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Abstract: The segmentation of lungs from medical images is a critical step in the diagnosis and
treatment of lung diseases. Deep learning techniques have shown great promise in automating this
task, eliminating the need for manual annotation by radiologists. In this research, a convolution
neural network architecture is proposed for lung segmentation using chest X-ray images. In the
proposed model, concatenate block is embedded to learn a series of filters or features used to extract
meaningful information from the image. Moreover, a transpose layer is employed in the concatenate
block to improve the spatial resolution of feature maps generated by a prior convolutional layer. The
proposed model is trained using k-fold validation as it is a powerful and flexible tool for evaluating
the performance of deep learning models. The proposed model is evaluated on five different subsets
of the data by taking the value of k as 5 to obtain the optimized model to obtain more accurate results.
The performance of the proposed model is analyzed for different hyper-parameters such as the batch
size as 32, optimizer as Adam and 40 epochs. The dataset used for the segmentation of disease is
taken from the Kaggle repository. The various performance parameters such as accuracy, IoU, and
dice coefficient are calculated, and the values obtained are 0.97, 0.93, and 0.96, respectively.

Keywords: chest X-ray (CXR); k-fold validation; cancer; healthy; segmentation; convolutional neural
network model; lung diseases

1. Introduction

Lung disease refers to medical conditions that affect the respiratory system, such as
asthma, bronchitis, emphysema, and lung cancer. Treatment options depend on the type
of lung disease and may include medications, surgery, and lifestyle changes. Accurate
diagnosis and classification of lung disease are often best conducted by a pulmonologist
after a combination of laboratory, imaging, and/or pulmonary function tests [1].

Medical imaging techniques, such as chest X-ray (CXR) and computed tomography
(CT), are commonly used to visualize the internal structures of the lungs. The interpretation
of these images requires the accurate delineation of lung structures from other surrounding
tissues and structures [2]. Segmentation of the lungs can aid in the diagnosis of various
lung diseases, including pulmonary nodules, lung cancer, emphysema, and pulmonary
fibrosis. However, the manual segmentation of lungs is a time-consuming and labor-
intensive process, which can lead to inter- and intra-observer variability. Computer-aided
lung segmentation is a crucial step in the diagnosis and treatment of lung diseases, but the
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segmentation of lungs is a difficult task because of the brightness issues and surrounding
structures and the presence of bones and other structures that can obscure the lungs [3].

Overall, accurate and efficient lung segmentation is essential for the diagnosis, treat-
ment, and monitoring of lung diseases. In recent years, deep learning techniques, particu-
larly convolutional neural networks (CNNs), have shown remarkable success in medical
image analysis tasks, including segmentation. Deep learning models can learn to automati-
cally extract relevant features from medical images and produce accurate segmentation
results. Moreover, deep learning-based segmentation methods can reduce the time and
effort required for manual segmentation [4]. In this study, a deep learning-based approach
for the segmentation of lungs from CXR images is proposed. The major contributions of
the study are as follows:

1. A deep learning model having a series of convolution blocks and concatenate blocks
has been proposed for lung segmentation using chest X-ray images. The dataset used
for the segmentation of disease is taken from the Kaggle repository.

2. In the proposed model, concatenate block is embedded to learn a series of features
used to extract meaningful information from the image. Moreover, a transpose layer
is employed in the concatenated block to improve the spatial resolution of feature
maps generated by a prior convolutional layer.

The proposed model is trained using k-fold validation by taking the value of k as 5 to
obtain the best-optimized model. The performance of the proposed model is measured in
terms of IoU, Dice coefficient, and accuracy for hyper-parameters, namely batch size as 32,
optimizer as Adam and 40 epochs.

The rest of the study is laid out as follows: Section 2 presents the literature re-
view, Section 3 displays the input dataset, Section 4 presents the suggested CNN model
for lung segmentation, Section 5 displays the results, and Section 6 offers a summary
and conclusion.

2. Literature Review

Here, a review of some of the most groundbreaking studies on model checking
and lung segmentation of chest X-ray (CXR)/computed tomography (CT) images is per-
formed. A brief discussion of the difficulties, biases, and possible flaws is also studied.
Souza et al. [2] presented the segmentation operation using the AlexNet-based model for
the initial segmentation and the ResNet18 model for the reconstruction and performance
of the final segmentation task. They worked on the MC database with 138 CXR images
and obtained a value of accuracy of 96.9% and a dice score of 93.56%. Kim et al. [3] per-
formed the segmentation of chest X-ray images using U-net architecture. They worked
using three databases, namely Montgomery (MC), Japanese Society of Radiological Tech-
nology (JSRT), and Shenzhen, with 138, 154 and 662 images, respectively. They obtained
a value of dice score of 94%. Selvan et al. [5] presented the U-Net model for segmenta-
tion using variational data imputation. The authors performed data augmentation on
the publicly available CXR datasets obtained from Shenzhen and Montgomery hospitals
using 704 CXR images and obtained a value of accuracy of 88%. Lascu et al. [6] pre-
sented the transfer-learning-based ResNet101 model to classify pneumonia and healthy
lungs using CXR images. Rashid et al. [7] presented a CNN network using morphological
operations for the segmentation of lungs from CXR images. They worked on three dif-
ferent datasets, namely JSRT, MC, and local database consisting of 247, 138, and 37 CXR
images, respectively. The authors obtained values of dice score and accuracy of 95.1%
and 97.1%, respectively. Gaal et al. [8] used Attention U-Net architecture with Contrast
Limited Adaptive Histogram Equalization (CLAHE) for the pre-processing of data. They
used 247 CXR images and obtained a dice score value of 97.5% using the JSRT dataset.
Reza et al. [9] proposed the TransResUNetencoder–decoder model for lung segmentation.
They used the flood fill algorithm for hole filling. The operation was performed on the
MC database with 138 images and obtained a value a dice score of 97.6%. Teixeira et al.
discussed the impact of inventing a Chest X-ray images database from multiple resources.
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The achieved results measured a Jaccard distance of 0.034 and a Dice coefficient of 0.982 [10].
Gordienko et al. [11] presented a U-Net-based CNN model for the segmentation of lungs
from CXR images. They used the JSRT database with 247 CXR images. They eliminated
bone shadow from the CXR images using semantic segmentation. Islam et al. [12] presented
a U-Net algorithm for the segmentation of lungs from CXR images. They performed work
using two datasets, namely Montgomery and Shenzhen, consisting of 138 and 615 X-ray
images. They obtained the value of a dice score of 98.6%. They achieved a value of accuracy
of 94.9%. Song et al. [13] presented CNN for the classification of lung cancer. They worked
on 4581 CT images and obtained a value of accuracy of 84.15%.

Overall, the literature suggests that accurate and reliable lung segmentation remains a
crucial area of research with significant clinical implications and that ongoing advancements
in deep learning and computer vision are likely to continue to drive progress in this
field [14,15]. Therefore, in the proposed research, concatenate block is embedded to learn a
series of filters or features used to extract meaningful information from the image. Moreover,
the trans-pose layer is employed in the concatenated block to improve the spatial resolution
of feature maps generated by a prior convolutional layer.

3. Input Dataset

Kaggle [16,17] is the source for the chest X-ray dataset. Files in various folders hold
X-rays and masks of the chest. The test dataset has 96 CXR images with their respec-
tive masks and the training dataset contains 704 CXR images with 704 masks and clini-
cal readings in a text file. Lung tissue samples taken from a chest X-ray are illustrated
in Figure 1. Figure 1a,c show the original photos, while Figure 1b,d show the original
images’ masks.
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Figure 1. Chest X-ray Samples (a) Image 1, (b) Image 1 mask, (c) Image 2, and (d) Image 2 mask.

4. Proposed CNN Model for the Segmentation of Lungs

The proposed CNN architecture is composed of multiple layers, with each layer
playing a specific role in the overall model. Figure 2 shows the proposed CNN model for
lung segmentation that is made up of convolutional blocks and concatenate blocks. A series
of convolutional layers in the concatenated block learn a series of filters or features used to
extract meaningful information from the image. In summary, using more convolutional
layers in a CNN can help improve the performance of image classification or segmentation
tasks, but it is important to carefully balance model complexity with the amount of available
training data and computational resources.

Table 1 describes each block, the layers used in each block, the input image size and the
number of filters used at every layer, the activation function, and the number of parameters
used for each convolution layer.
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Figure 2. Proposed CNN model for Lung Segmentation.

Table 1. Parameters of the Proposed CNN model.

S. No. Blocks Layers Input Image
Size Filters Activation

Function Parameters

1 Input 512 × 512 × 3 - - 0

2 Convolution
Block-1

Conv-1 512 × 512 × 32 32 ReLU 320
Conv-2 512 × 512 × 32 32 ReLU 9248

MaxPool-1 256 × 256 × 32 32 - 0

3 Convolution
Block-2

Conv-1 256 × 256 × 64 64 ReLU 18,496
Conv-2 256 × 256 × 64 64 ReLU 36,928

MaxPool-1 128 × 128 × 64 64 - 0

4 Convolution
Block-3

Conv-1 128 × 128 × 128 128 ReLU 73,856
Conv-2 128 × 128 × 128 128 ReLU 147,584

MaxPool-1 64 × 64 × 128 128 - 0

5 Convolution
Block-4

Conv-1 64 × 64 × 256 256 ReLU 295,168
Conv-2 64 × 64 × 256 256 ReLU 590,080

MaxPool-1 32 × 32 × 256 256 - 0

6 Convolution
Block-5

Conv-1 32 × 32 × 512 512 ReLU 295,168
Conv-2 32 × 32 × 512 512 ReLU 590,080

MaxPool-1 16 × 16 × 512 512 - 0

7
Concatenate

Block-1

Conv-1 64 × 64 × 256 256 ReLU 1,179,904
Conv-2 64 × 64 × 256 256 ReLU 590,080

Transpose-1 128 × 128 × 128 128 - 131,200

8 Concatenate
Block-2

Conv-1 128 × 128 × 128 128 ReLU 295,040
Conv-2 128 × 128 × 128 128 ReLU 147,584

Transpose-1 256 × 256 × 64 128 - 32,832

9 Concatenate
Block-3

Conv-1 256 × 256 × 64 64 ReLU 73,792
Conv-2 256 × 256 × 64 64 ReLU 36,928

Transpose-1 512 × 512 × 32 64 - 8224

10 Concatenate
Block-4

Conv-1 512 × 512 × 32 32 ReLU 18,464
Conv-2 512 × 512 × 32 32 ReLU 9248
Conv-3 512 × 512 × 32 32 ReLU 33

5. Results

In this section, the proposed deep learning model has been simulated with different
hyperparameters such as batch size, epochs, and optimizer. The batch size is set to 32, and
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the simulation runs for a maximum of 40 epochs using the Adam optimizer [18,19]. The
proposed model is hypertuned using the k-fold validation method with values of k as 5.
Several analyses, including loss, accuracy, dice coefficient, and IoU, are carried out for
training and validating chest X-ray pictures using K-fold validation.

5.1. K fold Validation Results

Here, five-fold cross-validation is used to assess a model’s efficacy by splitting the
data into five equal halves (called “folds”), training it on four-folds, and then testing it on
the remaining fold. The dataset will be divided into five equal folds, where each fold serves
as the validation set in each iteration. As a model performance metric, we use the mean
value of this metric over five iterations. It also helps to reduce the variance in performance
estimates by averaging the performance measure over multiple test sets. Here are some
possible reasons why k = 5 worked well for a particular data set:

• Suitable sample size: This is a reasonable sample size to obtain a reliable estimate of
the model’s performance. This can reduce the variance of metrics.

• Generalizability: Using a value of k = 5 computes the metric using data representative
of the entire dataset. This helps ensure that the evaluation metrics are generalizable
and not focused on a particular subset of the data.

5.1.1. Loss Results

For five different iterations across 40 epochs, the resulting loss curves are shown in
Figure 3, where Figure 3a–e represent the training and validation loss curves for values of
1, 2, 3, 4, and 5th fold validation set for k-fold cross-validation results, respectively. From
these curves, it can be analyzed that for all folds, training and validation loss is decreasing
from 0 to the 3rd epoch. After that loss is approximately constant from the 3rd to 40th
epoch having a value of −0.95.
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5.1.2. IoU Results

For five different iterations across 40 epochs, the resulting IoU curves are shown in
Figure 4, where Figure 4a–e represent the training and validation IoU curves for values of
1, 2, 3, 4, and 5th fold validation set for k-fold cross-validation results, respectively. From
these curves, it can be analyzed that for all folds, training and validation IoU increases from
0 to the 3rd epoch. After that, the IoU is approximately constant from the 3rd to the 40th
epoch having a value of 0.93. Moreover, it can also be analyzed from Figure 4 that for all
folds training IoU becomes greater than validation IoU at the 3rd epoch.
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5.1.3. Dice Coefficient Results

For five different iterations across 40 epochs, the resulting dice coefficient curves are
shown in Figure 5, where Figure 5a–e represent the training and validation dice coefficient
curves for values of 1, 2, 3, 4, and 5th fold validation set for k-fold cross-validation results,
respectively. From these curves, it can be analyzed that for all folds, training and validation
dice coefficient increases from 0 to the 3rd epoch. After that, the dice coefficient is approxi-
mately constant from the 3rd to the 40th epoch, having a value of 0.96. Moreover, it can also
be analyzed from Figure 5 that for all folds, the training dice coefficient becomes greater
than the validation dice coefficient at the 3rd epoch.
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5.1.4. Accuracy Results

For five different iterations across 40 epochs, the resulting accuracy curves are shown
in Figure 6, where Figure 6a–e represent the training and validation. Accuracy curves for
values of 1, 2, 3, 4, and 5th fold validation set for k-fold cross-validation results, respectively.
From these curves, it can be analyzed that for all folds, training and validation accuracy
increases from 0 to the 3rd epoch. After that accuracy is approximately constant from
the 3rd to the 40th epoch, having a value of 0.97. Moreover, it can also be analyzed from
Figure 6 that for all folds the training accuracy becomes greater than the validation accuracy
at the 3rd epoch.
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ways gives the best performance for a particular dataset and model. The optimal value for 
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uated, and the evaluation metric used. 
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At each iteration, the model is trained on four-folds and evaluated on the validation
set. The performance metric is then recorded, and the process is repeated for each fold.
Finally, the five performance metrics are averaged to obtain a single estimate of the model’s
performance.

5.2. Visualization of Segmentation Results

Figure 7 illustrates the testing samples of chest X-ray images in which the segmentation
of the lung is performed. Figure 7a illustrates the original image sample, and Figure 7b
illustrates the provided ground truth mask. Figure 7c illustrates the predicted image. It
can be seen from Figure 7c that the predicted image illustrates the exact boundaries like
the original image. The proposed CNN model has performed best in segmenting the chest
from chest X-ray images. It is important to note that there is no single value of k that
always gives the best performance for a particular dataset and model. The optimal value
for k depends on factors such as the size and complexity of the dataset, the model being
evaluated, and the evaluation metric used.
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Figure 8 illustrates the average values of the dice coefficient, IoU, and accuracy on
the testing dataset for k = 5. The value of accuracy is 0.97, and the proposed CNN model
has outperformed in comparison with the state-of-the-art techniques, as shown in the next
section. The proposed model incorporates a concatenated block to learn a set of filters or
features that may be applied to an image in order to extract useful information. The spatial
resolution of feature maps created by a preceding convolutional layer is also enhanced by
using a transpose layer in the concatenated block.
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5.3. Comparison with State-of-the-art

For the comparison of the proposed model with other existing techniques, the same
dataset with 704 lung disease images is implemented using different transfer learning
models and CNN architecture. It includes the implementation of different techniques, such
as ResUNet, DenseNet121, VGGUNet and CNN, on the same dataset. Various performance
parameter values for each technique and proposed model are shown in Table 2, from which
it can be analyzed that the proposed model with embedded concatenate and transpose
blocks has outperformed other transfer learning models and CNN architecture in terms of
accuracy, dice score, and IoU.

Table 2. Comparison with existing techniques on our dataset.

Technique Accuracy Dice Score IoU

ResUNet 0.96 0.95 0.92
DenseNet121 0.97 0.94 0.91

VGGUNet 0.98 0.91 0.93
CNN 0.53 0.92 0.91

Proposed CNN embedded with
concatenate block and transpose layer 0.97 0.96 0.93

For the comparison of the proposed model with other authors, the proposed model
results have been compared with other state-of-the-art techniques shown in Table 3. It
summarizes the performance parameters, including accuracy, sensitivity, specificity, dice
score, and Jaccard index of different authors used for different lung disease CXR image
datasets. The techniques include various deep learning architectures, such as AlexNet,
ResNet, U-Net, TransResUNet, VGG, Transfer Learning, and CNN with morphological
operations. The authors have used these techniques on different datasets having differ-
ent numbers of CXR images or CT images. It can also be analyzed from Table 3 that
the proposed model has outperformed the other state-of-the-art models in terms of all
performance parameters.

Other authors are either using transfer learning models or using simple CNN archi-
tecture to segment lung disease from CXR images. No author has used CNN architecture
with concatenation block and transpose layer to learn as a set of filters required to derive
meaning from an image. To further enhance the spatial resolution of feature maps produced
by a previous convolutional layer, a transpose layer is used in the concatenated block.

The proposed model has achieved an accuracy of 97% on a dataset of 704 images. This
performance is better than most of the other techniques listed in the table.
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Table 3. Comparison with existing State-of-the-art techniques.

Ref/Year Technique Number of
Images

Type of
Images

Performance
Parameters

[2]/2019 AlexNet
ResNet18 138 CXR

Sensitivity = 97.54%,
Specificity = 96.79%,
Accuracy = 96.97%,
Dice Score = 93.56%,

Jaccard = 88.07%

[3]/2021 U-Net 662 CXR Dice Score = 94%,
Sensitivity = 94%

[5]/2020 U-Net 704 CXR Dice = 85%,
Accuracy = 88%

[6]/2021 Transfer Learning 321 CXR + CT Accuracy = 94.9%

[7]/2018

CNN network
with

Morphological
operations

247 CXR

Dice Score = 95.1%,
Sensitivity = 95.1%,
Specificity = 98.0%,
Accuracy = 97.1%

[8]/2020 U-Net
Architecture 247 CXR Dice Score = 97.5%

[9]/2020 TransResUNet 138 CXR Dice Score = 97.6%,
Accuracy = 98.5%

[12]/2018 U-Net
Architecture 615 CXR Dice score = 98.6%

[13]/2017 CNN 4581 CT Accuracy = 84.15%

Proposed
Model

CNN embedded
with concatenate

block and
transpose layer

704 CXR
Accuracy = 97%
Dice Score = 96%

IoU = 93%

Overall, the table shows that deep learning techniques can achieve high accuracy and
performance in image analysis tasks. However, the choice of the specific architecture and
the number of images used for training can significantly affect performance. Therefore, it is
essential to carefully choose the appropriate architecture and optimize the hyperparameters
for the specific task and dataset.

6. Conclusions

Medical image analysis includes the crucial duty of segmenting lung disease from
chest radiographs, which aids in the diagnosis and early detection of lung disease. Lately,
convolutional neural networks (CNN) and other deep learning approaches have been
successfully employed to identify lung disease areas in chest radiographs. Several studies
have demonstrated the effectiveness of CNN-based techniques for segmenting lung disease
from chest X-rays. However, the following issues remain, such as image quality variability
and similarity between normal and abnormal lung regions. Therefore, a deep learning
model, having a series of convolution blocks and concatenate blocks, has been proposed
for lung segmentation using chest X-ray images. In this proposed model concatenate block
is embedded to learn a series of features used to extract meaningful information from the
image. Moreover, a transpose layer is employed in the concatenated block to improve the
spatial resolution of feature maps generated by a prior convolutional layer. An accuracy of
97% was achieved using the proposed CNN model, with very low loss. In the future, this
proposed technique can help doctors diagnose diseases in the lungs and act as a second
opinion tool. Further research is needed to develop more robust and effective segmentation
methods for improving clinical diagnosis and treatment of lung disease. In the future,
further types of layers, such as normalization layers and dropout layers, can be added to
CNNs in addition to the basic layers to further enhance performance.
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