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Abstract: Inflammatory bowel disease (IBD) is a global health concern that has been on the rise
in recent years. In addition, imaging is the established method of care for detecting, diagnosing,
planning treatment, and monitoring the progression of IBD. While conventional imaging techniques
are limited in their ability to provide comprehensive information, cross-sectional imaging plays a
crucial role in the clinical management of IBD. However, accurately characterizing, detecting, and
monitoring fibrosis in Crohn’s disease remains a challenging task for clinicians. Recent advances in
artificial intelligence technology, machine learning, computational power, and radiomic emergence
have enabled the automated evaluation of medical images to generate prognostic biomarkers and
quantitative diagnostics. Radiomics analysis can be achieved via deep learning algorithms or by
extracting handcrafted radiomics features. As radiomic features capture pathophysiological and
biological data, these quantitative radiomic features have been shown to offer accurate and rapid
non-invasive tools for IBD diagnostics, treatment response monitoring, and prognosis. For these
reasons, the present review aims to provide a comprehensive review of the emerging radiomics
methods in intestinal fibrosis research that are highlighted and discussed in terms of challenges
and advantages.
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1. Introduction

In medicine, medical imaging is a basic technology, and in clinical practice, it is
used to support decision-making for screening, diagnostic, therapeutic, and follow-up
purposes [1,2]. Conventional imaging modality evaluation relies heavily on subjective
interpretation by radiologists, increasing the possibility of interpretive variability. These
modalities, such as ultrasound (US), magnetic resonance imaging (MRI), computed tomog-
raphy (CT), etc., recognize images of internal organ structures and aid in the evaluation of
physiological function and pathology change in human systems.

Artificial intelligence, deep learning, computer vision, and radiomics have the poten-
tial to revolutionize almost every field that relies on cross-sectional medical imaging for
diagnosis and follow-up, including IBD. Radiomics is the process of converting digital med-
ical images into mineable, high-dimensional data. It includes the computational extraction
of shape, intensity, and appearance descriptors from medical imaging, and when integrated
into ML algorithms, it can predict outcomes of interest. Radiomics is motivated by the idea
that biomedical images contain information that reflects underlying pathophysiology and
that these relationships can be revealed through quantitative image analyses. It is intended
to develop decision support tools; therefore, it entails combining radiomic data with other
patient characteristics, when available, to enhance the predictive power of the decision
support models. It is non-invasive and reproducible, offers diagnosis and stages of cancer,
helps in therapy planning, and predicts therapeutic outcomes [3].

In the field of oncology, radiomics has gained notable traction. For instance, authors
trained and validated a radiomics-driven machine learning (ML) model to predict the
histopathologic response to neoadjuvant chemoradiation using baseline T2-MRI images of
primary rectal cancers [4]. Recently, clinical uses of radiomics in Crohn’s disease (CD) have
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started to be investigated. Using this advanced technique to improve intestine segmentation
techniques for cross-sectional imaging has the potential to reduce variability and improve
disease activity measures. For example, radiologists could benefit from automation to score
staging more objectively, quantify bowel features, and reduce interobserver variability. In
IBD, radiomics represent a promising tool that could assist radiologists in better assessing
disease severity, clinical decision-making, and patient phenotyping. Indeed, through
texture analysis, numerous quantitative pieces of information may be retrieved from
radiological scans and placed into machine learning models to predict desired outcomes [5].
Radiomics has proven to be a useful technique in the gastrointestinal field, allowing
radiologists to be more accurate in predicting gene signatures [6], diagnosing rectal cancer,
colon, small bowel, and other lesions [7–9], detecting fibrosis in paediatric CD patients [10],
and evaluating treatment response [7,11]. However, only a few studies have focused on CD
diagnosis [12]. In this context, the researchers focused primarily on how radiomics could
aid in CD diagnosis [13], evaluation of therapeutic response [14,15], and severity of disease
and its complications [16–18].

Radiomics has been applied to different intestinal diseases, not only CD, such as col-
orectal cancer, and intestinal lung disease, such as pulmonary fibrosis. Recent research has
shown promising results in the use of radiomics at various stages of colorectal cancer diag-
nosis and treatment, including preoperative, intraoperative, and postoperative phases [19].
In the field of pulmonary fibrosis, radiomics have been used with many benefits, such as
differentiating between different types of pulmonary fibrosis [20], predicting the functional
decline and long-term survival of pulmonary fibrosis patients [21], and enhancing the
diagnosis and severity staging of idiopathic pulmonary fibrosis [22]. The added utility
of radiomic characteristics in the differential diagnosis of ulcerative colitis and CD has
been assessed. Li et al., for this purpose, constructed a nomogram based on CT radiomics
features mixed with clinical factors, with an area under the curve (AUC) on the test set of
0.8846 [13]. Radiomics has recently proven to be a valuable tool not only for supporting
radiologists in the staging and diagnosis of CD but also in the evaluation of the response to
therapy. In terms of MRE studies, some authors developed and validated an MRI-based
radiomics nomogram for detecting secondary loss response to infliximab in a group of CD
patients [14], while others built several MR enterography (MRE) radiomics-based machine
learning models for predicting response to immunosuppressive treatment in patients with
CD, reaching AUCs ranging from 0.71 to 0.99 [15]. On computed tomography enterography
(CTE) examinations, other researchers developed a CTE-based radiomics nomogram to pre-
dict loss of response to infliximab in CD patients, which demonstrated good performance
and a subsequent clinical benefit [14]. The assessment of disease severity at imaging is
critical for patient management, but it is limited by inter-reader variability. On MRI exami-
nation, Ding et al. attempted a more reproducible and objective approach by stratifying
CD severity in the terminal ileum via the extraction of radiomics, achieving comparable
outcomes to MaRIA values scored by a senior radiologist in their most recent study [16].
Kurowski et al. observed that the heterogeneity of radiomic characteristics of visceral adi-
pose tissue is greater in CD patients than in controls, which may be an indicator of disease
severity in paediatric CD patients [18]. Moreover, radiomics features can then be used to
develop predictive models for fibrosis in CD. Fibrosis in CD is a chronic inflammatory
condition that can lead to intestinal strictures, obstruction, and a bowel perforation. The
ability to accurately predict the development and progression of fibrosis in CD is critical
for identifying patients who may benefit from early intervention. However, quantifying
active inflammation versus fibrosis is difficult; in fact, no technique is accurate enough
to assess the degree of fibrosis in stricture and guide clinical choices. Radiomics has the
potential to provide valuable insights into the development and progression of fibrosis in
CD. By using advanced imaging techniques such as MRI or CT scans, radiomic features
can be extracted from the images and used to develop predictive models. This review will
review the previous literature using the radiomics of CT and MRI modalities and discuss
the radiomics of the advantages and disadvantages of fibrosis CD in general.
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2. Radiomics Workflow

In brief, the radiomics procedure is divided into different stages of acquiring the image
and segmenting the volume, feature extraction and storage, and signature development and
validation on one or more datasets, as seen in Figure 1. Each of these three steps presents
its own set of obstacles. The process is the same once a signature has been developed and
applied to a specific patient, except that in stage three, the validated signature is used to
determine the patient’s prognosis.
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Figure 1. Shows general radiomics steps for CD classification from MRI images.

2.1. Image Acquisition

The first step in the radiomics workflow is acquiring the medical images, which can be
CT or MRI in the case of fibrosis in CD. Modern versions of these scanners support a wide
variety of acquisition and reconstruction settings. Although this facilitates the subjective
demands of the human expert, when the images are supposed to be objectively defined by
a machine, these differences may produce a bias that masks the true underlying biological
characteristics. In the field of radiomics, this phenomenon is well known, and attempts are
being made to reconstruct techniques and standardize acquisition.

2.2. Regions of Interest

On diagnostic imaging, identifying one or more volumes of interest is one of the
central processes of radiomics. Predictive value, however, may be found in the detailed
analysis of tumor sub-volumes.

2.3. Segmentation

The next step is to segment the images to isolate the region of interest (ROI), which is
typically the area affected by fibrosis in CD. The segmentation of ROI could be divided into
semi-automatic/automatic, and manual segments. Delineation, or segmentation, plays a
critical role in radionics because the features that are generated depend on the segmented
volumes. However, the borders of numerous tumors and sub-volumes are unclear. When
these volumes are manually delineated, this can lead to substantial inter-reader bias and
low reproducibility. Unfortunately, no universal automatic segmentation algorithm exists
that can be applied to all medical modalities [23]. A consensus arises from this debate that
optimal reproducible segmentation can be achieved through semi-automatic segmentation,
which comprises automatic segmentation followed by manual curation if necessary [24].
Additionally, each imaging modality has its own unique segmentation technique. For
example, in PET, the metabolic target volume (MTV) is segmented as an ROI, while in CT,
the ROIs represent the gross tumor volume (GTV).

2.4. Feature Extraction

The high-throughput extraction of quantitative image characteristics that characterize
the ROI is a critical component of radiomics. There is a risk of overfitting because of the
large and intricate number of features that exceeds a thousand. To prevent this, the ratio of
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evaluated features to outcome occurrences must be as small as possible. A major technique
for mitigating this risk is the reduction and ranking of features.

2.5. Model Development and Validation

The development of a model based on calculated radiomic features might be hypothesis-
driven or data-driven. The hypothesis-driven method treats cluster features according to
clinical and predefined information contents, while the data-driven method makes no as-
sumptions about the significance of individual characteristics; hence, all characteristics are
given equal weight during model development. The best models begin with a well-defined
endpoint, such as overall survival, and integrate non-radiomics features whenever possi-
ble. Frequently, model performance is evaluated based on calibration and discrimination.
Models that are accurate and correct differentiate between patients. For censored data,
this can be measured using the AUC of the receiver operating characteristic (ROC) or the
c-index [25]. Calibration, on the other hand, is the relationship between model prediction
and observed outcomes.

3. Analysis of the Literature

A review of all literature on using radiomics in intestinal fibrosis in patients with
CD demonstrates that radiomics are effective in terms of accurate disease detection and
classification of intestinal fibrosis in CD using MRI and CT, as seen in Table 1. When it
comes to radiomics analysis, both CT and MRI can provide valuable quantitative features
for analysis. However, the specific features that are extracted may differ depending on the
imaging modality and the specific radiomics approach used. Correlating models obtained
from imaging features with histological findings is one area where radiomics research
can expand.

Table 1. A brief sample of literature studies.

Authors Aim
Number of
Patients and Type
of Study

Gold Standard Imaging Endpoint

Meng et al. [26]

Comparison of deep
learning and
radiomics models, and
radiologists’
evaluation for the of
intestinal fibrosis in
patients with CD

235 patients (312
bowel segments)
Multicentric,
retrospective

Histology CTE

In diagnosing intestinal
fibrosis in patients with CD
using CTE, deep learning
mode is better than
radiologists and not inferior
to the radiomics model.

Li et al. [17]

Developed a
CTE-based radiomic
model for
characterizing
intestinal fibrosis in
patients with CD

167 CD patients
212 bowel lesions
(test 114 lesions;
training 98 lesions)
Multicentric,
retrospective

Histology CTE

CTE-based RM allows for
the accurate characterization
of intestinal fibrosis in CD.
The radiomic model
achieved an AUC between
0.724 and 0.816, which
significantly outperformed
radiologist-interpreted
imaging signs AUCs <0.600
in the evaluation of the
severity of intestinal fibrosis
in CD

Tabari et al. [10]

Evaluate if texture
analysis of contrast
enhanced MRE images
can determine CD
stricture
histologic type.

25 CD pediatric
patients
Monocentric,
retrospective

Histology
(bowel
resection)

MRE

The goodness-of-fit AUC for
texture analysis of bowel
wall signal intensities for
detecting stricture fibrosis
was 0.995.
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Application of Radiomic in CT in Intestinal Fibrosis

CT scans are often preferred for their speed and availability, and they are particularly
useful for evaluating the extent and severity of fibrosis in the gastrointestinal tract. CTE
is one of the most effective and common modalities for detecting and monitoring bowel
disease in CD patients [27]. Previous studies have, however, reported that conventional CTE
findings examined by radiologists did not correlate with intestinal fibrosis, suggesting that
CTE is ineffective for assessing intestinal fibrosis [28]. The combination of CT scan radiomics
and fibrosis assessment in CD is an exciting area of research that has the potential to improve
the accuracy and precision of fibrosis diagnosis and monitoring. Radiomics features
extracted from CT have been used to distinguish CD from intestinal tuberculosis [29], to
distinguish CD from ulcerative colitis [13], to measure intestinal fibrosis in CD [17,26], and
to predict the loss of the secondary response to infliximab in CD [14].

A few studies used radiomics in IBD in the recent retrospective study by Stidham
et al. CTE developed a semi-automated quantitative measurement of bowel features
such as lumen diameter, bowel wall thickness, and dilation. They found a very good
maximum bowel wall thickness association between the mean measurement done by
two radiologists and the semiautomated way (r = 0.702), which included 138 scans [12].
Another study in which the radiomics model was seen to outperform radiologists was a
multicenter, retrospective CTE that included 167 CD patients with 212 bowel lesions. The
machine learning-based radiomic model has high accuracy for predicting the presence
of intestinal fibrosis, with AUROCs of 0.724–0.816 compared to radiologists’ AUROCs of
0.554–0.556 [17]. The study found that the radiomic model had excellent predictive accuracy
for identifying the presence of fibrosis, with an area under the curve (AUC) of 0.92 in the
validation cohort. The radiomic model was also able to identify specific radiomic features
that were associated with fibrosis, including texture features related to heterogeneity and
contrast. They concluded that the CTE-based radiomics model performed excellently in
diagnosing intestinal fibrosis in patients with CD, but this radiomic model was too time-
consuming to delineate the volumes of each damaged bowel segment on CTE. Furthermore,
because radiomic features are handcrafted, the radiomic model is subjective. Moreover,
further studies are needed to validate these findings and develop standardized radiomic
protocols for clinical use.

Deep learning is an automated method that is less reliant on human involvement,
which can significantly reduce the time required for identifying the volumes of interest
(VOI) and extracting and selecting features. It can also reduce subjectivity by using a
convolutional neural network for feature extraction, which is a data-driven approach [30].
A recent study by Meng et al. developed and validated a CTE-based deep learning model
for characterizing bowel fibrosis in 235 patients with CD in a retrospective study. They
compared deep learning and radiomics models and radiologists evaluations for intesti-
nal fibrosis in CD-affected patients. They found this model can accurately distinguish
moderate-to-severe from non-mild intestinal fibrosis in patients with CD. Furthermore, its
performance was superior to that of the radiologists and was not inferior to that of the
radiomic model, with a much shorter processing time, suggesting that this model may help
radiologists grade bowel fibrosis more quickly and accurately [26].

Application of Radiomics in MRI

Although both conventional multi-phase contrast-enhanced MRI and CT can be uti-
lized to get the distinct image features of CD, MRI offers several additional imaging
sequences to help in the diagnosis of CD without causing radiation damage. Moreover,
it has the ability to observe the bowel transmurally and from different perspectives. Fur-
thermore, the combination of MRI parameters derived from different conventional MR
sequences from magnetization transfer imaging (MT) (MT ratio), native T1 mapping, and
diffusion weighted image DWI (apparent diffusion coefficient; ADC) provides a contri-
bution to the detection of intestinal fibrosis. MT is a type of MR sequence that delivers a
continuous measurement (MTR, 0–100%) generated by dipolar and generates contrast by
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interacting between protons in large stationary macromolecules and those in free water,
such as collagen. The interaction between water and collagen in tissues results in the
saturation of water magnetization and subsequent signal intensity loss due to magnetic
and exchange couplings. As the proportion of collagen in tissue increases, there is a cor-
responding increase in signal loss and the MT effect. The MTR signal increases as the
amount of macromolecules (including collagen) increases, and it should potentially be able
to identify highly fibrotic tissues [31]. Initial studies indicate that MT-MRI can be utilized to
identify bowel wall fibrosis and differentiate between inflamed non-fibrotic and inflamed
fibrotic segments [32,33]. A study conducted by Fang et al. demonstrated that combining
MT-MRI with conventional MRI can enhance the ability to differentiate between fibrotic
and inflammatory components of small bowel strictures. The study found a significant
correlation between histological fibrosis scores and MTR (p < 0.001), enabling the detection
of mild versus moderate-to-severe fibrosis with a high sensitivity of 91% and specificity of
92% [32]. Native T1 mapping is a quantitative method for identifying fibrotic features in
CD. Both native T1 mapping and MTI have been established as promising advances in the
area of MRI in terms of detecting and distinguishing bowel fibrosis [34].

Additionally, ADC has been found to be significantly correlated with histopatholog-
ically derived fibrosis and inflammation scores, as well as percent gain. Further, based
on an established cutoff value, the ADC was able to accurately distinguish fibrosis in CD
with a sensitivity of 72% and a specificity of 94%. This suggests that ADC has the potential
to be a useful non-invasive technology for identifying fibrosis in Crohn’s disease [35].
Another study found that there was a significant correlation between ADC and histologi-
cally derived inflammation grades in CD. Additionally, the study showed that both ADC
and apparent diffusional kurtosis were significantly correlated with histologically derived
fibrosis grades. The study also demonstrated that apparent diffusional kurtosis was able
to accurately distinguish between the absence of fibrosis or mild fibrosis and moderate to
severe fibrosis in Crohn’s disease with a high sensitivity of 95.9% and specificity of 78.1%.
This suggests that apparent diffusional kurtosis has the potential to be a useful tool in
assessing bowel fibrosis using MRI imaging [36]. Additionally, the aforementioned MSOT
imaging technology has the potential for future intestinal fibrosis diagnostics due to its
capability to detect collagen as a result of the exhibited optoacoustic signal [37].

Radiomic features have been shown to quantify subtle details on MRI examinations
that may not be visible visually and that can be correlated with underlying pathophysiol-
ogy [38] and treatment response [39,40].

In CD, the initial studies of radiomic features have shown that they may be able to
characterize bowel fibrosis [17] and capture histological disease activity [41,42], suggesting
their potential to prognosticate the need for surgery in CD. Previous MRI studies in CD
have stated that diseased bowel segmentation with MRI using a convolutional neural
network or active learning takes about 12 min [43]. One retrospective study conducted
in a rat model showed that MRI-based deep learning allowed the evaluation of intestinal
fibrosis in IBD [44]. This study included 45 rats’ models of inflammation (35 irradiated with
visible lesions and 10 controls). It was found that this method provides practitioners with a
useful tool for evaluating antifibrotic treatments in the development and extrapolating of
such non-invasive MRI score models for patients with the goal of identifying early stages
of fibrosis and improving disease management [44].

Another study focused on the use of texture analysis in intestinal fibrosis among
25 CD paediatric patients. The radiomic characteristics (texture analysis) of MRE contrast
enhancement have been utilized to detect fibrosis in the bowel strictures of paediatric
patients with CD [10]. This study showed that texture entropy can distinguish strictures
with fibrosis (mixed or purely fibrotic) from inflammatory strictures. In addition, they
found that a computer had superior diagnostic accuracy than a human radiologist [10].
The computer differentiated mild or no fibrosis from moderate to severe fibrosis with an
AUC of 0.995 using histology as a gold standard. Lamash et al. conducted a retrospective
cohort study among 23 active CD patients using semi-supervised and active learning
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models vs. convolutional neural networks. They found that convolutional neural network
segmentation of the bowel’s background, wall, and lumen was compared with manual
boundary delineation. CNN segmentation of dynamic contrast enhancement showed
high agreement with manually segmented bowel images in 79%, 81%, and 75% of cases,
respectively. The median value of relative contrast enhancement (p = 0.0033) and extracted
markers of wall thickness at the location of min radius (p = 0.0013) could distinguish
nonactive and active disease segments. Other retrieved markers could distinguish between
segments with and without strictures [43].

There is potential to correlate models obtained from the imaging features extracted
with histological findings in IBD, provided that segmentation methods of the bowel wall are
robust to nonrigid motion, as typically seen in the bowel. One study aimed to investigate
whether MRI texture analysis (MRTA) of T2-weighted images could provide information
on histological and MRI disease activity in patients with Crohn’s disease undergoing
ileal resection. Makanyanga et al. reported that MRI CD activity scores and histological
measures of CD activity were associated with MRI texture features in a pilot study that
included 16 CD patients who underwent MRI and ileal resection [41]. The study found that
MRTA was able to accurately predict histological and MRI disease activity scores with high
accuracy. The researchers also identified specific texture features that were associated with
disease activity, including entropy, contrast, and homogeneity. In another retrospective, the
multicenter study demonstrated that a radiomic model derived from MRE and CTE data
detected moderate-to-severe fibrosis in the intestine with diagnostic accuracy comparable
to radiologist assessments [45]. While several studies have shown the potential of MRI
radiomics in assessing fibrosis in CD, further validation is needed to determine its clinical
utility and ability to predict treatment response and outcomes.

4. Radiomics Limitations

As a new and developing medical tool, radiomics is bound to face difficulties, limiting
its widespread use in clinical practice. These pitfalls can be found in the majority of the
radiomic workflow steps. One limitation of radiomics is the transferability and repro-
ducibility of radiomics features, as they are heavily dependent on the type of modalities,
parameters, intensity normalization, segmentation, sequences, resolution, co-registration,
acquisition protocols, quality, size, and motion artifacts of image transfer. For instance,
there are differences in section thickness between the different modalities and imaging
centers, dose administration, and reconstruction kernels.

The dependent correlation between the features and the input data, as the features are
generated from that very database, is another limitation of radiomics. As a result, large
datasets are required, in contrast to feature-based radiomics, to accurately identify relevant
and robust feature subsets. Moreover, manual segmentation methods have inherent intra-
and inter-observer variability, which could be reduced by using semi- or fully automatic
techniques.

The radiomics have some technical challenges. CT and MRI imaging may require
specialized training and expertise, as well as access to specialized equipment and software.
This can limit its availability and feasibility in some settings. In addition, many studies
using these radiomic modalities in CD have been limited by small sample sizes, making it
difficult to draw firm conclusions and generalize the findings to a larger population.

5. Future Directions

In general, using radiomics in CD faces numerous challenges before it can be used in a
daily clinical setting. These obstacles, including its technical complexity, standardization
of data analysis, and acquisition protocols, are required to provide a robust framework.
Another obstacle is that, due to the success of the procedure depending on the operator’s
expertise, manual segmentation of the target ROI may result in higher interobserver vari-
ability and lower efficiency. In addition, there is a need for better accuracy in automatic
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segmentation. Furthermore, the enhancement of reproducibility is influenced by a number
of factors, including image reconstruction, acquisition, and analysis.

A better understanding of the pathophysiological interaction between muscular hy-
perplasia, inflammation, fibrosis, and overall stricture narrowing is required. To reliably
validate cross-sectional imaging techniques that guide CD-stricture medical and surgical
care, validated histopathological index scores are essential. The heterogeneity of histomor-
phology within strictures, as well as the fact that most internal penetrating disease coexists
with strictures [46], make cross-sectional imaging modalities difficult to detect these distinct
elements. Addressing these issues would significantly contribute to reshaping the scope of
CD care, particularly with anti-fibrotic therapies on the horizon.

Although cross-sectional imaging modalities such as MRE and CTE demonstrate
excellent performance in detecting strictures, MRI-based modalities may offer promising
new parameters for distinguishing inflammation from fibrostenosis. Upcoming modalities,
such as the Type I Collagen-Targeted MRI Probe, may improve the ability to stage fibrosis
in CD [47].

6. Conclusions

In CD patients, advanced imaging plays an essential role in the diagnosis, staging of
lesions, characterization of disease consequences, and mentoring treatment response. In
this context, current advances in radiomics can assist physicians in enhancing diagnostic
accuracy and stratifying patients based on their prognosis in the direction of a customized
medicine strategy. Fibrosis is a common pathophysiological result of chronic inflammation.
Additionally, radiomics may have great potential to enhance the diagnosis and classifica-
tion of fibrosis in patients with CD. Furthermore, to improve the feasibility of radiomics
clinical applications, a more standardized methodology in the radiomics workflow is re-
quired, particularly in terms of study design and validation to differentiate between fibrosis
and inflammation.
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