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Abstract: The disaster of the COVID-19 pandemic has claimed numerous lives and wreaked havoc on
the entire world due to its transmissible nature. One of the complications of COVID-19 is pneumonia.
Different radiography methods, particularly computed tomography (CT), have shown outstanding
performance in effectively diagnosing pneumonia. In this paper, we propose a spatial attention and
attention gate UNet model (SAA-UNet) inspired by spatial attention UNet (SA-UNet) and attention
UNet (Att-UNet) to deal with the problem of infection segmentation in the lungs. The proposed
method was applied to the MedSeg, Radiopaedia 9P, combination of MedSeg and Radiopaedia 9P,
and Zenodo 20P datasets. The proposed method showed good infection segmentation results (two
classes: infection and background) with an average Dice similarity coefficient of 0.85, 0.94, 0.91, and
0.93 and a mean intersection over union (IOU) of 0.78, 0.90, 0.86, and 0.87, respectively, on the four
datasets mentioned above. Moreover, it also performed well in multi-class segmentation with average
Dice similarity coefficients of 0.693, 0.89, 0.87, and 0.93 and IOU scores of 0.68, 0.87, 0.78, and 0.89 on
the four datasets, respectively. Classification accuracies of more than 97% were achieved for all four
datasets. The F1-scores for the MedSeg, Radiopaedia P9, combination of MedSeg and Radiopaedia P9,
and Zenodo 20P datasets were 0.865, 0.943, 0.917, and 0.926, respectively, for the binary classification.
For multi-class classification, accuracies of more than 96% were achieved on all four datasets. The
experimental results showed that the framework proposed can effectively and efficiently segment
COVID-19 infection on CT images with different contrast and utilize this to aid in diagnosing and
treating pneumonia caused by COVID-19.

Keywords: COVID-19 pneumonia segmentation; CT images; SAA-UNet model; spatial attention
module (SAM); attention gate (AG)

1. Introduction

In December 2019, people began rush Wuhan hospitals with severe pneumonia of
unknown cause. After the number of infected people increased, on 31 December, China
notified the World Health Organization of the outbreak [1,2]. After several examinations,
the virus was found to be a coronavirus with more than 70% similarity to SARS-CoV on
7 January [3]. Coronavirus 2019 is a severe acute respiratory syndrome (SARS-CoV-2),
named COVID-19 by the World Health Organization in February 2020 [4]. It is from the
beta virus family, which is highly contagious and causes various diseases. One of these
viruses appeared in 2003, called severe acute respiratory syndrome (SARS), and another
appeared in 2012, the Middle East respiratory syndrome (MERS) [5,6]. The first fatal
case of coronavirus was reported on 11 January 2020. As a result, the World Health
Organization (WHO) declared a global emergency on 30 January 2020. The number of cases
began to increase dramatically due to human-to-human transmission [7]. The infection is
transmitted through droplets from the coughing and sneezing by patients, whether they
show symptoms or not [8]. These infected droplets can spread from one to two meters and
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accumulate on surfaces. COVID-19 continued to spread despite strict preventive efforts.
Consequently, the WHO declared coronavirus a global pandemic at the International Health
Meeting held in March 2020 [9]. The number of confirmed cases has reached more than
758 million, and the number of deaths has reached 6,859,093 persons [10].

Pneumonia is a complication of viral diseases such as COVID-19, influenza, the com-
mon cold, bacteria, fungi, and other microorganisms. COVID-19 can affect any organ in the
human body, and the symptoms range from mild, like the common cold, to more severe
pneumonia or even be asymptomatic. Pneumonia caused by COVID-19 is named “novel
coronavirus-infected pneumonia (NCIP)” [11].

The formal diagnosis of COVID-19 infection is the reverse-transcription-polymerase
chain reaction (RT-PCR) test. This test takes a swab from the mouth, nasopharynx, bronchial
lavage, or tracheal aspirate. The RT-PCR test has a high error rate because of the low sensi-
tivity. Furthermore, blood tests may show signs of COVID-19 pneumonia [12]. Computed
tomography (CT) of the chest is a complementary tool for the diagnosis even before the
patients develop symptoms, as CT images show the places of lung damage caused by
COVID-19 [13]. This helps to know the extent of the infection at any stage of the disease.
CT is the latest tool that uses X-rays and computers to create three-dimensional human
body images. It is a scan that combines a series of X-ray images taken from different angles
around an organ or body and uses computer processing to create cross-sectional images
called slices. Computerized tomography images provide more detailed information than
regular X-rays, as they are three-dimensional images. These 3D images are made using
tomography, which shows the parts of the organ, facilitates segmentation, and diagnoses
diseases. In CT scans for people with COVID-19, the lungs contain different opacity forms
such as ground-glass opacity (GGO) and consolidation, as shown in Figure 1 [14]. This
infection is due to the entry of the virus into the cells by attaching to surface angiotensin-
converting receptor enzyme 2 (ACE2). After the virus enters, it causes the tiny air sacs to
inflate, causing them to fill with so much fluid and pus that breathing is difficult. The in-
haled oxygen is processed and delivered to the blood in these sacs. This damage causes
tissue rupture and blockage in the lungs. Later, the walls of these sacs thicken, making
breathing difficult. As a result of that, the lungs become the first organ affected by the
coronavirus [15,16].

Figure 1. Computed tomography for COVID-19 patients. The ground-glass opacity (GGO) appears
in blue and consolidation in white.

Artificial intelligence, specifically deep learning, has recently played an effective and
influential role in medical images. The diagnostic evaluation of medical image data is a
human-based technique that requires sufficient time by expert radiologists. Recent ad-
vances in artificial intelligence have substituted many personalized diagnostic procedures
with computer-aided diagnostic (CAD) methods that can achieve effective real-time diag-
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noses. As a result, it has an essential role in diagnosing diseases such as infections, cancer,
and many other diseases by taking shots of the organ or even the whole body to help radiol-
ogists make decisions and plan the stage of treatment. The segmentation task identifies the
pixel or voxels that make up the contour or the interior of the region of interest (ROI) as the
first stage in computer-aided diagnostics (CAD) [17,18]. Many deep learning algorithms
used in image segmentation tasks have succeeded in biomedical images. For example,
a fully convolutional network (FCN) was proposed as an end-to-end, pixel-to-pixel net-
work for image segmentation [19], SegNet [20]. UNet was proposed for biomedical image
segmentation, in which an encoder–decoder structure with concatenated skip connections
yielded significant performance improvements [21], and the modified UNet (UNet++ [22])
and PSPnet [23] have been widely used in medical image segmentation.

This research proposes a spatial attention and attention gate UNet model (SAA-UNet).
Additionally, we trained the SAA-UNet model with boundary loss combined with weighted
category cross-entropy and Dice loss as a loss function. The framework was used to identify
areas of COVID-19 pneumonia and segment regions of interest (ROIs) from computed
tomography images. We applied it to four limited datasets published in open sources at
the European Institute for Biomedical Imaging Research (EIBIR) [24]. The summary of the
contributions of this work is as follows:

• We propose the spatial attention and attention gate UNet model (SAA-UNet) based
on attention UNet (Att-UNet) and spatial attention UNet (SA-UNet). We took the
attention approach proposed by Ozan Oktay et al. [25] to focus on COVID-19 infection
regions. The local features vector of infection improved the performance compared to
gating established on a global feature vector. We took the spatial attention module
(SAM) approach proposed by Changlu Guo et al. [26] to deal with features fed to the
bridge of SAA-UNet from the encoder to the decoder. This makes it take essential
features needed in spatial information and helps reduce the number of parameters.

• SAA-UNet proved to be effective in segmenting the infection areas in CT images of
COVID-19 patients.

• SAA-UNet showed good generalization when applied to different datasets.

The paper is organized as follows: Section 2 provides the related literature review.
Section 3 describes the proposed framework, spatial attention, and attention gate UNet
(SAA-UNet) model architecture in detail. Section 4 describes the COVID-19 CT image
datasets, and Section 5 explains the analysis and preprocessing of the data. Section 6 shows
the experimental results, and Section 7 provides the discussion on the experimental results.
Finally, Section 8 concludes the paper and provides future work recommendations.

2. Related Work

With artificial intelligence (AI) advancements in the health field, many deep learning
algorithms have been proposed for medical image processing as segmentation tasks play
an essential role in the treatment stage. For example, Ronneberger et al. [21] introduced
the standard UNet for biomedical image segmentation. They evaluated UNet on several
datasets, including the ISBI Challenge for segmenting neuronal structures in electron
microscopic stacks. They achieved an average IOU on the PhC-U373 dataset of 0.92 and
on DIC-HeLa of 0.777. Oktay et al. [25] proposed an extension to the UNet architecture.
They added an attention mechanism to skip the connection of UNet to focus on the image’s
region of interest and improve the segmentation. They evaluated attention UNet on the 150
abdominal 3D CT scans from patients diagnosed with gastric cancer dataset and achieved
a Dice score of 0.84. The second dataset CT consisting of 82 contrast-enhanced 3D CT scans
of the pancreas achieved a Dice score of 0.831. In continuation, Zhao et al. [26] proposed a
modification of the UNet architecture that included a spatial attention module in the bridge
to focus on the important regions of the image. They evaluated SA-UNet on the Vascular
Extraction (DRIVE) dataset and the Child Heart and Health Study (CHASE-DB1) dataset.
They achieved F1-scores of 0.826 and 0.815, respectively.
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Relying on the above, deep learning models can be used to find areas of lung damage
caused by 2019-nCoV. Athanasios Voulodimos et al. [27] used an FCN-8s to segment
COVID-19 pneumonia and achieved a 0.57 Dice coefficient. They proposed a light UNet
model with three stages of the encoder and decoder to deal with the limited datasets of this
problem. This achieved a 0.64 Dice coefficient. Sanika Walvekar and Swati Shinde proposed
UNet with preprocessing and spatial, color, and noise data augmentation from the MIScnn
library with Tversky loss [28]. The Dice similarity coefficient (DSC) for COVID-19 was
0.87 for infection segmentation and 0.89 for the lungs. Imran Ahmed et al. [29] proposed
an attention mechanism added to the standard UNet architecture to improve feature
representation with binary cross-entropy Dice loss and boundary loss. The Dice score was
0.764 on the validation set. Tongxue Zhou et al. [30] proposed a spatial attention module
and a channel attention module added to a UNet architecture with focal Tversky loss.
The spatial attention module reweights the feature representation spatially and channelwise
to capture rich contextual relationships for better feature representation. The DSC was
0.831. Narges Saeedizadeh et al. [31] proposed a ground-glass recognition system called
TV-Unet, a UNet model with a total variation gradient. The loss function was the binary
cross-entropy with a total variation term. The DSC achieved 0.86 and 0.76 for two different
splits. The combination of two UNet models proposed by Narinder Singh Punna and
Sonali Agarwala [31] is called the CHS-NET model. One segments the lungs, and the other
segments infection with the weighted binary cross-entropy and Dice loss function. The
CHS-NET model uses UNet, Google’s Inception model, a residual network, and an attention
strategy. The DSC for the lungs was 0.96, whereas for COVID-19 infection, it was 0.81. Tal
Ben-Haim et al. [32] proposed a VGG backbone in the encoder of two UNets. The first UNet
model segments the lung regions from CT images. The second UNet model extracts the
infection or shapes of lesions (GGO and consolidation). For the segmentation of infection
with the binary cross-entropy loss, the DSC was 0.80, and for the multi-class weighted
cross-entropy (WCE) and Dice loss, the GGO was 0.79 DSC and the consolidation 0.68.
A plug-and-play attention module [33] was proposed to extract spatial features by adding to
the UNet output. The plug-and-play attention module contains a position offset to build the
positional relationship between pixels. This framework achieved 0.839 for the DSC. Ziyang
Wang and Irina Voiculescu [34] proposed the quadruple augmented pyramid network
(QAP-Net) for multi-class segmentation by establishing four augmented pyramid networks
on the encoder–decoder network. These four were two pyramid atrous networks with
different dilation rates, the pyramid avg pooling network and the pyramid max pooling
network. The mean intersection over union (IOU) score with categorical focal loss was 0.816.
Qi Yang et al. [35] used MultiResUNet [36] as the basic model, introduced a new “Residual
block” structure in the encoder part, added regularization and dropout, and changed
the partial activation function from rectified linear unit (ReLU) activation function to
LeakyReLU. The DSC with a combination of binary cross-entropy, focal, and Tversky
loss was 0.884. Nastaran Enshaei et al. [37] proposed using the Inception-V3, Xception,
InceptionResNet-V2, and DenseNet-121 pre-trained encoders and replacing each fully
connected model with the decoder to segment COVID-19 infection. Consequently, the
the results of multiple models were aggregated by soft voting for each image pixel. This
achieved a Dice score for GGO = 0.627 and consolidation = 0.592 with the categorical
cross-entropy. Moreover, Murat Ucar [38] proposed aggregating the pre-trained VGG16,
ResNet101, DenseNet121, InceptionV3, and EfficientNetB5 with a pixel-level majority vote
to obtain the last class probabilities for each pixel in the image. The Dice coefficient was
0.85 with the Dice loss. Hong-Yang PEI et al. [39] proposed a multi-point supervised
network (MPS-Net) based on UNet. The proposed model gave a 0.833 DSC result with a
combination of binary cross-entropy and Tversky loss to detect COVID-19 infection. Ümit
Budak et al. [40] proposed an A-SegNet network that combines SegNet with the attention
gate (AG) mechanism. The DSC score was 0.896 on the validation set with focal Tversky
loss.
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Alex Noel Joseph Raj et al. proposed an attention gate-dense network-improved
dilation convolution UNet (ADID-UNET) based on UNet [41]. ADID-UNet achieved an
average Dice score of 0.803 on the MedSeg + Radiopaedia dataset with the Dice loss. Ying
Chen et al. proposed a HADCNet model based on UNet that contains hybrid attention
modules in five stages of the encoder and decoder [42]. It helps balance the semantic
differences between various levels of features, which refines the feature information. HAD-
CNet was trained with five-fold cross-validation with the cross-entropy and Dice loss on
the MedSeg, Radiopaedia P9, 150 COVID-19 patients, and Zenodo datasets, achieving
Dice scores of 0.792, 0.796, 0.785, and 0.723. Nour Eldeen M. Khalifa et al. proposed an
architecture of three encoder and decoder stages to deal with the limited datasets prob-
lems [43]. The mean IOU score for Zonodo 20P achieved 0.799. Yu Qiu et al. proposed
a MiniSeg model to extract multiscale features and deal with limited datasets with 83K
parameters [44]. After MiniSeg was trained with five-fold cross-validation with the cross-
entropy loss on MedSeg, Radiopaedia (P9), Zenodo 20P, and MosMedData, the average
Dice scores were 0.759, 0.80, 0.763, and 0.64, respectively. Xiaoxin Wu et al. proposed a focal
attention module (FAM) inspired by a residual attention network that contains channel
and spatial attention, with a residual branch in the feature map [45]. The focal attention
module was applied to the FCN, UNet, SegNet, PSPNet, UNet++, and DeepLabV3+ with
binary cross-entropy loss (BCE), where the best was DeepLabV3+ when applied on Zenodo
20P with an average Dice score of 0.885. Feng Xie et al. proposed the double-U-shaped
dilated attention network (DUDA-Net) to enhance segmentation [46]. DUDA-Net contains
a coarse-to-fine network with a coarse network for lung segmentation and a fine network
for infection segmentation. The proposed model was trained with five-fold cross-validation
with Tversky loss on infection slices of Radiopaedia 9P with an average Dice score of 0.871
and a mean IOU of 0.771. Vivek Kumar Singh et al. proposed a LungInfseg model based
on an encoder and decoder structure [47]. LungInfseg was applied on Zenodo 20P with a
combination of blockwise (BWL) and total loss (TL), with an average Dice score of 0.8034. R.
Karthik et al. proposed a contour-enhanced attention decoder CNN model with an encoder
and decoder structure [48]. The proposed model with the mean pixelwise cross-entropy
loss was applied to the Zenodo 20P dataset and had an average Dice score of 0.88; on the
MosMedData dataset, the Dice score was 0.837, and on the combination of the Zenodo 20P
and MosMedData datasets, the Dice score was 0.854. Kumar T. Rajamani et al. proposed
the deformable attention net (DDANet) model [49] based on UNet and criss-cross attention
(CCNet) [50]. The proposed model has the same structure as attention UNet [25], with a
criss-cross attention module inserted in the bottleneck to capture non-local interactions.
DDANet was trained with five-fold cross-validation on the combined dataset of MedSeg
and Radiopaedia 9P with multiple classes with class-weighted cross-entropy loss where
GGO was 0.734, consolidation was 0.614, and the average Dice score was 0.781.

Three-dimensional algorithms can be used for the overall CT volume of a patient.
Keno K. Bressem [51] proposed a pre-trained 3D ResNet block added to the 3D UNet
architecture to solve COVID-19 computed tomography image segmentation. The DSC
was 0.648, combining the Dice loss and pixelwise cross-entropy loss. Aswathy A. L. and
Vinod Chandra [52] proposed a cascaded 3D UNet with two 3D UNet, the first for segment
lung volumes and the second for infection volume. The DSC for the lung = 0.925 and
infection = 0.82. The 3D algorithms for the segmentation of COVID-19 from CT are rarely
used for several reasons, including the computational cost and limited datasets of this
problem.

This research proposes a framework to train SAA-UNet in binary and multi-class
segmentation using the contrast enhancement method in preprocessing and a combination
of the weighted category cross-entropy, Dice, and boundary loss as the loss function.
The boundary loss function with regional loss takes useful information from infection
bounds from irregular and complex shapes.
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3. Methodology

The spatial attention and attention mechanism UNet model (SAA-UNet) is a proposed
state-of-the-art algorithm based on spatial attention UNet (SA-UNet) [26] and attention
UNet (Att-UNet) [25] to deal with the complexity of COVID-19 pneumonia images. More-
over, a framework is proposed using the preprocessing method and a combination of
weighted category cross-entropy, Dice loss, and boundary loss.

The flowchart of the framework to train the proposed model followed in this research
is illustrated in Figure 2. At the beginning, the slices xi are extracted from the CT scan xI if
the dataset is not initially of slice images. Afterward, xi are fed to the preprocessing phase,
and then, the pixel is classified as either binary or multi-class. Then, the dataset is split
into training and testing sets and the training set fed as the input to SAA-UNet to train
with 10-fold cross-validation. Next, the trained model is tested on the test set. Finally, the
masks of the images of the region of interest (ROI) of COVID-19 damage in the lungs are
predicted.

The section is organized as follows: Section 3.1 is the CT preprocessing stage. Section 3.2
is the SAA-UNet model architecture’s description with the details of the spatial attention
module (SAM) in Section 3.3 and the attention gate (AG) in Section 3.4. After that, Sec-
tion 3.5 explains the optimization with the combination of the weighted category cross-
entropy, Dice, and boundary loss. Finally, Section 3.6 displays the performance metrics
used to evaluate the SAA-UNet model.

Figure 2. Block diagram of proposed framework for COVID-19 CT segmentation.

3.1. Pre-Processing of Images

The Hounsfield unit (HU) scale is a dimensionless unit utilized in CT images depend-
ing on the organ and the disease. The chest CT pixel value intensity of air is−1000, of water
is 0, of the lung is −700 to −500, and of the lung tissue is 500 HU to 910 HU, whereas the
chest wall, blood, and bone are higher than 500 HU. The HU is used due to the imperfect
clarity of CT scan datasets before entering them into the model. The CT scan contrast is
different from one dataset to another. As shown in Figure 2, the preprocessing stage begins
with the edit Hounsfield unit (HU) histogram if the intensity of xi pixels of air is less than
−1000. This means that the datasets have insufficient contrast, so normalizing the air by
more than −1000 allows the contrast to increase. The contrast stretching is enhanced when
the helpful xi pixels on the left edge are mapped to black and the right ones to white. As a
result, the useless pixels are removed by creating a threshold with two cutoff points (1).

Threshold = (xi > HUlower)and(xi < HUhigher) (1)
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These are generated by a Boolean mask from the NumPy array and selecting values
between the lower and upper bounds [53]. After enhancing the contrast, xi is normalized
and confined between 0 and 1. Then, xi is rotated with the related masks 90 degrees.
The final step in the preprocessing is resizing different resolutions of xi by the OpenCV
library [54] to decrease the cost compensation with inter-area interpolation, resampling
using the pixel area relation.

3.2. Spatial Attention and Attention UNet Model

SAA-UNet has an encoder–decoder structure, as shown in Figure 3. The encoder
phase has four stages: E1, E2, E3, and E4, which help extract the information from the CT
slices’ input images. At the beginning, with binary segmentation, xi is fed as the input
to E1, consisting of two convolutional layers with a 3 × 3 kernel size, stride 1, and 64
filters, each followed by the ReLU activation function (2), then a 2 × 2 Max-Pooling layer
to progressively decrease the spatial size of the representation.

ReLU : f (x) = Max{0, x} (2)

E2, E3, and E4 consist of two 3 × 3 convolutional layers with 128, 256, and 512 filters,
respectively, and stride 1. Each convolutional layer is followed by batch normalization,
ReLU activation functions, and 2 × 2 Max-Pooling. Each output of Max-Pooling is fed to
the next encoder stage. Consequently, the E4 output is fed into the bridge that contains
the spatial attention module (SAM). The SAM helps extract the spatial features from all
encoder stages and decreases the number of parameters. After that, the output of the
SAM FSAM ∈ RH×W×1 is fed to the decoder. Moreover, the extracted features map of each
encoder stage are transferred by a skip connection to the corresponding decoder stage as
a UNet model. The skip connection contains an attention gate (AG) to focus on essential
features.

Figure 3. Spatial attention and attention UNet model architecture.

The decoder includes the D1, D2, D3, and D4 stages to determine the spatial in-
formation. Each stage has an upsample layer followed by a convolutional layer, batch
normalization, and ReLU. The output of ReLU is forwarded to the attention gate (AG) as
the second input. The output of the AG FAG ∈ RH×W×1 is concatenated with the second
input of the AG and goes to two convolutional layers and two ReLUs. The AGs filter the
neuron activations to concentrate on a subset of target structures through the forward and
backward passes. Through the backward pass, the gradients originating from background
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regions are down-weighted. This allows updating the model parameters in shallower layers
based on relevant spatial regions. The AG parameters can be trained with the standard
back-propagation updates. The D1 convolutional has 512 filters, whereas D2 has 256, D3
has 128 filters, and D4 has 64 filters, the same as the E1 filters. D4’s last layer is the 1x1
convolutional layer with a Sigmoid function for predicting binary masks.

Sigmoid : f (x) =
1

1 + e(−x)
(3)

where x is the input vector. In contrast, the multi-class segmentation of D4’s last layer has
the 1 × 1 convolutional with the SoftMax function.

So f tMax : σ(x)i =
exi

∑k
j=1 exj

(4)

where xj is the input vector, xi is an element of the vector, and k is the number of classes.
The multiple classes are learned with multi-dimensional attention coefficients, which have
been used to learn sentence embedding [25]. Algorithm 1 explains the pseudocode of the
SAA-UNet algorithm.

3.3. Spatial Attention Module

The spatial attention module is the informative part that focuses on producing a spatial
attention map through the spatial association between features [26,55]. As illustrated in
Figure 3, the output of the last E4 layer is fed as the input to the SAM. Figure 4 shown
the input feature of SAM is F ∈ RH×W×1, which is forwarded through the channelwise Max-
Pooling and Average-Pooling to generate the outputs Fs

Max ∈ RH×W×1 and Fs
Avg ∈ RH×W×1,

respectively. These output feature maps are concatenated to make feature descriptors.
Then, this is followed by the convolutional layer with a 7 × 7 kernel size and the Sigmoid
activation function. After that, the output of the Sigmoid function layer is elementwise
multiplication with E4 to generate a spatial attention map FSAM ∈ RH×W×1.

FSAM = F · σ( f 7×7
([

Fs
Max × Fs

Avg

])
(5)

where f 7×7 denotes a convolution operation with a kernel size of 7 and σ represents the
Sigmoid function.

Figure 4. Spatial attention module (SAM) architecture.

3.4. Attention Gating Module

The attention gate with additive attention focuses on capturing a sufficiently receptive
feature map and identifies feature responses to keep only the relevant ones in the region
of interest [25]. In this way, it progressively suppresses feature responses in irrelevant
background regions without the necessity of cropping a region of interest (ROI). The AG is
applied to the features, which are passed to the skip connection from the encoder stage,
as shown in Figure 3, to disambiguate irrelevant and noisy responses. The two inputs to the
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AG are the corresponding encoder’s feature map and the decoder stage of deciding on the
focus regions. As shown in Figure 5, each of the two inputs is fed to the 1 × 1 convolutional
and batch normalization layers, and then, the two outputs are fed to the elementwise
addition. After that, the output is fed to the ReLU activation, 1 × 1 convolutional, and
batch normalization layers and the Sigmoid activation function. The output of the Sigmoid
function is fed to the elementwise multiplication with the output of the last encoder stage
layer.

FAG = F · σ[(B× f 1×1 × ReLU)× (B× f 1×1) + (B× f 1×1)] (6)

where f 1×1 denotes a convolution operation with a kernel size of 1, B is batch normalization,
and σ represents the Sigmoid function.

Figure 5. Attention gate (AG) architecture.

Algorithm 1: The pseudocode of the proposed SAA-UNet model

1 Image: input image of the network;
2 Encoder stages: E1, E2, E3, and E4, decoder stages: D1, D2, D3, and D4;
3 While (stage ≤ 4), do
4 Converting image to feature map F;
5 For encoder stages ∈ {1, 2, 3, 4}, do
6 F→ E1;
7 E1→ E2 and D4;
8 E2→ E3 and D3;
9 E3→ E4 and D2;
10 E4→ SAM and D2;
11 End for
12 For decoder stages ∈ {1, 2, 3, 4}, do
13 Generate spatial attention (SAM) by EQ(5);
14 SAM→ D1;
15 D1→ D2;
16 D2→ D3;
17 D3→ D4;
18 In D1, D2, D3, and D4: generate attention gate (AG) by EQ(6);
19 End for
20 Obtain the final feature map in binary segmentationwith EQ(3) and in multi-class segmentationby EQ(4);
21 End while

3.5. Combination of Weighted Cross-Entropy Loss Function, Dice Loss, and Boundary Loss

When the segmentation model segments the infection from an organ, it will likely
ignore small-sized anterior layers in the training process, resulting in low segmentation
performance. In COVID-19 infection segmentation, the class imbalance problem can be
solved using the loss function as an optimization method. In this study, a combination of
the weighted cross-entropy loss function and Dice loss was used as the region loss function
to combine their usefulness for the imbalanced dataset problem. Moreover, the boundary
loss was integrated to take care of the edge information between regions and does not
ignore them, like the other region losses.
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Weighted cross-entropy loss is used to control category classification to calculate
the probability of being a specific class, as proposed by Warren Weaver [56]. The basic
formula is

LCCE =
1
n

n

∑
i=1

m

∑
j=1

yij log
(

pij
)

(7)

where i is the index of the samples, j is the index classes, y is the sample label, and pij ∈
(0, 1) : ∑j pij = 1∀i, j is the prediction for a sample. Moreover, m is the number of classes
(in binary segmentation, m = 2, which is a special case of category cross-entropy called
Bernoulli cross-entropy loss [57]).

Dice loss is inspired by the Dice score scale and is widely used in medical image
segmentation to handle data imbalance problems. Nevertheless, it addresses the imbalance
between foreground and background and between uncomplicated and complex examples
that affect a learning model’s training process. It can be formulated as follows:

LDice(G, P) = 1− 2|P ∩ G|
|P|+ |G| (8)

where G is the ground truth and P is predicted.
The combination of weighted category cross-entropy (CCE) loss and Dice loss as the

region loss is given as
Lossregion = wLCCE + LDice (9)

where w is the respective weight.
Boundary loss was proposed by Hoel Kervadec et al. [58,59], motivated by discrete

optimization techniques for computing gradient flows of curve evolution. Boundary
loss is a loss complimentary to region loss that integratesover the boundary instead of
integratingover regions address the unbalanced segmentation problems. It is computed as
the distance distribution Dist(∂G, ∂Sθ) between two boundaries in the spatial domain Ω,
the G boundary ground truth of the spatial neighbor in the background Ω/G and Sθ the
boundary segmentation region produced by the network.

The final boundary loss function is formulated as

BL =
∫

Ω
φG(p)sθ(p)dp (10)

where φG is pre-computed directly from the ground truth region G, sθ(p) is the SoftMax
probability outputs of the network with a constant independent of θ, and dp is independent
of the network parameters.

Finally, the combination of the region loss (weighted category cross-entropy, Dice loss)
with the boundary loss is formulated as

Loss = (α)Lossregion + (1− α)BL (11)

where α is a parameter balancing the losses. We started with a low value of α > 0 and
increased it gradually at the end of each epoch.

3.6. Performance Metrics

Four commonly used performance metrics in the field of medical image segmentation
are the Dice coefficient score, the intersection over union (IoU) score, the sensitivity, and the
specificity. We also computed the overall accuracy, precision, and F1-score to supplement
the efficacy of the proposed model. The evaluation metrics, the accuracy, sensitivity,
specificity, precision, and F1-score, were calculated based on the true positives (TPs), true
negatives (TNs), false positives (FPs), and false negatives (FNs).
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Pixel accuracy is the easiest way to evaluate the segmentation model’s performance.

Pixel − Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Precision is a metric that measures the quality of predictions.

Precision =
TP

TP + FP
(13)

Specificity is also called the true negative rate (TNR) and measures the true negatives
correctly determined by the model.

Speci f icity =
TN

TN + FP
(14)

Sensitivity (recall) is used to evaluate the model performance by showing how many positive
instances the model correctly identified.

Sensitivity(Recall) =
TP

TP + FN
(15)

The F1-score is calculated by:

F1-score = 2× Precision× Recall
Precision + Recall

(16)

The most-common measures to estimate segmentation are the Dice coefficient score
and the intersection over union (IOU) score. The Dice coefficient score is two multiplications
of the overlapping area between the ground truth and predicted segmentation divided by
the total number of pixels in both images. It can be calculated as follows:

Dice(P, G) =
2|P ∩ G|
|P|+ |G| =

2TP
2TP + FN + FP

(17)

where G is the ground truth and P is predicted.
The IOU is the area of overlap between the predicted segmentation and the ground

truth divided by the area of the union between them.

IOU(P, G) =
|P ∩ G|
|P ∪ G| =

TP
TP + FN + FP

(18)

Both the Dice score and the IOU score measure the overlap between the ground truth and
the class predicted by the model. Both metrics are always positively correlated. The Dice
score is closer to the average performance of the segmentation model, whereas the IoU
score represents the worst-case performance of the segmentation model by penalizing the
bad classification more.

4. Datasets

The datasets used to train and evaluate the SAA-UNet model for CT images were
published by the European Institute for Biomedical Imaging Research (EIBIR) [24]. Table 1
shows the details of the limited CT datasets for identifying and quantifying the damage
caused by COVID-19 in the lungs. The CT scan of one patient contains a set of slices taken
simultaneously from different angles; each slice carries specific information about the lung
and the damage of infection to it.

The MedSeg dataset [60] contains 100 slices of CT images from more than 40 patients
with COVID-19 converted to the Neuroimaging Informatics Technology Initiative format
(NIfTI) and is openly accessible from the Italian Society of Radiology (SIRM) [61]. This
dataset was segmented by a radiologist using three labels: ground-glass (GGO), consol-
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idation, and pleural effusion, but because of the rarity of pleural effusion, they deleted
it and also added lungs and background masks to this dataset [62]. The Radiopaedia9P
dataset [60] includes whole volumes for nine patients’ CT scans with 829 slices collected
from countries across the globe. It includes positive and negative slices, where the radi-
ologist evaluated 373 out of 829 as positive and segmented. This dataset was converted,
annotated, and normalized similarly to the MedSeg dataset [62].

The Zenodo 20P dataset [63] contains the CT scans with 3520 slices of 20 patients
infected with COVID-19 collected from countries across the globe. Two radiologists an-
notated the left lung, right lung, and infection, then this was verified by an experienced
radiologist.

Table 1. Description of the datasets.

Dataset Patients
CT Cases # of Slices COVID-19 Infection Non-

COVID-19 Annotation Training Slices
in Each Fold

Validation Slices
in Each Fold Testing

MedSeg >40 100 96 4 GGO, Consolidation,
Lungs, Background 81 9 10

Radiopaedia 9P 9 829 373 456 GGO, Consolidation,
Lungs, Background 671 75 83

MedSeg+Radiopaedia9P >49 929 469 460 GGO, Consolidation,
Lungs, Background 752 84 93

Zenodo 20P 20 3520 1793 1727 Infection, Left Lung,
Right Lung, Background 2851 317 352

5. Data Analysis and Preprocessing

The Hounsfield unit scales the clarity of the CT scan dataset before entering it into the
model. The CT scan contrast is different from one dataset to another. This section analyzes
and shows the preprocessing of the MedSeg and Radiopaedia 9P datasets, then the Zenodo
20P dataset. Since the MedSeg and Radiopaedia 9P datasets were preprocessed similarly,
they can be combined as one dataset to have a more extensive dataset.

5.1. Preprocessing of MedSeg and Radiopaedia 9P Datasets

At the start, the slices and related masks were rotated 90 degrees. The radiologists
annotated the mask classes for slices into four classes: ground-glass opacity (GGO), con-
solidation, lungs, and background. The Hounsfield unit (HU) histogram of the MedSeg
dataset (100 slices) shows the intensity of pixels confined between −1606 and 597, shown in
Figure 6A. The Hounsfield unit (HU) histogram of the Radiopaedia 9P dataset (829 slices)
shows the intensity of pixels confined between −1414 and 291, shown in Figure 6C. These
datasets have insufficient contrast, so the enhanced contrast method was used. After en-
hancing the contrast, the HU was normalized and confined between 0 and 1, as shown
in Figure 6B for MedSeg and (D) for Radiopaedia 9P. The last row shows the HU before
and after preprocessing for combining the two datasets used with the same preprocessing
in Figure 6E,F. Two examples of the CT images before and after using the enhanced con-
trast method are illustrated in Figure 7. The MedSeg dataset has a 512 × 512 resolution
(this dataset was not resized because it is limited). The Radiopaedia 9P dataset and the
combination of MedSeg and Radiopaedia 9P also have a 512 × 512 resolution resized by
shrinking the slices to 128× 128 using the OpenCV [54] library with inter-area interpolation
to decrease the cost compensation. The inter-area interpolation is calculated based on the
ratio to shrink the image:

Ratio =
ImagesizActual
ImagesizNew

(19)

The inter-area interpolation ratio is calculated by resizing this dataset with one channel.
This ratio is the number of pixels needed to take their average and give it to one pixel.
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Figure 6. Hounsfield unit (HU) before enhancing the contrast and normalized. (A) HU of MedSeg
before contrast enhancement, (B) HU of MedSeg after enhancement, (C) HU of Radiopaedia 9P before
enhancement, (D) HU of Radiopaedia 9P after enhancement, and (E) HU of the combination of them
before and (F) after the enhancement.

Figure 7. Example of MedSeg and Radiopaedia before and after enhancing the contrast of slices.

In binary segmentation, the GGO and consolidation categories were combined as an
infection category because the infection segment from the lung regions was our interest.

5.2. Preprocessing of Zenodo 20P Dataset

This dataset is in NIfTI format, so first, we extracted the slices from the CT scan and
rotated them 90 degrees. These data contain four classes for multi-class segmentation:
infection, left lung, right lung, and background. Consequently, the infection segmentation
from the slices was our interest in binary segmentation. As shown in Figure 8A, the HU
was confined between 4564 and −1023, where the intensity is more in −1000 for air and 0
for water. We normalized the slices directly between 0 and 1. The HU after normalization
is shown in Figure 8B. Some slices had a 512 × 512 resolution and the rest 630 × 630, where
one patient scan was 401 × 630. We resized the slices to 128 × 128 using the OpenCV
library to decrease the cost computation with inter-area interpolation as the other datasets.
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Figure 8. Hounsfield unit (HU) of Zenodo 20P dataset. (A) HU before Normalization, (B) HU after
Normalization.

6. Experiments and Results

To demonstrate the impact of the proposed model, spatial attention and attention
UNet (SAA-UNet), we trained it on the four above-mentioned datasets to segment the
region of interest (ROI) of damage caused by COVID-19. We trained the model to diagnose
whether there was an infection or not. If the infection is present, the model should segment
the infection regions. In all experiments, we used all slices of the CT scans, where the CT
scans took shots from different angles, and some angles of the slices were taken of a lung
region close to other organs.

This section includes the implementation details in Section 6.1, the binary class seg-
mentation experiments in Section 6.2, and the multi-class segmentation experiments in
Section 6.3.

6.1. Implementation Details

The SAA-UNet model was trained from scratch and implemented with Python 3.8.10,
Tensorflow Version 2.9.2, karas 2.9.0, and Google Colab pro+ with GPU. First, we split
the datasets into 90% for training and 10% for the testing set, following Ziyang Wang and
Irina Voiculescu [34]. After that, we trained the proposed model on a training set with
10-fold cross-validation. K-fold cross-validation is necessary to evaluate the robustness
and sensitivity analysis of the proposed model. Hence, ten folds were used to validate the
model, and the ten models were trained on the ten validation datasets. Furthermore, these
ten trained models were tested on a testing dataset (10% hold-out testing dataset). Table 1
shows the number of slices in each training fold, validation fold, and test set. We used no
data augmentation method, like Hoel Kervadec et al. [58]. The Adam optimizer [64] was
used, and the learning rate was 10-4. The batch size was set to two, and the training epoch
for each fold was 150. The hyperparameters used are shown in Table 2.

Table 2. Parameter settings for the training of SAA-UNet model.

Parameter Name Parameter Value

Number of parameters 18,713,274
Optimizer Adam
Learning rate 10−4

Batch size 2
Epoch 150
Image size 512 × 512, 128 × 128
Data augmentation method Without

6.2. Binary Class Classification

This type of segmentation was performed to detect the infection on the CT image and
also to extract the region of the infection. Firstly, ten-fold cross-validation was performed,
and Table 3 shows the experimental results of the SAA-UNet model in the binary class
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segmentation. All performance metrics are presented as the mean and standard deviation
on the validation dataset of the ten models, and Table 4 shows the mean and standard
deviation of the ten models obtained from the 10-fold cross-validation experiment on the
testing set.

Table 3. Binary experiments’ results obtained from ten-fold cross-validation experiment (mean ± std).

Dataset Mean
Dice

Dice
Inf

Dice
Back

Mean
IOU Accuracy Specificity Sensitivity Precision F1-Score

MedSeg 0.854 ±
0.13

0.725 ±
0.04

0.983 ±
0.003

0.803 ±
0.4

0.970 ±
0.005

0.968 ±
0.005

0.872 ±
0.03

0.892 ±
0.03

0.880 ±
0.03

Radiopaedia 9P 0.945 ±
0.05

0.892 ±
0.01

0.999 ±
0.0002

0.891 ±
0.01

0.997 ±
0.0006

0.997 ±
0.0004

0.934 ±
0.01

0.943 ±
0.007

0.938 ±
0.008

MedSeg +
Radiopaedia 9P

0.917 ±
0.08

0.837 ±
0.03

0.997 ±
0.0009

0.849 ±
0.03

0.994 ±
0.001

0.994 ±
0.002

0.904 ±
0.03

0.92 ±
0.02

0.911 ±
0.02

Zenodo 20P 0.951 ±
0.05

0.902 ±
0.05

0.999 ±
0.0004

0.894 ±
0.05

0.998 ±
0.0008

0.998 ±
0.0008

0.935 ±
0.03

0.944 ±
0.03

0.939 ±
0.03

Table 4. Binary classification results obtained from testing the ten trained models on the testing
dataset (mean ± std).

Dataset Mean
Dice

Dice
Inf

Dice
Back

Mean
IOU Accuracy Specificity Sensitivity Precision F1-Score

MedSeg 0.848 ±
0.14

0.708 ±
0.01

0.988 ±
0.0004

0.783 ±
0.005

0.978 ±
0.0008

0.976 ±
0.0009

0.858 ±
0.01

0.872 ±
0.01

0.865 ±
0.004

Radiopaedia 9P 0.936 ±
0.06

0.875 ±
0.009

0.998 ±
5.5e-05

0.899 ±
0.003

0.997 ±
0.0001

0.996 ±
9.38e-05

0.940 ±
0.005

0.948 ±
0.003

0.943 ±
0.002

MedSeg +
Radiopaedia 9P

0.914 ±
0.08

0.831 ±
0.03

0.997 ±
6.1e-05

0.857 ±
0.003

0.995 ±
0.0001

0.995 ±
0.0002

0.911 ±
0.005

0.924 ±
0.005

0.917 ±
0.002

Zenodo 20P 0.93 ±
0.07

0.861 ±
0.007

0.999 ±
1.6 × 10−5

0.87 ±
0.002

0.998 ±
3.3 × 10−5

0.998 ±
4.1 × 10−5

0.921 ±
0.005

0.930 ±
0.005

0.926 ±
0.001

The binary class results of the ten-fold cross-validation in Table 3 show that the SAA-
UNet model had the best results on the Radiopaedia 9P dataset and the Zenodo 20P
dataset. The mean Dice scores were 0.945 and 0.951 for the Radiopaedia 9P and Zenodo 20P
datasets, respectively. The Dice score for the infection region was highest for the Zenodo
20P data, showing a better infection area segmentation. The mean Dice score for the MedSeg
dataset was low (0.854) compared to the above-mentioned datasets. The Dice score for the
infection class (0.752) was lower than the background class (0.983). If the combination of
the MedSeg and Radiopaedia 9P datasets was used for the training, better results were
obtained regarding the overall mean Dice score and individual Dice score for both classes.
The IOU score defines the ratio of the area of overlap between the predicted segmentation
and the ground truth divided by the area of the union between them. The same trend in
the IOU score can be observed for all the datasets above. Table 4 summarizes the binary
classification results on the testing dataset. The mean Dice and IOU scores were reduced
slightly for all the datasets as compared to the results reported on the validation datasets.
Some sample predicted slices of the four datasets with COVID-19 infection pixels are
illustrated in Figure 9. The confusion matrix of each dataset test set for the SAA-UNet
model appears in Figure 10. It shows that SAA-UNet had the closest prediction to the
ground truth when predicting images.
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Figure 9. The predicted CT slices of the best fold for each dataset in binary segmentation. The blue
color is for infection, and the others are for the background.

Figure 10. The confusion matrix of each dataset with binary classification for the best fold model
from each experiment.

Figure 11 illustrates that the SAA-UNet model can predict different sizes and shapes
of the infection. Likewise, SAA-UNet can detect if there is no infection in the CT slices with
a mean Dice score of 0.99. As a result, SAA-UNet can diagnose and detect the infection
effectively even at the beginning of the appearance of pneumonia in the patient’s lung.
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Figure 11. The predicted CT slices for COVID-19 infection with different sizes. The blue color is for
infection, and the others are for the background.

In CT imaging, contrast enhancement methods can be applied for infection segmen-
tation to improve the visibility of the areas affected by the infection. This can highlight
the areas of interest and make them more distinguishable from the background. However,
ensuring that the contrast enhancement does not introduce artifacts or noise that may
negatively impact the segmentation accuracy is also important.

The contrast enhancement method was influential in training unclear CT scan images.
As shown in Table 5, this method affected the segmentation of the infection and background
classes and improved the segmentation process. The MedSeg dataset was improved by
2.4%, whereas Radiopaedia 9P was improved by 1.3% with respect to the mean Dice
score compared to without the enhanced contrast method. Furthermore, the mean IOU
of MedSeg was improved by 2.2%, whereas the Radiopaedia 9P was the same. This
contrast enhancement method of the poor contrast in the MedSeg dataset significantly
improved all the evaluation metrics. In addition, the Radiopaedia 9P dataset was improved
in the sensitivity and the mean Dice score, especially the Dice score for infection, positively
affecting recognizing the foreground and distinguishing it from the background by 1.3%.
Figure 12 shows an example of a predicted slice of the same slice fold trained with and
without the contrast enhancement method. It is easy to notice that the improvement
happened after enhancing the contrast of the MedSeg dataset, whereas for Radiopaedia-
9P, the mask was predicted almost as well as without contrast enhancement with no
adverse effect on it. As a generalization of the training model, we tested each SAA-UNet
trained on one dataset and tested on different datasets. The results are shown in Table 6.
The performance metrics decreased while testing on other datasets compared to testing on
the same dataset. First, the model trained on Radiopaedia had good results while testing
on the MedSeg dataset than on the Zenodo 20P dataset. The SAA-UNet model trained
on the Zenodo 20P dataset had the best generalization when tested on the other datasets
after applying the contrast enhancement method to ensure the effectiveness of this method.
The number of CT slices on which the model was trained and the apparent contrast of the
original images led to this generalization and gave promising results. The model trained on
the MedSeg dataset showed better results when tested on Radiopaedia 9P than the Zenodo
20P dataset. In contrast, the models trained on the MedSeg + Radiopaedia 9P dataset
and then tested on the Zenodo 20P dataset were better than those trained on MedSeg.
SAA-UNet had a good generalization for the different training dataset experiments.
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Table 5. The effect of the contrast enhancement on the MedSeg and Radiopaedia 9P datasets.(bold
text for the best).

Contrast
Enhancement

Mean
Dice

Dice
Inf

Dice
Back

Mean
IOU Accuracy Specificity Sensitivity Precision F1-Score

MedSeg
(without)

0.824 ±
0.16

0.66±
0.07

0.987 ±
0.001

0.761 ±
0.04

0.976 ±
0.003

0.974 ±
0.006

0.839 ±
0.03

0.865 ±
0.06

0.846 ±
0.03

MedSeg
(with)

0.848 ±
0.14

0.708 ±
0.01

0.988±
0.0004

0.783 ±
0.005

0.978±
0.0008

0.976 ±
0.0009

0.858 ±
0.01

0.872 ±
0.01

0.865 ±
0.004

Radiopaedia 9P
(without)

0.923 ±
0.1

0.847 ±
0.04

0.998 ±
0.0003

0.899 ±
0.01

0.997 ±
0.0004

0.996 ±
0.0008

0.939 ±
0.01

0.948 ±
0.005

0.943 ±
0.007

Radiopaedia 9P
(with)

0.936 ±
0.06

0.875 ±
0.009

0.998 ±
5.5 × 10−5

0.899 ±
0.003

0.997 ±
0.0001

0.996 ±
9.38 × 10−5

0.940 ±
0.005

0.948 ±
0.003

0.943 ±
0.002

Figure 12. The effect of the contrast enhancement method on predicted images of each fold. The blue
in the first two rows is for the MedSeg dataset, and the brown is for the Radiopaedia 9P datasets.

6.3. Multi-Class Classification

In the multi-class classification experiment, we explored the use of SAA-Unet on many
classes, including the lung region and infection or different types of infections. Five classes
were considered: background, lungs, infection, consolidation (type of infection), and GGO
(type of infection). GGO is a condition in which air is displaced by fluid in the lungs
and visible in the CT images as an area of increased attenuation. If a region of normally
compressible lung tissue is filled with liquid, it is called pulmonary consolidation. GGO is
described as an increase in density with visible blood vessels, whereas the consolidation
condition is an increase in the parenchyma density, which conceals the blood vessels. The
classification results were obtained on the available classes of the three datasets. The Med-
Seg dataset had four classes, Radiopaedia 9P four classes, and the Zenodo 20P dataset only
three classes. Table 7 illustrates the results of the proposed model in multi-class segmen-
tation as the mean and standard deviation of the validation of the ten models. The mean
Dice score was highest for the Zenodo 20P dataset (0.94) and lowest for the MedSeg dataset
(0.685). There was only one infection class in the Zenodo 20P dataset, not explaining the
type of infection. The infection was also identified in the other two datasets (GGO or
consolidation). The mean Dice score for the Radiopaedia 9P dataset was higher than the
MedSeg dataset. When combined, the mean Dice score was better than the MedSeg dataset.
The other performance metrics also showed the same trend for the three datasets. Table 8
shows the mean and standard deviation of the ten models from the 10-fold cross-validation
on the testing dataset. All the performance metrics decreased slightly on the testing dataset,
but the trend remained the same. It can be seen from Tables 7 and 8 that the segmentation
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of the infection (GGO and Con classes) had a lower Dice score compared to the lungs and
background classes. This is because the labeled data for the infection classes were much
fewer than for the lung and background classes. Segmenting smaller infection areas with
diffused boundaries is challenging, whereas segmenting more significant infection areas
with clear boundaries and good contrast is easier. It is evident from Table 7 that increasing
the number of labeled slices improved the Dice score of the infection classes in the case of
the combination of the MedSeg and Radiopaedia P9 datasets.

Table 6. Training SAA-UNet on one dataset and testing it on different datasets.

Trained
Dataset

Tested
Dataset

Mean
Dice

Dice
Inf

Dice
Back

Mean
IOU Accuracy Specificity Sensitivity Precision F1-Score

Radiopaedia 9P MedSeg 0.71 ±
0.2

0.462 ±
0.02

0.957 ±
0.009

0.645 ±
0.02

0.920 ±
0.0003

0.922 ±
0.02

0.773 ±
0.03

0.731 ±
0.007

0.744 ±
0.02

Radiopaedia 9P Zenodo 20P 0.579 ±
0.4

0.172 ±
0.04

0.977 ±
0.007

0.522 ±
0.01

0.957 ±
0.01

0.956 ±
0.01

0.78 ±
0.03

0.545 ±
0.002

0.567 ±
0.01

Zenodo 20P MedSeg 0.770 ±
0.2

0.566 ±
0.03

0.973 ±
0.002

0.686 ±
0.02

0.957 ±
0.002

0.952 ±
0.003

0.724 ±
0.02

0.908 ±
0.003

0.783 ±
0.02

Zenodo 20P Radiopaedia 9P 0.802 ±
0.2

0.609 ±
0.03

0.996 ±
0.0002

0.607 ±
0.01

0.992 ±
0.0004

0.991 ±
0.0004

0.782 ±
0.01

0.730 ±
0.01

0.657 ±
0.02

Zenodo 20P MedSeg +
Radiopaedia 9P

0.809 ±
0.2

0.624 ±
0.02

0.994 ±
0.0003

0.619 ±
0.01

0.988 ±
0.0006

0.988 ±
0.0006

0.80 ±
0.02

0.735 ±
0.008

0.673 ±
0.01

MedSeg Radiopaedia 9P 0.71 ±
0.3

0.424 ±
0.06

0.996 ±
0.0002

0.649 ±
0.01

0.993 ±
0.0003

0.993 ±
0.0003

0.859 ±
0.02

0.719 ±
0.007

0.701 ±
0.01

MedSeg Zenodo 20P 0.441 ±
0.4

0.04 ±
0.002

0.839 ±
0.02

0.371 ±
0.02

0.724 ±
0.03

0.721 ±
0.03

0.646 ±
0.02

0.505 ±
0.001

0.436 ±
0.01

MedSeg +
Radiopaedia 9P Zenodo 20P 0.57 ±

0.4
0.169 ±

0.04
0.971 ±
0.008

0.507 ±
0.014

0.945 ±
0.014

0.943 ±
0.012

0.785 ±
0.02

0.535 ±
0.008

0.549 ±
0.02

Table 7. Multi-class experiments results obtained from test ten models on the validation set (mean ±
std).

Dataset Mean
Dice

Dice
GGO

Dice
Con

Dice
Inf

Dice
Back

Dice
Lung

Mean
IOU Accuracy Specificity Sensitivity Precision F1-Score

MedSeg 0.685 ±
0.25

0.530 ±
0.07

0.367 ±
0.07 - 0.992 ±

0.003
0.85 ±
0.04

0.659 ±
0.03

0.952 ±
0.009

0.984 ±
0.003

0.759 ±
0.05

0.785 ±
0.03

0.762 ±
0.03

Radiopaedia 9P 0.897 ±
0.07

0.794 ±
0.04

0.871
±0.04 - 0.998 ±

0.0001
0.926 ±

0.02
0.839 ±

0.02
0.994 ±
0.0007

0.998 ±
0.0001

0.894 ±
0.02

0.917 ±
0.02

0.904 ±
0.01

MedSeg +
Radiopaedia 9P

0.873 ±
0.1

0.751 ±
0.04

0.81 ±
0.03 - 0.997 ±

0.0004
0.933 ±

0.01
0.775 ±

0.03
0.989 ±
0.002

0.996 ±
0.0006

0.846 ±
0.02

0.875 ±
0.02

0.855 ±
0.02

Zenodo 20P 0.940 ±
0.04 - - 0.880 ±

0.05
0.999 ±
0.0005

L = 0.952 ± 0.02
R = 0.931 ± 0.03

0.909 ±
0.04

0.995 ±
0.002

0.998 ±
0.0007

0.946 ±
0.02

0.953 ±
0.02

0.949 ±
0.02

Table 8. Multi-class experiments results obtained from test ten models on the test set (mean ± std).

Dataset Mean
Dice

Dice
GGO

Dice
Con

Dice
Inf

Dice
Back

Dice
Lung

Mean
IOU Accuracy Specificity Sensitivity Precision F1-Score

MedSeg 0.693 ±
0.27

0.557 ±
0.05

0.311 ±
0.03 - 0.993 ±

0.001
0.909 ±

0.08
0.679 ±

0.02
0.964 ±
0.002

0.988 ±
0.0008

0.775 ±
0.03

0.795 ±
0.02

0.78 ±
0.02

Radiopaedia 9P 0.891 ±
0.09

0.768 ±
0.03

0.859 ±
0.02 - 0.997 ±

0.0001
0.941 ±

0.01
0.865 ±
0.007

0.993 ±
0.0003

0.998 ±
8.95 × 10−5

0.917 ±
0.01

0.931 ±
0.01

0.923 ±
0.005

MedSeg +
Radiopaedia 9P

0.870 ±
0.10

0.752 ±
0.02

0.794 ±
0.02 -

0.997 ±
6.5 × 10−5

0.937 ±
0.008

0.783 ±
0.003

0.99 ±
0.0001

0.997 ±
4.5 × 10−5

0.854 ±
0.004

0.88 ±
0.005

0.864 ±
0.002

Zenodo 20P 0.926 ±
0.06 - - 0.84 ±

0.01
0.998 ±
0.0001

L = 0.945 ± 0.004
R = 0.919 ± 0.004

0.894 ±
0.005

0.994 ±
0.0003

0.998 ±
9.3 × 10−5

0.937 ±
0.005

0.945 ±
0.002

0.941 ±
0.003

Some sample predicted slices of the three datasets with COVID-19 infection pixels are
illustrated in Figure 13. It shows that SAA-UNet had a good prediction of the ground truth.
The confusion matrix of each dataset for the SAA-UNet model appears in Figure 14. For the
MedSeg dataset, both the GGO and Con classes were confused with the lung class (25% and
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11%, respectively). The same trend to a lesser extent was observed for the Radiopaedia 9P
dataset as well.

Figure 13. The predicted CT slices of the best fold for each dataset in multi-class segmentation. In the
first three datasets, white is for GGO, grey is for consolidation, green is for lungs, and brown is for
the background. For the last dataset, white is for infection, brown for the left lung, grey for the right
lung, and lighter greyfor the background.

Figure 14. The confusion matrix of all datasets with multi-class segmentation for best fold model
from each experiment.

Furthermore, we tried different split ratios of the datasets as 80%, 20%, and 70%, 30%
for the training and testing set, respectively. Figure 15 shows the average Dice score and
IOU for the different split ratios in all four datasets. Different split ratios were tried for both
binary and multi-class classification. Figure 15 shows that the effect of different split ratios
was insignificant. Both the Dice score and IOU were not degraded significantly when the
training ratio was decreased from 90% to 70%. A slight decrease in the Dice score and IOU
suggested that more training data improved the segmentation results.
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(a) (b)

(c) (d)

Figure 15. Average Dice score and IOU for different split ratios in binary and multi-class classification.
(a) Average Dice score in binary classification; (b) Average IOU in binary classification; (c) Average
Dice score in multi-class classification; (d) Average IOU in multi-class classification.

7. Discussion

Our proposed method SAA-UNet showed good performance on various datasets related
to COVID-19 pneumonia. SAA-UNet also showed better generalization when trained on
one dataset and tested on the other datasets. This showed the generalization ability of the
SAA-UNet model. The weaker segmentation of the infection classes was also due to the
variety of GGO and pulmonary consolidation morphologies. Moreover, a smaller number
of pixels classified incorrectly in the image segmentation significantly impacted the Dice
coefficient score and IOU [65]. A comparative analysis of different methods used to segment
COVID-19 infection in the lung from CT slices is shown in Table 9. In the case of the MedSeg
dataset, binary class segmentation, SAA-UNet had better results for the mean Dice score
than the other reported results. In the case of the Radiopaedia P9 dataset, our proposed
method also outperformed other reported methods, showing a Dice score of 0.94 for binary
classification and 0.897 for multi-class classification. The Dice score of SAA-UNet was the best
in the case of the Zenodo 20P dataset. Our proposed model performed equally well in binary
and multi-class classification (0.95 for binary and 0.94 for multi-class classification). This was
due to the Zenodo dataset (2851 slices) containing a higher number of slices available for
training as compared to the MedSeg (81 slices) and Radiopaedia P9 (671 slices) datasets in
Table 1. Combining the MedSeg and Radiopaedia P9 datasets containing more than 49 subjects
produced good binary and multi-class classification results. This showed the efficacy of our
proposed model for various datasets in binary and multi-class classification. After comparing
to other published results, the SAA-UNet method performed better in the region of interest
(ROI) segmentation. It can quantify the severity of the infection and the patient’s condition.
Therefore, it can be one of the best methods to be used by the doctor in a follow-up study of
the patient. As is evident from Table 5, enhancing the contrast of the CT scan improved the
classifier’s performance for better segmentation of the infection. Shiri et al. [66] showed a high
overall Dice score (0.98 for lungs and 0.91 for lesions) on a dataset of volumetric CT exams
to classify the lungs and pneumonia lesions. Our paper provides more rigorous testing of
the model in binary and multi-class classifications. To further prove the generalization ability
of our model, we trained the model on one dataset and tested it on the rest of the datasets.
The source code of the model is available upon request.
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Table 9. Comparison analysis of different segmentation methods in related work with the proposed
method. SAA-UNet1 shows the results of ten-fold validation, and SAA-UNet2 shows the result of
the testing dataset.

Dataset Class
Classification Model Mean

Dice
Mean
IOU Accuracy Specificity Sensitivity Precision F1-Score

MedSeg Binary Plug-and-play
Attention UNet [33] 0.84 0.74 - - - - -

Binary HADCNet [42] 0.792 - 0,970 0.985 0.871 - -

Binary MiniSeg [44] 0.759 0.822 - 0.977 0.8495 - -

Binary SAA-UNet1 0.854 0.803 0.970 0.968 0.872 0.892 0.88

Binary SAA-UNet2 0.85 0.78 0.978 0.976 0.858 0.872 0.865

Multi-class SAA-UNet1 0.685 0.659 0.952 0.984 0.759 0.785 0.762

Multi-class SAA-UNet2 0.693 0.679 0.964 0.988 0.775 0.795 0.78

Radiopaedia 9P Binary MPS-Net [39] 0.83 0.74 - 0.9988 0.8406 - -

Binary DUDA-Net [46] 0.87 0.771 0.991 0.996 0.909 - -

Binary HADCNet [42] 0.796 - 0.991 0.994 0.912 - -

Binary MiniSeg [44] 0.80 0.853 - 0.992 0.906 - -

Binary SAA-UNet1 0.945 0.891 0.997 0.997 0.934 0.943 0.938

Binary SAA-UNet2 0.94 0.90 0.997 0.996 0.940 0.948 0.943

Multi-class SAA-UNet1 0.897 0.839 0.994 0.998 0.894 0.917 0.904

Multi-class SAA-UNet2 0.89 0.87 0.993 0.998 0.917 0.931 0.923

MedSeg+
Radiopaedia 9P Binary TV UNet [31] 0.864 0.995 - - 0.85 0.87 -

Binary Channel-attention
UNet [30] 0.83 - - - - - -

Binary Ensemble UNet
& majority voting [38] 0.85 - - 0.994 0.891 - -

Binary ADID-UNet [41] 0.803 - 0.97 0.9966 0.797 0.848 0.82

Binary A-SegNet [40] 0.896 - - 0.995 0.927 - -

Binary SAA-UNet1 0.917 0.849 0.994 0.994 0.904 0.92 0.911

Binary SAA-UNet2 0.90 0.84 0.993 0.998 0.917 0.931 0.923

Multi-class DDANet [49] 0.78 - - 0.992 0.884 - -

Multi-class SAA-UNet1 0.873 0.775 0.989 0.996 0.846 0.875 0.855

Multi-class SAA-UNet2 0.87 0.78 0.99 0.997 0.854 0.88 0.864

Zenodo 20P Binary FCN-8s
Light-UNet [27] - - (1) 0.98

(2) 0.98 - (1) 0.50
(2) 0.57

(1) 0.85
(2) 0.96

(1) 0.57
(2) 0.64

Binary 3-Encoder, 3Decoder [43] - 0.799 0.972 0.9499 0.9499 0.993 -

Binary LungINFseg [47] 0.803 0.688 0.989 0.995 0.831 - -

Binary contour-enhanced
attention decoder CNN [48] 0.88 0.75 - 0.998 0.90 0.856 -

Binary Focal attention module
with DeepLabV3+ [45] 0.885 - - - - - -

Binary HADCNet [42] 0.723 - 0.987 0.997 0.694 - -

Binary MiniSeg [44] 0.763 0.845 - 0.991 0.851 - -

Binary SAA-UNet1 0.951 0.894 0.998 0.998 0.935 0.944 0.939

Binary SAA-UNet2 0.93 0.88 0.998 0.998 0.921 0.93 0.926

Multi-class QAP-Net [34] - 0.816 0.9976 0.998 0.958 0.846 -

Multi-class MultiResUNet [35] 0.88 - - - - - -

Multi-class SAA-UNet1 0.940 0.909 0.995 0.998 0.946 0.953 0.949

Multi-class SAA-UNet2 0.931 0.899 0.994 0.998 0.937 0.945 0.941



Diagnostics 2023, 13, 1658 23 of 26

8. Conclusions

Diagnosing diseases using computer-aided diagnostic (CAD) methods improves the
detection of diseases in real-time. The proposed method, spatial attention and atten-
tion mechanism UNet (SAA-UNet), was based on spatial attention UNet (SA-UNet) and
attention UNet (Att-UNet) to deal with the challenging structures of COVID-19 pneumo-
nia. SAA-UNet can focus on the foreground to extract the lesion from computed tomogra-
phy slices. Moreover, the training was optimized by the combination of weighted category
cross-entropy loss, Dice loss, and boundary loss, which is useful to extract the hazy edges
of the infection and deal with highly imbalanced datasets. The efficacy of the proposed
model was established by testing on various datasets, including a smaller number of slices
(MedSeg) and more patients (Radiopaedia P9). The performance of the SAA-UNet model
was also compared with other reported models. In future work, we will optimize this
model further to a larger number of infections in MRI, CT scan, or X-ray images.
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