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Abstract: Hepatocellular carcinoma is the most common primary malignant hepatic tumor and
occurs most often in the setting of chronic liver disease. Liver transplantation is a curative treatment
option and is an ideal solution because it solves the chronic underlying liver disorder while removing
the malignant lesion. However, due to organ shortages, this treatment can only be applied to carefully
selected patients according to clinical guidelines. Artificial intelligence is an emerging technology with
multiple applications in medicine with a predilection for domains that work with medical imaging,
like radiology. With the help of these technologies, laborious tasks can be automated, and new lesion
imaging criteria can be developed based on pixel-level analysis. Our objectives are to review the
developing AI applications that could be implemented to better stratify liver transplant candidates.
The papers analysed applied AI for liver segmentation, evaluation of steatosis, sarcopenia assessment,
lesion detection, segmentation, and characterization. A liver transplant is an optimal treatment for
patients with hepatocellular carcinoma in the setting of chronic liver disease. Furthermore, AI could
provide solutions for improving the management of liver transplant candidates to improve survival.

Keywords: hepatocarcinoma; cirrhosis; liver transplantation; liver transplant; artificial intelligence;
machine learning; radiomics; deep learning; neural networks

1. Introduction

According to the Global Cancer Observatory, primary liver cancer is ranked the
third most frequent cause of death and the sixth most commonly diagnosed cancer in
2020 [1]. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer,
accounting for approximately 75–85% of cases [2], representing a significant public health
burden worldwide. The incidence of HCC is most often linked with chronic liver disease,
and cirrhosis is the primary risk factor, with one-third of cirrhotic patients reported to
develop liver cancer during their lifetime [2]. The most common cause of chronic liver
disease in Europe is the hepatitis C virus, followed by excessive alcohol intake [3]. In
addition, there is a male predominance compared to women of 2:1 [2].

While reducing the incidence of chronic viral hepatitis remains an important goal
to prevent the development of chronic liver disease and HCC, other nonviral risk factors
besides alcohol consumption are emerging as public health issues in developed countries.
Non-alcoholic fatty liver disease (NAFLD) is reported as the most common cause of hepatic
dysfunction worldwide [4], with a prevalence of 25–25% in the general population [5], and
it is projected to reach around 33.5% in 2030 [6]. Together with non-alcoholic steatohepatitis
(NASH), they further influence the development of HCC [2] as these two entities have a
similar potential to progress to advanced liver fibrosis [4].
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HCC has been the main indication for transplantation in patients with oncologic
disease. Together with NASH and NAFLD, it is described as the fastest-rising indication for
hepatic transplant [7]. In theory, it is the optimal treatment option because it has a double
role of eliminating the underlying liver disease while removing the lesion [8]. However,
the selection of transplant candidates that have developed HCC needs to be rigorous as
there is a general organ shortage. The United Network for Organ Sharing (UNOS) has
described a drop-out of 20% in patients awaiting transplantation [9]. Therefore, extended
donor criteria have been adopted to reduce these figures, like older donors, fatty liver, and
cardiac arrest donors with inevitable inferior post-transplant outcomes [9]. These factors
further stress the importance of patient selection and organ allocation to reduce mortality
and improve post-transplantation survival.

The demand for precision medicine and personalized treatments, together with tech-
nological advances, has led to an increasing amount of research regarding the application
of artificial intelligence (AI) to medical images. The term and technology are not new, as
the first artificial neuron was described in 1943 [10]. Today, AI is a large field of study
incorporating algorithms capable of solving tasks that normally require human intelligence.
Machine learning (ML) is a subset of AI that involves extracting patterns from data without
explicit programming [11]. As the algorithm has a more complex structure with multiple
components, or “layers”, the term deep learning (DL) is used as a subset of ML [11]. A
simplified version of the relationship between these AI divisions is presented in Figure 1,
with DL being included in the ML category and both types of AI technologies.
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Figure 1. Simplified graphical representation of artificial intelligence and its subsets.

Radiomics is a type of ML that has gained attention because it can extract complex
imaging data that could reflect the underlying biological properties of tissues [12]. The algo-
rithm can obtain quantitative features like histogram, shape, texture, radial and transform-
based characteristics which are too detailed for normal human vision to analyse [13]. These
extracted features are analysed by researchers using other AI techniques, and the most
relevant ones are chosen for implementation [13]. A simplified radiomics model workflow
is portrayed in Figure 2. The user first processes the data, the features are extracted by the
ML model, and then the features are selected by the user using a variety of techniques.
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Convolutional neural networks (CNN) represent one of the most successful types of
DL algorithms that work explicitly with images and have great potential in radiology [14].
Compared to radiomics, which needed a “human-in-the-loop” approach to analysing the
features, CNNs provide a more “end-to-end” approach as they can segment, analyse, and
provide output without human intervention [15]. A simplified DL model workflow is
portrayed in Figure 3. Compared to the previous radiomics model, the DL algorithm can
process the data and automatically choose the most relevant features.
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The advent of Electronic Health Records (EHR) and digital imaging has led to an
increase in medical data with an estimated annual growth of 48% from 2013 to 2020 [16].
The amount of annually increasing data in radiology makes it a main field of application for
these algorithms, which promise to alleviate the imaging burden and help provide better
patient care. Also, because medical images contain a lot of embedded information, there
is hope that more quantitative data can be extracted at a voxel-wise level for diagnostic,
staging and prediction purposes.

Several AI models have been tested on clinical and laboratory data to better stratify
organ allocation strategies and graft matching [17–19]. In addition, it has been stated that
its dynamic properties regarding testing and validation allow it to better adapt to different
populations [20].

Generally, four primary tasks can be pursued in medical image analysis and interpre-
tation: classification, localization, detection, and segmentation [21]. Classification involves
assigning a label to the image (e.g., hepatocellular carcinoma, cholangiocarcinoma, hae-
mangioma, etc.). Localization and detection involve the application of bounding boxes
to the structures or lesions of interest and are often a preliminary step to other functions.
Finally, segmentation is a complex task as it assigns pixels to a class (e.g., lesion) in a given
image to create precise boundaries from surrounding tissues (e.g., liver).

The abdominal region was ranked third in applying DL to radiology in an 8-year
timespan between 2012 and 2020 [22]. A more focused review of AI hepatic imaging
applications ranked diagnosis as the most researched function, followed by prognosis
and segmentation. Also, HCC was the most common research interest [23]. However, the
number of clinically approved AI applications is limited, caused by the lack of external and
prospective validation and limited well-curated and available datasets. Furthermore, the
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number of clinically approved hepatic algorithms is inferior to other organs and structures,
with only two applications described in an analysis of 100 commercially available radiology
products [24].

Our objectives are to review the current imaging protocols and guidelines for liver
transplantation in the setting of HCC and to do an overview of emerging AI applications
that can be applied for better patient management.

2. Liver Transplant in HCC

In the following section, we provide a brief review of imaging protocols and guidelines
for liver transplantation in the setting of HCC.

A liver transplant is an optimal treatment for patients with HCC and cirrhosis because
it targets the underlying disease and the tumour [8]. However, the patients eligible for this
treatment must be carefully selected because there is a general organ shortage, and these
patients will go through lifelong immunosuppression.

The most widely used criteria for orthotopic liver transplant (OLT) selection in patients
with HCC are the Milan criteria [25], developed in 1996. They are recommended by the
European Association for the Study of the Liver (EASL) [26], the European Society of
Medical Oncology (ESMO) [27], the National Comprehensive Cancer Network (NCCN) [28]
and the American Association for the Study of Liver Diseases (AASLD) [29]. According
to Milan, LT is recommended in patients with one lesion less than or equal to 5 cm or up
to 3 lesions, each less than or equal to 3 cm. Using these criteria, the five-year survival
rates are 65–80% [26]. Because they delineate a group of patients with cirrhosis and HCC
that have transplant results similar to those only with cirrhosis, they have been included
since 2002 in UNOS. This organisation handles organ transplants in the USA. These criteria
apply to patients unsuitable for resection, often because of advanced underlying hepatic
disease. Extrahepatic disease or vascular tumour invasion are absolute contraindications to
LT [26–28].

Living donor liver transplant is not very popular in Europe, as it represents around
6–7% of all LT performed yearly, according to data from Euro-transplant statistics in 2020–
2021 [30]. However, marginal grafts remain an option that can be applied in selected
patients and centres with experience [26,27].

3. Extending Milan

With LT being the therapy with the highest probability of curing HCC [31], a lot of
research has been done to find the best solution to extend the Milan criteria and to find new
markers that better stratify patients to improve the selection of candidates for this treatment
option [32–40]. All these criteria describe an extrahepatic disease or macrovascular tumour
invasion as absolute contraindications to LT. A summary of transplant criteria is provided
in Table 1.

Table 1. LT criteria.

CRITERIA REPORT

MILAN [25] One lesion ≤5 cm or a maximum of 3 lesions
each ≤3 cm

University of California, San Francisco
(UCSF) [32]

One lesion ≤6.5 cm or a maximum of 3 lesions
with the largest tumor diameter ≤4.5 cm and a

total tumor diameter ≤8

Up-to-7 [33] The sum of the number of lesions and the
diameter of the largest lesion ≤7

Updated Up-to-7/Metroticket V2.0 [34] A combination of the sum of the number of
lesions, the largest lesion diameter and AFP
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Table 1. Cont.

CRITERIA REPORT

AFP model [35]
A score based on the largest tumour diameter,

number of nodules and AFP;
A result of ≤2 is an indication of a transplant

UNOS criteria [36]
One lesion ≥2 cm and ≤5 cm or maximum

3 lesions each ≥1 cm and ≤3; AFP
≤1000 ng/dl

Extended Toronto [37]
No tumour size and number limit; Biopsy
needed beyond Milan to exclude poorly

differentiated

Total tumor volume (TTV) [38] TTV of less than 115 cm3

Hangzhou criteria [39]
Total tumor diameter ≤8 cm or >8 cm with

histopathologic grade 1 or 2 and a preoperative
AFP value of ≤400

TRAIN score [40]

mRECIST response; AFP slope;
Neutrophil-to-lymphocyte ratio (NLR) and

platelet-to-lymphocyte ratio (PLR);
Waitlist time

Several studies have investigated the relevance of alpha-fetoprotein (AFP) tumour
markers in managing these patients [41,42] with a higher risk of recurrence in patients
with high AFP levels. Thus, it has been included in the Metro ticket V2.0, AFP model, and
Hangzhou criteria, and a threshold of 1000 ng/dL is currently applied in the UNOS criteria.

Other criteria emerge that try to include more robust data like histopathological
information, including tumour differentiation in the Extended Toronto criteria and the
evaluation of tumour grading in the Hangzhou criteria. Volumetric information can also be
used since lesions can sometimes have a variable shape. Thus, a threshold criterion has
been developed in the TTV criteria.

While the Milan criteria remain the most widely recommended in the international
guidelines, national policies have also allowed the adoption of other models [43]. For
example, the AFP model has been used in France since 2012. In addition, the Milan, UCSF,
TTV, Up-to-7 criteria, and the AFP model are all accepted in Italy. In Spain, both Milan and
Up-to-7 criteria are used.

To increase the chance for transplant in patients with HCC, the use of loco-regional
treatments is supported either to reduce the risk of drop-out in patients within Milan
criteria (“Bridging”) or to downstage patients beyond Milan criteria [26–28]. The response
to loco-regional treatments can be used as a marker for transplant outcome prediction [44],
and it has been included in the TRAIN criteria [40] because a good response is associated
with less probability of microvascular invasion or low tumour grading [44]. The TRAIN
score also proved to be the best predictor for microvascular invasion.

Although a consensus on the best option for expanding the LT criteria has not been
met, biological and dynamical markers will likely replace morphological data [45]. In this
context, AI is a potential aid to process complex information, better stratify these patients
and provide AI markers that reflect tumour biology and aggressiveness.

The graph below shows an apparent increase in the number of articles regarding
AI solutions in hepatic transplants (Figure 4). The figure plots data from 2019 to 2022
obtained from PubMed using the ‘Advanced search’ and applying the keywords “Liver
transplant”, “Artificial intelligence”, “Machine learning”, “Neural networks”, and Boolean
operators AND, OR. The results represent the number of papers published per year with
the aforementioned filters.
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4. AI-Aided Evaluations in Candidates for LT with HCC

The following will review the most critical AI applications that might impact trans-
plant imaging.

4.1. Detection

Detection involves applying a bounding box to the region of interest in the processed
images (e.g., lesions, organs, etc.). It is often a preliminary step of more complex algorithms
that use a combination of detection-segmentation classification.

Major international guidelines recommend ultrasound (US) as the main imaging
surveillance tool for patients with cirrhosis [26,29]. US has a detection sensitivity for HCC
of around 84%, but with a substantial drop for early-stage lesions, to almost 47% [46]. This
is essential as these lesions have the highest likelihood of long-term cures using radical
treatments [8]. However, contrast-enhanced (CE) CT and MRI are not cost-effective for
the general surveillance of HCC, except for patients awaiting transplants, according to
the EASL guidelines [26]. Therefore, CT is more widely used as it has lower costs, faster
acquisition times and less susceptibility to motion artifacts. However, it uses ionizing
radiation with lower soft tissue contrast [47]. Although MRI has increased costs and
acquisition times, it offers superior tissue contrast and can also use hepatospecific contrast
agents, increasing sensitivity [47].

An AI-detection tool would be essential in monitoring patients on the transplant list
since the presence of HCC implies the accordance with MELD (Model for End-Stage Liver
Disease) exception points [48], which changes the prioritisation on the transplant list and
can permit an earlier treatment. Furthermore, the importance of early detection cannot be
overstated, as it can impact survival. This is relevant as more patients will be identified
with smaller lesions within Milan criteria, with favourable 5-year survival rates of around
65–80% [26]. Thus, an integrated AI tool for lesion detection could improve diagnostic
accuracy and improve transplant patient stratification. The summary of the AI-detection
models presented below is shown in Table 2.

In US imaging, the number of applications dedicated to focal liver lesions is reduced
mainly due to limited datasets available and because liver lesion characteristics often
overlap [49]. However, such a tool can aid those performing US examinations, especially
in centres with limited experience. Tiyarattanachai et al. [50] prospectively evaluated
US images from 334 patients using a RetinaNet DL model, obtaining detection rates for
focal liver lesions as high as 89.8%, surpassing that of clinicians. For HCC, the detection
rate was 100%, but only 23 cases were included in the study. Lee et al. [51] used a CNN
to detect HCC in multiphase CECT imaging from 302 CT studies using all three phases
(arterial, venous, and delayed) with a sensitivity of 93.88%. Using multiphase CECT (pre-
contrast, arterial, venous, and delayed), Kim et al. [52] trained and tested a DL model
using data from 1320 patients with either cirrhosis or chronic B virus hepatitis to detect
HCC. The sensitivity varied according to size, with 33.3% for lesions <10 mm, 74.7% for
those between 10–20 mm and 95.9% for lesions >20 mm, with an overall sensitivity of
84.8%. The most frequent cause of the error was an atypical enhancement pattern. Kim
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et al. [53] studied data from 549 patients with HCC who underwent MR imaging with
gadoxetic acid (Gd-EOB-DTPA) to train and test a DL model for HCC detection. Using
the hepatobiliary phase, the application had a sensitivity of 87%. Fabijańska et al. [54]
obtained a sensitivity of 90.8% for HCC detection in cirrhotic patients. The DL model
used integrated T1 dynamic acquisitions with extracellular contrast (non-contrast, arterial
and late phase), but the dataset was small, with only nine patients. Integrating all three
post-contrast acquisition phases proved superior to using either phase alone. An example
of how a detection algorithm works is pictured in Figure 5, with bounding boxes (red)
being applied to detected lesions.
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Table 2. AI detection models.

Author Year Modality AI-Method Sensitivity

Tiyarattanachai et al. [50] 2022 US DL (RetinaNet CNN) 89.8%
Lee et al. [51] 2019 CECT DL (CNN) 93.8%
Kim et al. [52] 2021 CECT DL (Mask R-CNN) 84.8%
Kim et al. [53] 2020 MRI DL (CNN) 87%

Fabijańska et al. [54] 2018 MRI DL (U-Net CNN) 90.8%
US (ultrasound), CECT (contrast-enhanced computed tomography), MRI (magnetic resonance imaging), DL (deep
learning) CNN (convolutional neural network), R-CNN (region-based convolutional neural network).

4.2. Segmentation

Segmentation involves the labelling of pixels in an image to delineate with great
precision a region of interest (e.g., lesions, viable tissue in tumour, organs, etc.). The gold
standard is represented by manual segmentation done by radiologists. However, this is
time-consuming and prone to inter-reader variability [55]. Therefore, the evaluation of
segmentation performance is most often done using the Dice-Sørensen coefficient, with
results varying between 0–1, with 1 meaning complete overlap.

Liver/liver lesion segmentation with CT represents the main interest regarding AI
applications to hepatic imaging [21] as it shows great promise to optimize this process and
provide fast, standardized segmentations. Some of the first grand challenges for liver seg-
mentation were organised during the Medical Image Computing and Computer Assisted
Intervention Conference (MICCAI) in 2007 [56] and 2008 [57], where only conventional
ML methods were used. A shift was seen during the Liver Tumor Segmentation Chal-
lenge (LITS) in 2017 [58], where most applications were based on DL. The difficulty lies
in the variable liver and liver lesion density and shape, similar densities with surround-
ing organs like the spleen, gastrointestinal tract, and heart, and the presence of artefacts.
Furthermore, anatomical variants are common imaging findings, like accessory fissures
or lobes, elongated left liver lobe and Riedel lobe [59]. With cirrhosis, the structure is
even more heterogenous, and the contours are irregular, which makes segmentations even
more difficult.

Hepatic segmentation is the preferred method for liver volumetry [55]. As living-donor
liver transplantation (LDLT) becomes more widespread, it is mandatory to do volumetric
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evaluations before surgery, as inadequate graft volume is the main contraindication to
LDLT [60]. An inaccurate transplanted liver size can cause a small-for-size syndrome
with functional insufficiency, leading to death [55]. The minimum remnant liver volume
for the adult population is 30%, provided there is no underlying liver dysfunction [61].
Therefore, the recipient’s ratio of graft size to standard liver volume according to body
surface area should be over 40–50% [55,60]. An example of whole liver segmentation (A)
and right-hemiliver/left-hemiliver segmentation (B) is provided in Figure 6.
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The summary of the AI-segmentation models presented below is shown in Table 3.
Although there is great interest in developing DL models for hepatic segmentation,

respecting the Couinaud [62] functional liver segmentation according to vascular supply is
mandatory for clinical applications. Tian et al. [63] developed a DL method (GLC-UNet)
to segment the liver according to Couinaud using 193 CT scans manually annotated by
radiologists. The model obtained a DICE score of 92.46%. Wang et al. [64] used a cascaded
neural network (ARH-CNet) to segment the liver according to Couinaud from 193 CT scans
manually annotated by radiologists. The model obtained a DICE score of 84%. Using MR
imaging, Han et al. [65] developed a 3D convolutional neural network on portal phase
acquisitions from 744 scans. The average DICE score was 90.2%, and the dataset included
cirrhotic patients. The authors also experimented with the localization of lesions according
to segments with a 93.4% accuracy.

Another factor that influences transplant outcome is the presence of steatosis in the
donor liver, which may lead to graft dysfunction and biliary and vascular complications [66].
The cut-off varies between 10 to 30% [60]. The gold standard for steatosis diagnosis is
biopsy which only evaluates a tiny portion of parenchyma and is subject to inter-pathologist
subjectivity [67]. MRI proton density fat fraction (PDFF) has been shown to have a very
good diagnostic performance for liver fat assessment and grading [68], evaluating the
whole liver structure. Thus, there is a need to develop AI models with more complex
roles of both whole liver segmentation and fat quantification. Jimenez-Pastor et al. [69]
developed a DL method on 183 MRI multi-echo chemical shift encoded (MECSE) liver
studies with the ability to segment the liver and provide fat and iron quantifications. The
DICE score for segmentation was 93%, and the model showed a high correlation and low
relative error compared to manual fat and iron quantifications. An example of a model
for PDFF segmentation and quantification is presented in Figure 7, with an analysis of the
whole liver structure on multiple slices.
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Figure 7. Exemplification of fat-fraction automatic quantification on MRI PDFF acquisitions with
whole liver segmentation (1) at two different levels (A,B).

HCC lesion segmentation with volumetric data extraction can also provide an aid to
better select patients eligible for transplant with total tumour volume (TTV) as an inclusion
criterion with a threshold of 115 cm3 [38]. Bousabarah et al. [70] analysed 174 patients with
HCC scanned with MR imaging using a DL method (U-Net) to segment the liver and the
lesions. The model used T1 postcontrast acquisitions (arterial, venous, and delayed) using
extracellular agents and obtained a DICE score of 91% for liver segmentation and 68%
for HCC segmentation. As volumetric assessment becomes automatic with an AI model,
more precise and quantifiable inclusion criteria can be developed. For example, the LITS
challenge [58] included a tumor burden metric as part of the AI algorithm segmentation
accuracy evaluation (calculated as voxels of tumour/voxels of the liver). An example of
HCC segmentation and volumetric measurements using CECT is provided in Figure 8.
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Automatic segmentation algorithms that help with transplant recipients can also be
applied to assess sarcopenia, characterised by the loss of skeletal muscle mass and function.
Sarcopenia impacts survival in the liver transplant setting as it is an independent predictor
of orthotopic liver transplantation outcome [71], associated with higher mortality [72].
The quantitative assessment of body composition (defined as the percentage of muscle,
fat, bone, and water) is usually done at the level of the third lumbar vertebrae [72] by
segmentation of muscle, adipose tissue, and bone. AI can reduce segmentation times by
providing automatic measurements and more standardised assessment techniques. Most of
the research regarding sarcopenia evaluation using AI uses DL methods [73]. For example,
blanc-Durand et al. [74] used a convolutional neural network and obtained a Dice score of
97% in a study done on 1025 CT scans.
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Table 3. AI segmentation models.

Author Year Scope Modality AI-Method DICE Score

Tian et al. [63] 2019 Couinaud segmentation CECT DL (GLC-UNet CNN) 92.46%
Wang et al. [64] 2022 Couinaud segmentation CECT DL (ARH-CNet CNN) 84%
Han et al. [65] 2022 Couinaud segmentation MRI DL (U-Net CNN) 90.2%

Jimenez-Pastor et al. [69] 2021 Liver segmentation, fat,
and iron quantification MRI DL (CNN) 93%

Bousabarah et al. [70] 2021 Liver and HCC
segmentation MRI DL (U-Net CNN) 91% for liver

68% for HCC
Durand et al. [74] 2020 Sarcopenia evaluation CT DL (U-Net CNN) 97%

CT (computed tomography), CECT (contrast-enhanced computed tomography), MRI (magnetic resonance imag-
ing), HCC (hepatocarcinoma), DL (deep learning), CNN (convolutional neural network), GLC-UNet (global and
local contexts UNet); ARH-CNet (attentive residual hourglass-based cascaded network).

4.3. Classification
4.3.1. Microvascular Invasion

Microvascular invasion (MVI) is recognised as an essential factor for survival in
patients with HCC after LT, and its presence doubles the risk of recurrence [33]. It is defined
as tumour present in a vessel lined by endothelium seen by microscopy [75]. The ability to
detect this feature before a transplant would allow for better transplant list stratification
and risk assessment. The summary of the selected AI models to predict MVI is presented
in Table 4.

Table 4. AI models to predict MVI.

Author Year Scope Data AI-Method AUC

Chen et al. [76] 2022 MVI prediction DCE-MRI
(Gd-EOB-DTPA) + Clinical Radiomics 0.971

Jiang et al. [77] 2021 MVI prediction CECT DL (CNN) 0.906

Sun et al. [78] 2022 MVI prediction DCE-MRI
(Gd-EOB-DTPA) + Clinical DL (ResNet CNN) 0.824

Zhou et al. [79] 2021 MVI prediction DCE-MRI (Gd- DTPA) DL (CNN) 0.926

MRI (magnetic resonance imaging), CECT (contrast-enhanced computed tomography), Gd-EOB-DTPA (gadolin-
ium ethoxy benzyl-diethylenetriamine penta-acetic acid), Gd-DTPA (gadolinium diethylenetriamine penta-acetic
acid), DL (deep learning), CNN (convolutional neural network).

Chen et al. [76] studied 415 patients with small HCC (<3 cm) from three independent
institutions. They developed a radiomics signature from DCE MRI with an intracellular
agent (Gd-EOB-DTPA) and DWI that predicted MVI with an AUC of 0.971. The HBP and
DWI images were most relevant for MVI prediction. Jiang et al. [77] analysed 405 patients
with HCC and triple-phase CT acquisitions (arterial, porto-venous, and delayed phase)
using a 3D CNN with an AUC of 0.906. They compared these results with a radiomics
model that included clinicopathological data, which obtained a lower AUC of 0.887. Sun
et al. [78] used DL and AFP information to study 321 patients with HCC and DCE MR
imaging with intracellular contrast (Gd-EOB-DTPA). They obtained an AUC of 0.824 in
predicting MVI. An ablation study was done to demonstrate which is the most relevant
acquisition for determining MVI. A combination of non-contrast T1, delayed, and porto-
venous phases showed the best results, while DWI had less impact. Zhou et al. [79]
analysed 114 patients undergoing MR imaging using extracellular contrast (Gd-DTPA)
with T1, arterial and venous phases. The data from all three contrast acquisitions was
processed using a 3D CNN that obtained an AUC for predicting an MVI of 0.926. They also
tested the acquisition phases separately and observed that the arterial phase had the best
performance (AUC of 0.855).
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4.3.2. HCC Grading Prediction

Hepatocarcinoma grade is a biological marker for the aggressiveness of tumors, and,
like MVI, it is an important prognostic indicator of recurrence for transplanted patients [80].
The most common classification is the Edmondson and Steiner (ES) according to the
degree of differentiation (from well to undifferentiated) [81]. In transplant patients, a
biopsy is indicated for excluding undifferentiated and poorly differentiated HCC in the
Hangzhou criteria for lesions >8 cm, AFP < 400 ng/mL, and the Toronto Criteria for
lesions beyond Milan. This marker can impact prognosis and allow for better patient
stratification, as size, and histopathological differentiation are significant independent
factors for survival [80]. The summary of selected AI models with HCC grading prediction
functions is presented in Table 5.

Table 5. AI models with HCC grading functions.

Author Year Scope Data AI-Method AUC

Mao et al. [82] 2020 Grading prediction CECT + Clinical Radiomics 0.801
Wu et al. [83] 2019 Grading prediction MRI + Clinical Radiomics 0.8

Han et al. [84] 2023 Grading prediction DCE MRI
(Gd-EOB-DTPA) Radiomics 0.8

Zhou et al. [85] 2019 Grading prediction MRI DL (CNN) 0.83

Zhou et al. [86] 2019 Grading prediction DCE MRI (Gd- DTPA) DL (DenseNet
CNN) 0.83

CECT (contrast-enhanced computed tomography), MRI (magnetic resonance imaging), DWI (diffusion-weighted
imaging), Gd-DTPA (gadolinium diethylenetriamine penta-acetic acid), Gd-EOB-DTPA (gadolinium ethoxybenzyl-
diethylenetriamine penta-acetic acid), DL (deep learning), CNN (convolutional neural network).

Mao et al. [82] analysed 297 patients with HCC to develop a radiomics model that
classifies lesions according to ES into low-grade or high-grade. CECT imaging data from
dual-phase acquisitions (arterial and venous) and clinicopathological data were processed,
and the application reached an AUC of 0.801. Even though arterial phase features showed
more relevance for the prediction task, using both arterial and venous phases proved supe-
rior. Using non-contrast MR imaging and clinical data, Wu et al. [83] studied 170 patients
with HCC to train a radiomics model that classifies lesions according to ES grade into
low or high. The imaging protocol consisted of non-contrast T1 and T2 weighted images
combined with clinical data and obtained an AUC of 0.8. Compared to a model that relied
on imaging alone, the combined clinico-radiological model proved superior (0.742 ver-
sus 0.800). Han et al. [84] developed a combined clinical and imaging radiomics model
to assess HCC grade using hepatospecific DCE MRI (Gd-EOB-DTPA) with T1-weighted,
T2-weighted, hepatobilliary and portovenous imaging. The model analysed 137 patients
with the hepatobiliary phase having the most significant impact on prediction, obtaining
the highest AUC of 0.8. Zhou et al. [85] developed a model to predict ES grading on DWI
MR images using a 3D CNN on a cohort of 98 patients obtaining an AUC of 0.83. MR
acquisitions consisted of DWI using 0, 100 and 600 s/mm2 b-values and generated ADC
maps. The highest b-values proved to be more valuable for classification. Zhou et al. [86]
used a deep neural network (SE-DenseNet) to grade HCC lesions using the ES system from
DCE MR images from a dataset of 75 patients. They used arterial, venous, and delayed
phase images and obtained an AUC of 0.83. They focused more on comparing their model
to other neural networks like DenseNet, ResNet and AlexNet, which performed worse.

4.3.3. Molecular Evaluation

Several immunohistochemical markers can offer further information regarding prog-
nosis or improve the positive diagnosis of HCC. Unfortunately, these can only be obtained
from biopsy specimens or resected lesions. The summary of selected AI models that could
be used for molecular evaluation is presented in Table 6.
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Glypican 3 (GPC3) is present on the cell surface and has been included in the panel
of markers for HCC diagnosis in highly differentiated small lesions [26]. It can also act as
a marker of poor prognosis [87]. The presence of GPC3 in HCC lesions impacts survival
as it has been associated with a higher incidence of MVI [88], a reduced 5-year survival
rate and disease-free survival in patients with LT [88,89]. Gu et al. [90] analysed a cohort
of 293 patients with HCC that underwent MR imaging and developed a radiomics model
based on clinical and imaging data to predict the presence of GPC3. MR protocol consisted
of T1-weighted postcontrast acquisitions using extracellular contrast (Gd-DTPA) with
arterial, venous, and delayed phases. The model that used only imaging data obtained
an AUC of 0.871, and when combined with AFP, the AUC increased to 0.914. In a recent
study, Chong et al. [91] studied 259 patients with HCC that underwent MR imaging with
intracellular contrast (Gd-EOB-DTPA) to develop a radiomics model that predicts the
presence of GPC3. The study showed that the most relevant imaging features were from T2
weighted images and T1 hepatobiliary phase, and together with clinical data, a nomogram
was created that obtained an AUC of 0.943.

Cytokeratin 19 (CK19) is normally expressed in hepatic progenitor cells but not in
healthy hepatocytes, and its presence in HCC lesions is a marker of aggressiveness and
poor prognosis [26,27]. In patients with HCC that have undergone transplants beyond
Milan criteria, CK19 has been associated with recurrence. In contrast, patients without
expression of CK19 showed similar survival rates as those within the Milan criteria [92].
Zhang et al. [93] studied 214 patients and developed a radiomics model using ultrasound
imaging and clinical data to predict the presence of CK19. The combined model obtained
an AUC of 0.867, while the one that used only imaging data had a lower AUC of 0.789,
showing the relevance of combining multiple types of input data. Yang et al. [94] analysed
257 patients with HCC from multiple centres that underwent MR imaging and developed
a radiomics model to determine the presence of CK19+ lesions. The model with the best
predictive performance used features from T2 and DWI with an AUC of 0.790. Chen
et al. [95] developed a radiomics model using data from 80 patients with HCC to determine
the presence of CK19. The imaging protocol consisted of MR imaging with intracellular
contrast (Gd-EOB-DTPA), and the data was obtained from two institutions. They obtained
an AUC of 0.833 by adding clinical data like AFP to improve performance while relying on
imaging alone resulted in an AUC of 0.82. Analysing the data, they found that targetoid
features on imaging were correlated with the presence of CK19.

Table 6. AI models for molecular evaluation.

Author Year Scope Data AI-Method AUC

Gu et al. [90] 2020 GPC3 prediction DCE-MRI (Gd-
DTPA) + Clinical Radiomics 0.914

Chong et al. [91] 2023 GPC3 prediction
DCE-MRI

(Gd-EOB-DTPA) +
Clinical

Radiomics 0.943

Zhang et al. [93] 2022 CK19 prediction US + Clinical Radiomics 0.867

Yang et al. [94] 2021 CK19 prediction DCE-MRI
(Gd-EOB-DTPA) Radiomics 0.79

Chen et al. [95] 2021 CK19 prediction
DCE-MRI

(Gd-EOB-DTPA) +
Clinical

Radiomics 0.833

MRI (magnetic resonance imaging), DCE-MRI (dynamic contrast-enhanced magnetic resonance imaging),
Gd-DTPA (gadolinium diethylenetriamine penta-acetic acid), Gd-EOB-DTPA (gadolinium ethoxybenzyl-
diethylenetriamine penta-acetic acid), US (ultrasound).

5. Discussion and Limitations

Multiple applications of AI can be used in the setting of liver transplants. These range
from the initial detection, which might enhance the ability to identify smaller lesions, to
automatically segmenting liver and liver lesion volumes. Other non-liver imaging markers
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that influence liver transplant outcomes, such as body composition volumes, can also be
automatically evaluated from the same study. Furthermore, the in-depth pixel analysis of
lesions could provide imaging markers that are impossible to assess with the human eye. All
these AI tasks (detection, segmentation, classification) would work as automatic processing
steps that could impact survival, such as early detection, sarcopenia, and the presence of
imaging markers (MVI, grading, GPC3, CK19) are essential for prediction outcomes. Some
of these markers can only be obtained by biopsy pretransplant, which is prone to sampling
errors and has a low sensitivity and positive predictive value in the accurate classification
of HCC grade and low concordance with explant pathology [96]. In this context, tools
that can analyse the entire tumour structure using multimodality imaging might provide
more reliable information before transplant. The individual assessment of characteristics
like grading, MVI or the presence of CK19 and GPC3 could be combined in a complex
model for risk assessment since some of these markers have common imaging features. For
example, qualitative evaluation of rim arterial enhancement and irregular margins can be
associated with both MVI [97] and the presence of CK19 [98], while T1 hypointensity is
associated with both low-grade lesions [99] and MVI [97]. Similarly, reduced hepatobiliary
phase intensity can be found in low-grade lesions [99] and CK19+ [98].

Multiple types of imaging data were used to develop these models. Since the US
is the most widely used technique for screening, it should be a priority for AI detection
algorithms, especially in the setting of chronic liver disease. For segmentation, CT is more
often used for model development, which is expected since it is more readily available
and cheaper than MRI in clinical practice, although radiation exposure must be considered.
The in-depth analysis on a pixel level using DL and radiomics was most often applied to
MRI data, using non-contrast sequences [83,85], extracellular [79,86,90] and intracellular
contrast [76,78,84,91,94,95]. This can be explained by using multiple types of sequences,
and contrast agents in MRI imaging can provide more information than CT or US.

The ideal scenario for developing AI applications is to integrate multiple functions in
one model that could help transplant patients. The robustness of AI models means that
multiple data types can be integrated, including patient demographics, clinical and genetic
data, lab values and imaging markers. For example, some radiomics models analyze clinical
and imaging data for output generation [76,78,82,83,90,91,93,95], and ablation studies
comparing the results show better accuracy when using multiple types of data [83,90,93,95].
In addition, other more serologic biomarkers are evaluated in the setting of HCC, like
the type of circulating nucleic acid, which could help in early diagnosis and prediction of
response to treatment [100].

One barrier to developing these models is the lack of public datasets. For segmentation,
there are some public datasets available for CT, like the LITS [56] and 3DIRCAD [101] but
only CHAOS [102] for MRI. Increasing the amount of training data while providing multi-
centre acquisitions can boost the performance of AI models [103]. These multi-centre
datasets must be heterogenous enough to eliminate biases relating to race, gender, ethnicity,
and age. Regarding the development of biological markers like MVI, GLY3, CK19 or
recurrence prediction, all studies were done retrospectively, and no public databases exist.
Open competitions on common datasets would allow better comparison between models so
that the performance can be evaluated consistently. This would also permit the evaluation
of models and different techniques like deep learning versus radiomics. While DL allows
for a more end-to-end evaluation, it does not give sufficient data on the selected features.
On the other hand, radiomics needs more human input but enables the user to see what
feature is most relevant. A meta-analysis of 16 studies for predicting MVI preoperatively
showed high diagnostic accuracy for AI applications and better performance for DL versus
non-DL models [104].

AI models are frequently reported as “black boxes” because even though they provide
predictive answers, at least for DL, no explanation for these outputs exists. Therefore,
the question of why some predictions is made remains unanswered. Some authors that
used multiple types of imaging data for model development have assessed the impact



Diagnostics 2023, 13, 1663 14 of 19

each sequence or contrast phase has on the final result [76,78,79,82,84,85,91,94,95] or the
relevance of combining features from multiple acquisitions [82]. Another way which
might provide more information for the radiologist is the development of feature maps
highlighting the region of interest that impacted the result most, like the impact of targetoid
enhancement or diffusion restriction on the prognosis of CK19 presence [95]. Thus, having
a transparent feature selection process that radiologists can evaluate might help bridge the
gap between clinicians and AI models. In response, the concept of Explainable Artificial
Intelligence (XAI) [105] has emerged to ensure models are performant and that the imaging
features that have the most impact on the decision can be highlighted for further study.

For the development of reproducible and transparent models, authors have to provide
enough details to allow for full comprehension of the scope and methods used. Therefore,
some AI-adapted publishing guidelines, like CLAIM (Checklist for Artificial Intelligence
in Medical Imaging) [106], have been made available for authors and reviewers to ensure
quality standards are met.

6. Conclusions

A liver transplant is an ideal treatment for patients with hepatocellular carcinoma and
advanced chronic liver disease. Still, the lack of organ availability favours the adoption of
rigorous selection criteria for candidates. In this setting, artificial intelligence can provide
an aid to extract more quantitative data from imaging and integrate these features with
clinical data to develop complex models that process large amounts of information. Thus,
they can offer better assessments of liver transplant candidates to ensure the best survival
rates and reduce the recurrence of HCC. However, even with promising results, these
models must be validated in a prospective clinical setting, and the issue of limited public
datasets should be addressed.
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