. This method provides an intuitive assessment to identify potential distortions
or alterations, as depicted in Figure 6.

This study offers significant insights into the AI-aided inspection of the image de-
noising process in low-dose CT imaging but presents a few limitations. We employed a
DICOM-based CT simulation technique for generating pure noise images under different
low-dose scan settings and generated structure-embedded images by simply adding the
spurious structural components to the generated pure noise. This might not be universally
representative, thereby influencing our evaluation metrics. These constraints should be
considered when interpreting our findings and extrapolating them to broader contexts. Our
dataset also lacked images specific to various pathologic medical conditions, potentially
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affecting real-world clinical applicability. Also, in our real-world dataset, we exclusively
utilized a CT scanner from a single vendor, which may limit the universality of our results
across different manufacturers. On the other hand, this study also has limitations in terms
of the metric used for comparison. We employed a publicly available NIQE algorithm,
which was fitted for the IQA purpose of assessing natural images. Although the NIQE
algorithm has been known to be extended for use with medical images, it would require
detailed knowledge and well-designed data engineering work, which is regarded as being
out of the scope of this study. Therefore, the limitation of the NIQE shown in this study
might be relevant to its extended version. Additionally, we employed only traditional IQA
algorithms in comparison with our proposed RSI metric. There are a few studies that have
used deep learning-based IQA (DL-IQA) methods, which were applied for the IQA of CT
images [38–40]. However, these DL-IQA algorithms are not publicly available, limiting
their application in our research.

Despite these limitations, our research unequivocally underscores the potential of the
AI-aided inspection of DL denoise models for low-dose CT imaging. The challenges posed
by denoiser-induced hallucinations are not to be minimized, especially with the advent of
DL-based denoising techniques. Complex architectures employed in DL denoisers lead to
difficulties in characterizing and predicting behaviors under diverse imaging conditions
encountered in real-world clinical environments. We believe that this study paves the way
towards the more robust and reliable auditing of DL denoising models by integrating a
comprehensive AI-aided analysis of residual noise images. As the medical imaging field
continues to evolve and integrate advanced AI techniques, understanding and addressing
these challenges will be of paramount importance. Our study serves as a foundational
step in this direction, emphasizing the need for continual innovation and scrutiny in the
application of deep learning for medical imaging.

In conclusion, our developed AntiHalluciNet has the potential to predict the structural
components embedded in the residual noise from DL denoising models in low-dose CT.
With AntiHalluciNet, it is feasible to audit the performance and behavior of DL denoising
models in clinical environments where only residual noise images are available.
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