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Abstract: In recent years, human–computer interaction (HCI) systems have become increasingly
popular. Some of these systems demand particular approaches for discriminating actual emotions
through the use of better multimodal methods. In this work, a deep canonical correlation analysis
(DCCA) based multimodal emotion recognition method is presented through the fusion of electroen-
cephalography (EEG) and facial video clips. A two-stage framework is implemented, where the first
stage extracts relevant features for emotion recognition using a single modality, while the second
stage merges the highly correlated features from the two modalities and performs classification.
Convolutional neural network (CNN) based Resnet50 and 1D-CNN (1-Dimensional CNN) have been
utilized to extract features from facial video clips and EEG modalities, respectively. A DCCA-based
approach was used to fuse highly correlated features, and three basic human emotion categories
(happy, neutral, and sad) were classified using the SoftMax classifier. The proposed approach was
investigated based on the publicly available datasets called MAHNOB-HCI and DEAP. Experimental
results revealed an average accuracy of 93.86% and 91.54% on the MAHNOB-HCI and DEAP datasets,
respectively. The competitiveness of the proposed framework and the justification for exclusivity in
achieving this accuracy were evaluated by comparison with existing work.

Keywords: bimodal; electroencephalography; facial video clips; emotion recognition; CNN; feature
level fusion; Deep CCA; HCI

1. Introduction

An emotion, a multifaceted mental process, reflects human perceptions and plays a
significant part in human interactions [1]. Nowadays, there are many human–computer
interaction (HCI) applications that require research on emotion recognition [2]. The environ-
ment in the HCI system is complex and dynamic. In many cases, it requires coordinating
its operations with the respondents; therefore, a framework with emotional intelligence can
better adjust in such an environment. The HCI system will become more human-friendly
if it is enabled to recognize human emotions quickly and precisely [3]. EEG signals can
actively characterize variations in the human brain during emotional activity, and emotion
recognition based on these signals has become a popular trend among researchers.

Humans may be unable to express their emotions in some situations, such as when
they are hospitalized or have other impairments. For instance, a person with alexithymia
is incapable of communicating with others about their emotional state due to emotional
blindness. Researchers in the field of neuroscience have looked for a connection between
alexithymia and the origins of the two hemispheres as well as deficits in the amygdala [4].
Similarly, bipolar disorder is one of the main causes of disability in the world and is
characterized by uncontrollable extreme mood swings from abnormally happy to deeply
sad. Depression (also known as major depressive disorder) frequently comes with sleep
issues and eating disorders. It may result in suicidal thoughts or behaviors. Depression
and bipolar disorder affect three portions of the brain: temporal lobe, prefrontal cortex,
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and amygdala [5]. Therefore, understanding emotions and discovering alternate means to
communicate with such people would be beneficial.

Alexa, Cortana, Siri, and other intelligent personal assistants (IPAs) use natural lan-
guage processing to engage with people. However, when emotion detection is added
to IPAs, effective communication and human-level intelligence are increased. Moreover,
the automated process of identification of human emotion has become a popular trend
among researchers after the development of HCI and Internet of Things (IoT)-based sys-
tems for hospitals, smart homes, and smart cities. However, existing HCI systems, in
many cases, have irregularities when interacting with humans [6,7]. To put it another way,
the communication content of HCI systems is out of date, and their recognition ability
could be improved. Enhancing emotion identification in HCI systems and facilitating quick
and dependable computational solutions in these systems are essential for resolving this
issue [8]. A better model for emotion recognition is one of the important steps toward the
solution. Furthermore, emotions are classified as discrete (happy, sad, or neutral) or dimen-
sional (valence and arousal to describe the emotional scale from calmness to excitement or
high/low positivity or negativity) [9,10].

The literature on emotion recognition techniques is divided into approaches based
on physiological and non-physiological signals. Physiological signals, out of both, are
comparatively less vulnerable to subjective influences and hence depict the true state
of human emotions. Consequently, it may be concluded that physiological signals are
useful and reliable in identifying humans’ true emotional states. The physiological signals
that are widely used to detect human emotions include EEG, electrocardiogram (ECG),
eye movements, and others. Several authors have reported good results in recognizing
emotions using these signals individually and through the fusion of multiple modalities [11].
Further, out of all physiological signals, the EEG is the most difficult for humans to hide
or deceive and contains subject-independent data to represent true human emotions [12].
Several studies have also looked at the substantial relationship between EEG signals and
emotional states in humans [13,14]. Zhang et al. [14] investigated the connection of various
human emotional states with different brain regions using EEG signals. Hence, emotion
recognition models using EEG signals are more accurate and reliable as compared to other
physiological signals.

For humans, facial expressions are one of the most important ways to convey emo-
tions. Recognition of facial expression is one of the most prevailing, common, instant, and
accurate as compared to other signals. However, facial video clips are easy to manipulate
while recording by faking the expressions, resulting in unreliable recognition [13,15]. Physi-
ological signals, such as EEG, carry instantaneous emotional variations more accurately but
are vulnerable to noise obtrusion [16]. Conclusively, emotion recognition methods based
on multiple modalities can compensate for the shortcomings of unimodal methods and
acquire better and more reliable results [17]. This aspect is more consistent with the require-
ments of up-to-date HCI systems. It is worth exploring the methods of bimodal emotion
recognition that are consistent with modern HCI systems. Additionally, each person can
react differently under the same emotional condition, and one person can react differently
on different occasions too. It is hard to acquire large enough datasets, and consequently,
we must explore approaches for HCI systems based on relatively small datasets [18].

Most facial expression-based emotion recognition systems require facial markers
or front-facing images, which results in inefficient systems in terms of robustness [11].
Additionally, just expecting the deep learning model to be effective at facial expression
recognition is insufficient in the absence of a precise strategy to exclude extraneous data
from the facial video clips, which might decrease the model’s effectiveness [19]. Addi-
tionally, the majority of EEG-based emotion recognition models have poor performance,
which is brought on by some of the EEG data channels that do not contain emotion-related
information [20,21]. Additionally, considering all the EEG data channels in a deep learning
model is not recommended when it comes to time complexity [11]. Finally, the handcrafted
fusion methods such as enumerator and Adaboost fusion proposed by Li et al. [22] are
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limited in terms of performance and urge the need to explore deep learning methods to
develop highly correlated features space from multiple modalities. To prove the signifi-
cance of the fusion method, Liu et al. [23] considered deep canonical correlation analysis
(DCCA) to fuse the hand-crafted features from EEG, ECG, and Eye movements. However,
the performance of the method using a single modality is not reported, and the study
considered only hand-crafted features.

While managing to keep the necessary information in the facial video clips, we have
developed a method to discard the frames in each second that were below a quality thresh-
old. Moreover, this study utilizes a deep learning approach to extract more generalized
features instead of hand-crafted features to generate a more robust and accurate model
for emotion recognition. This work presents an emotion recognition framework using
the fusion of facial video clips and EEG trials to recognize three categories of emotions
(happy, sad, and neutral). We have considered distinct convolutional neural network (CNN)
models to extract features from facial video clips and EEG trials. After feature extraction,
the fusion process is the key to accurate and robust emotion recognition. For that purpose,
a DCCA approach was exploited to extract the highly correlated features from facial video
clips and EEG feature space. Afterward, these highly correlated fused features were used
for classification. In separate experiments, facial video clips and EEG features were also
individually used for the classification of emotions. Finally, it was concluded that the
feature-level fusion experiment using the features of EEG trials and facial video clips with
the proposed fusion method was better than unimodal and other fusion methods. The
results were also compared with the state-of-the-art methods in the literature to prove the
significance of the proposed method.

The existing bimodal emotion recognition methods based on EEG trials and facial
video clips are highly complex in terms of computational cost and architecture design [11].
To overcome the issues of these emotion recognition systems, a bimodal emotion recognition
method based on the fusion of facial video clips and EEG trials is proposed. The distinctive
contributions of the proposed work are summarized as follows:

1. We proposed an efficient and lightweight multimodal emotion recognition model
based on two modalities, i.e., EEG trials and facial video clips, by removing irrelevant
channels from EEG trials and frames from video clips. In comparison to state-of-the-
art approaches, the suggested method’s computational overhead is also low.

2. A video clip contains a large number of redundant frames, which increases the compu-
tational overhead of a deep learning model. Selecting the most representative frames
helps improve the performance of the method. We proposed a technique to reduce
unnecessary frames by calculating the difference between successive frames, organiz-
ing the difference frames according to their respective information, and choosing the
most discriminative frames from video clips.

3. In addition to wasting time and money by utilizing more electrodes, superfluous
channels can impair performance by introducing noise and artifacts into the system.
Therefore, in this work, the number of EEG channels used for emotion recognition has
been reduced, which ultimately allowed us to design a light weight 1D-CNN model
with a small number of learnable parameters. To achieve this, we used pooling layers
instead of fully connected layers and depth-wise separable convolution to subtly
reduce a large number of parameters and make our network structure simpler for
low-dimensional data.

4. We adapted ResNet50 for extracting discriminative information from video clips.
Following that, DCCA was designed to fuse highly correlated features from the two
modalities. In DCCA, the features from EEG and facial video clips are processed
through the two 1D-NNs and then forwarded into a canonical correlation analysis
(CCA) layer, which consists of two projections and a CCA loss calculator. While
minimizing the CCA loss, highly correlated features are extracted that can be used
for the classification. The 1D-NN model was specifically designed to transform
the features into a better understanding for correlation analysis while keeping the
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complexity as low as possible. Extensive experiments were performed to validate the
proposed method on two benchmark public datasets.

The rest of the paper is organized as follows: Section 2 covers related work on EEG,
facial video clips, and multimodal-based emotion recognition models. Section 3 proposes
data preparation, feature extraction methods using CNN, and fusion methods for clas-
sification. Experimental results and discussions are presented in Section 4. Finally, the
conclusion and future work are discussed in Section 5.

2. Related Work

The traditional methods primarily depended on external sources such as facial expres-
sions, body postures, speech, and others for emotion recognition [24]. These sources do
not require a subject to wear a set of sensors for procuring these signals, which makes such
methods low-cost and less complex. The authors of [25] used facial expressions to recognize
emotions. They executed the NN model to identify valence and arousal simultaneously. In
light of the accuracy of the method to recognize emotions, the authors suggested that facial
expressions are an effective source of human emotion recognition.

Moreover, apart from external sources, internal sources such as EEG, electromyogram
(EMG), galvanic skin response (GSR), electrooculogram (EOG), electrocardiogram (ECG),
and other physiological signals are also extensively discussed in the literature for emotional
recognition [26]. The methods based on physiological signals attain high accuracy in
recognizing emotions because these signals can accurately reflect the emotional mood
of the subject [27]. According to the different signals discussed, the emotion recognition
methods in the literature can be roughly subdivided into three categories: EEG signal-based,
facial video clip-based, and multimodal emotion recognition.

2.1. Methods Based on EEG Signals

Recently, several investigations have verified the benefits of EEG signals in emotion
recognition. In most machine learning problems, researchers’ investigations involve analy-
sis of feature extraction, filtration, and classification tasks. In classification tasks, similar
to in every other machine learning problem, EEG data-based classification tasks are also
divided into supervised [28] and unsupervised learning algorithms [29]. Supervised learn-
ing algorithms need labels with the input data to train the model, such as support vector
machines (SVM), K-nearest neighbors (KNN), and others. On the contrary, unsupervised
learning algorithms do not need predefined labels and evolve clusters from raw input data
on their own, such as K-means clustering, self-organizing maps, etc.

EEG signals have a high temporal resolution and can demonstrate the association
between emotion and brain activity. The equipment used to extract EEG signals is com-
paratively insubstantial, and the extraction process is also simple [30]. The authors in [28]
performed several experiments to fuse graph convolutional neural networks (GCNN) and
long-short-term memory (LSTM) neural networks. The model was tested on the DEAP
dataset, which resulted in better performance than the existing state-of-the-art methods.
The authors in [30] proposed the emotion-dependent critical subnetwork selection al-
gorithm, and the strength, clustering coefficient, and eigenvector centrality of the EEG
functional connectivity network features were investigated. The authors in [31] studied
a deep, simple recurrent unit network in order to obtain the temporal features from EEG
signals, and the experimental results outperformed related work in the literature. It is next
to impossible to record a large dataset of EEG signals, but one can explore other methods,
such as the cross-subject method. The authors in [32] investigated a unique multisource
transfer learning method to detect the emotions of a unique subject using a cross-subject
training methodology. This methodology is easy to execute and reduces the need for a large
dataset. The authors showed through experimental results that EEG signals can provide
useful information about the emotional activity of a person. Anjana et al. [33] converted
the time-dependent signal of EEG into scalogram-encoded image data to feed it into a
deep-learning model. According to the results, the proposed framework outperformed
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previous work in the field of emotion recognition using encoded images. Phan et al. [34]
presented a unique method to study emotions using EEG signals. The method involved
time-domain features mapped into feature-homogeneous matrices. This 3D representa-
tion of EEG signals was processed through a 2D-CNN model. The model achieved good
accuracy for the valence and arousal binary classification problems. Recently, most of the
studies in the literature on EEG-based emotion recognition have relied on deep learning for
feature extraction and emotion classification [11]. Moreover, the focus of future research on
emotion recognition using EEG is shifting from accuracy to a reduction in complexity [35].

2.2. Methods Based on Facial Video Clips

Facial expressions data are one of the key characteristics for detecting human emotions.
Numerous advancements have been made in facial expression detection techniques during
the past few years. Formerly, feature mining methods included the integral method, the
optical flow method, and several machine learning techniques to categorize the expressions.
Recently, researchers have switched to deep learning-based methods, such as GoogleNet,
for complex image-processing tasks [36]. Deep learning models are extensively used in
feature extraction and classification tasks because of their outstanding properties. Moreover,
there is no limit to good performance in terms of classification and feature extraction with
every unique deep learning-based model, such as SqueezeNet [37,38]. A self-cure network
was presented in [39] for expression recognition, and the authors used this novel method to
avoid overfitting by efficiently suppressing the uncertainties. The authors in [40] proposed
the de-expression residue learning method to recognize facial expressions. This model
was capable of learning features from the middle layers of the generative model along
with the end layers. Jia et al. [41] studied a label/emotion distribution learning method in
an expression recognition problem that used local label correlations in order to minimize
the confusion regarding an expression’s description. Recently, approaches that utilize
a smaller number of trials are becoming more popular. The one-shot-only method was
studied in [42] to upgrade facial expression recognition accuracy and computational cost.
Additionally, the authors in [43] studied an efficient structural embedding methodology
to reduce the emotional gap between low-level visual features and high-level semantics.
Minaee et al. [44] presented an attentional convolutional network to detect facial expres-
sions. The authors used several datasets of facial expressions to show the significance of
the suggested architecture. Moreover, the correlation of various emotions with different
regions of the face was also reported in the final findings. In an attempt to prove the
importance of different emotion recognition models for standard and non-standard fa-
cial expressions, Küntzler et al. [45] applied three different facial expression recognition
systems. The results revealed the significance of the Azure Face API-based expressions
recognition system that performed reasonably well in both standard and non-standard emo-
tion recognition. Although deep learning-based models are becoming more popular day
by day, hand-crafted feature extraction techniques are still dominant in the literature [46].
Although hand-crafted feature extraction techniques have proven successful in improving
the recognition of expressions, those techniques are time-consuming when it comes to
emotion recognition from video clips.

2.3. Multimodal Emotion Recognition Methods

Over the past few years, multimodal fusion-based approaches have been presented
to facilitate accurate emotion recognition. Multimodal fusion methods acquire signals
from different sources to recognize emotion after extracting relevant features from all
modalities. The reciprocity amongst various signals and the accessibility of multimodal
emotion recognition was proved in [11,26]. Image- and text-based multimodality models
were investigated in [47]. Zadeh et al. [48] studied the sentiment analysis method using
language, visual, and acoustic modalities, and a tensor fusion network was investigated
to fuse data from different modalities. Moreover, there have been several studies that
combined physiological signals for emotion recognition. For instance, the authors in [49]
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proposed EEG and peripheral physiological signals recognize emotions, and the results
justified the improvement in accuracy using multiple modalities. Zheng et al. [50] studied
a unique multimodal method named the Emotion Meter while using eye movement and
EEG signals. The authors developed a deep belief network for the recognition of emotions.
Val-Calvo et al. [51] assessed the emotional mood of the subjects while interacting with
the HRI system by capturing EEG data, facial expressions, blood volume pressure, and
galvanic skin response. Rutter et al. [52] investigated the emotion recognition problem
in 644 patients while incorporating self-reported depression severity. Authors reported a
decline in emotion recognition accuracy with an increasing age factor in a large number
of clinically identified adult subjects with emotional disorders, particularly for negative
emotions such as sadness and fear. Aguiñaga et al. [53] used the facial expression as
an identifier to extract features from EEG signals and fused both of them to recognize
emotions. The author used several classification methods for comparison and proved
the importance of one method over the other methods in the literature in a three-class
classification problem. In order to detect hidden emotions, Song and Kim [54] designed
CNN models to identify the emotion. To detect hidden emotions, the method used EEG
signals as primary data for emotion recognition and compared them to relevant facial
data. The method performed reasonably well in detecting hidden emotions, and the fusion
of two modalities resulted in an improvement in the accuracy of emotion recognition.
Hassouneh et al. [55] developed a real-time multimodal emotion recognition model using
EEG and facial data. The approach involved a CNN model and LSTM accompanied by
an optical flow algorithm for virtual facial markers to recognize emotions by fusing the
features of two modalities. The reported results revealed that the algorithm performed
well on the personal dataset. However, the method was not tested on any other publicly
available datasets for comparison. While considering the importance of time complexity
in feature extraction and model training, Lu et al. [56] improved the VGG-Face network
model for facial expressions and the LSTM for EEG data. Moreover, the method involved a
decision-level fusion method for a multimodal emotion recognition model. Not only did the
proposed method outperform the old LSTM model in a six-class classification problem in
terms of emotion recognition accuracy, but it also improved the running time of the emotion
recognition model. Zhao and Chen [57] proposed a unique method of multimodal emotion
recognition. The method consisted of a bilinear convolution network (BCN) to extract
features from facial data, and then EEG data were transformed into three frequency bands
to feed them into the BCN model. Further, an LSTM-based fusion model was designed for
the fusion of features from the two modalities. The model showed improvement in terms
of accuracy compared to other methods in a two-class classification model.

EEG-based models show that the performance of the multiple-feature selection proce-
dure is better than the univariate method [13]. Furthermore, the rate of emotion recognition
from EEG features extracted with deep learning models was found to be higher than with
traditional methods.

The methods discussed in the literature confirmed the effectiveness of EEG and facial
video clips for emotion recognition. However, EEG data are comparatively sensitive and
becomes attenuated due to low-quality electrodes. The subject’s facial expressions are
insufficient for a fair judgment if the subject’s internal emotional state is different from their
expressions. Meanwhile, pure external performance is only part of expressing emotion and
cannot show the rich emotions of humans. The physiological variations are influenced by
the nervous system of the body, which can more accurately depict the emotional mood of
the person. Consequently, the fusion of the physiological and non-physiological signals
for the recognition of emotion is a unique research trend among researchers around the
globe. Facial video clips and EEG signals have been widely studied in a non-physiological
and physiological framework and can be efficiently fused for bimodal emotion recognition.
Therefore, this collaborative association allows the corresponding information to enhance
the objectivity and accuracy of emotion recognition.
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3. Materials and Methods

In this section, we discuss the datasets, their pre-processing, and the specifics of the
proposed methodology.

3.1. Emotions

Scherer [58] presented a definition of emotion in 2005, stating that organicistic reactions
of the human nervous system to certain events cause emotions in human beings. Moreover,
Ekman et al. [59] and Russell [60] resented theories for identifying and categorizing emo-
tional stimuli. Ekman et al. proposed that regardless of the environment and background,
certain emotions are inevitable in every human being, namely: happy, anger, sad, fear,
disgust, and surprise. Russell [60] presented the circumplex model, which contains levels
of activation of emotions, and linked those levels of activation in valence and arousal
space with the emotional states of humans. We created a three-class emotional model by
combining them: happy (high arousal and valence), sad (low arousal and valence), and
neutral (mid-range arousal and valence). In this work, we labeled high valence and arousal
with SAM rating ≥ 5, low arousal and valence with a SAM rating ≤ 4) and mid-range
arousal and valence with SAM rating between 4–5.

3.2. Datasets and Pre-Processing

In this work, we executed offline experiments using MAHNOB-HCI and DEAP datasets.

3.2.1. MAHNOB-HCI Dataset

The MAHNOB-HCI [61] dataset comprises EEG, video, audio, gaze, and peripheral
physiological data of 30 subjects. EEG data were collected using 32 active electrodes on a
10–20 international system with a Biosemi Active II system. Facial video clips of subjects
were recorded at 60 frames per second, and the resolution of each original frame was
720 × 580 pixels. The facial video clip data were synchronized with the EEG data with a
sampling rate of 256 Hz. To create this dataset, each subject was subjected to watching
20 video clips extracted from Hollywood movies and other sources. The duration of stimu-
lant videos ranged between 35–117 s. After watching each stimulant video, the subject was
given self-assessment manikins (SAMs) to rate their judged arousal/valence on a discrete
scale between 1–9 [13]. Here, we considered only 27 participants for this experiment.

3.2.2. DEAP Dataset

The DEAP [62] dataset contains the EEG, video, and other peripheral physiological
data of 32 subjects. These data were recorded while the subjects were asked to watch
40 one-minute music videos. During recording, the resolution of each video frame was
set to 720 × 576 pixels at 50 frames per second. Further, this dataset includes ratings from
each subject for each stimulus in terms of levels of arousal/valence. Note that we used
only 22 participants for whom both the facial video clips and EEG data were available for
all 40 trials.

3.2.3. Data Pre-Processing and Augmentation

In video data containing facial video clips and video sequences that included unde-
sirable backgrounds, we performed some pre-processing steps to remove the undesirable
background. Further, the face of the participant in the videos was not centered, which
could pose a problem in extracting useful facial features. Therefore, the participant’s
face was centered by applying the combined processes of cropping and brightness adjust-
ment in each video. Additionally, the height × width of video sequences was adjusted to
224 × 224 pixels in order to make them conform to our designed CNN model. Originally,
the data containing facial video clips consisted of frames with redundant data. Therefore,
before giving the data to the CNN model for feature extraction, it is necessary to discard
such frames that contain redundant data. We can reduce not only the dimensions of the
input data but also extract the frames containing meaningful data for emotion recognition
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in this manner. For that purpose, for T total frames, we performed a difference operation
between every two consecutive frames, which resulted in T − 1 difference frames con-
taining zeros where the data matched and non-zero where it was unmatched. Then, for
each difference frame (dt), we calculated the average value (mt) by using the following
Equation (1):

mt =
∑M

x=0 ∑N
y=0 dt(x, y)

M× N
, (1)

where dt (x, y) denotes the pixel value of the tth difference frame, M and N denote the
length and width of the frame under consideration, respectively.

Afterward, the average values are sorted in descending order to obtain the difference
frames with the highest average values. This whole process is depicted in Figure 1. As the
value of mt decreases, the meaningful information in the particular frame also decreases.
After running multiple experiments, only 40% of the frames per second were considered
adequate for emotion recognition, which helped to preserve meaningful information,
and the rest were discarded. This entire process contributed to the reduction of 60% of
redundant information.
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from [63]).

For the DEAP dataset, EEG data were preprocessed at 128 Hz. However, for the
MAHNOB-HCI dataset, the EEG data were preprocessed by applying a bandpass filter on
the EEG data to keep the band 4–45 Hz; this helped reduce the artifacts of utility frequency
and eye gazing. Head-moving noise was removed by spatial filtering using independent
component analysis (ICA). Several studies in the literature have proved the importance
of the frontal and temporal lobes on emotion recognition using EEG data [14,64]. How-
ever, most of the researchers have considered up to 62 electrodes for emotion recognition
using EEG [50]. Apart from the unnecessary time and costs of using more electrodes,
the extraneous channels can cause noise and artifacts in the systems, which ultimately
affect the performance. Therefore, there is a rising trend among researchers to look for
alternative ways of using a smaller number of electrodes to extract EEG signals for emotion
recognition [11]. In this work, we used five pairs from the frontal and temporal lobes which
helped in better recognition of emotion [21,65]. Selected pairs of electrodes are: FP1, FP2,
AF3, AF4, F3, F4, F7, F8, T7, and T8. It also aids in reducing the dimension of the input data
as well as the computational complexity.

For each trail, we considered 60 s of facial video clips and EEG data in this experiment.
For training the CNN, the amount of data required to achieve respectable accuracy was
not adequate. To proliferate the data, a window of 5 s was applied, which resulted in
12 samples from each trail of 60 s.

3.3. Proposed Method

In the proposed method, the CNN architecture was chosen for feature extraction and
emotion recognition tasks. The method consists of two distinct models for different tasks.
The first CNN model is designed to extract features from EEG data, while the second CNN
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model is used for feature extraction from facial video clips. Once the features are extracted,
feature-level fusion is introduced with the help of DCCA, and highly correlated features
are fed to the SoftMax layer for classification. The proposed model is depicted in Figure 2.
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3.3.1. CNN Model for EEG

Some of the common CNN-based deep learning models usually contain a fully con-
nected (FC) layer at the end for feature extraction, and the FC layer comprises a large
number of parameters. For instance, VGG Net [66] consists of FC layers at the end of its
architecture, which make up around 90% of their parameters. The VGG16 succeeded in
improving performance due to the increased depth of the network. Moreover, the improve-
ment of VGG16 over the other models was also due to the use of convolution kernels of
size 3 instead of larger convolution kernels. When compared to large convolution kernels,
several layers of small convolution kernels perform better because the depth of the network
increases due to several nonlinear layers, and it creates more complex patterns in the learn-
ing process without increasing the number of parameters. However, VGG Net uses more
computing resources and contains a number of parameters, which leads to more memory
usage. The first layer of this architecture makes the most of the parameters. Therefore, we
performed several experiments to find a suitable lightweight 1D-CNN architecture without
compromising accuracy.

A 1D-CNN model is proposed for EEG data. After the input layer of EEG data, we
used a temporary layer to convert the data into 1D to be used for the 1D-CNN model. As
depicted in Figure 3, Layer 1 is composed of BN (batch normalization) and Conv1D. BN
is known for normalizing the output from the previous layer in a CNN model in modern
neural networks and for regularizing the data to avoid overfitting. After normalizing
the 1D EEG data, the first convolutional layer (Conv1D), with 1 × 3 sized 64 kernels and
stride 1, is applied to the normalized data to obtain features. Further, a rectified linear unit
(ReLU) activation layer is implemented after the Conv1D layer to activate nonlinearity. The
combined mathematical effect of the Conv1D and the ReLU can be defined as follows:

xk
j = σ

(
∑Nk−1

i=1 Conv1D
(

wk
i,j, xk−1

i

)
+ bk

j

)
, (2)

where the features maps from previous (k − 1)th layer is denoted by xk−1
i ; the resulting

kth layer’s jth feature map is represented as xk
j ; while wk

i,j symbolizes the convolutional
kernel; total number of feature maps in the preceding(k − 1)th layer is represented by Nk−1;
Conv1D denotes the convolutional operation without zero padding; the bias for the kth
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layer and jth feature map is symbolized as bk
j ; the ReLU activation function is signified as

σ(). ReLU is defined as follows:

σ(x) =
{

0, x ≤ 0
x, x > 0

, (3)
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The features obtained from the Conv1D layer are processed through Layer 2. Except
for MaxPooling1D, Layer 2 is similar to Layer 1 in terms of processing complexity. In
Maxpooling1D, the mathematical calculations are defined as follows:

ρn
j = max(ρn′

j : n ≤ n′ < n + s), (4)

where the n′th neuron in the jth feature map without the max-pooling process is denoted by
ρn′

j ; resultant nth neuron in the jth feature map, after the max-pooling process, is denoted by
ρn

j , and the size of the pooling window is represented by s. In this Maxpooling1D, s is equal
to 2 with stride 2. In the proposed model, the max-pooling process causes the number of
trainable parameters to reduce meaningfully, resulting in accelerating the training process.
Maxpooling1D is followed by Layer 3, which is similar to the previous layer, but only the
convolutional kernels in the Conv1D are set to 32. After the feature maps pass through
Layer 3, the obtained feature map is fed to the dropout (0.5) layer to avoid overfitting.
Finally, the FC layer is fed with the output feature maps from the preceding layer.

A grid search approach was utilized to find the optimal hyperparameters. The grid
search involved several hyperparameters that are listed in Table 1 with their corresponding
ranges and the chosen optimal values for the architecture. We tested the influence of
these parameters on the performance of the recognition accuracy and chose the parameters
that helped in achieving the best accuracy. The final experimental configurations for the
investigation of the EEG data in this work are as follows: the learning rate is set to 0.001, the
maximum number of iterations is limited to 40, the ReLU function is used for each hidden
layer, the SoftMax output is used for classification, and validation is performed through
leave one subject out. The data split for training, testing, and validation was performed
such that, from the data of N subjects, (N − 1) subjects*Number of trails for each subject for
training (90% training set, 10% validation) and 1 subject*Number of trails for each subject
for testing. Moreover, the regulation parameter was set to be 1e5, cross-entropy loss, and a
stochastic gradient descent optimizer. Further, we selected 15 optimization steps based on
the validation set as early stopping criteria, Xavier initializer as weight initializer, and the
bias vector initialized to all zeros.

Table 1. Selected hyperparameters and corresponding range to find the optimal values for a
lightweight 1D-CNN model.

Hyperparameter Range Optimal Value

Layers 1–5 3
Batch size 18–40 32

Epochs 20–50 40
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Table 1. Cont.

Hyperparameter Range Optimal Value

Learning rate 0.1–0.0001 0.001
Number of convolution filters (Layer 1) 16–100 64

Filter size (Layer 1) 3–5 3
Number of convolution filters (Layer 2) 16–100 64

Filter size (Layer 2) 3–5 3
Number of convolution filters (Layer 3) 16–128 32

Filter size (Layer 3) 3–5 3
Number of convolution filters (Layer 4) 16–128 -

Filter size (Layer 4) 3–5 -
Number of convolution filters (Layer 5) 16–128 -

Filter size (Layer 5) 3–5 -

3.3.2. CNN Model for Facial Video Clips

The CNN architectures are verified and very well known for image recognition in the
world of researchers because of their ability to extract discriminative features for better
classification [67]. ResNet [67] outperforms all other CNN architectures in classification by
increasing the depth of the network to generate features with more relevant characteristics.
In this work, ResNet50 is used to extract features from facial video clips for an emotion
recognition task. Figure 4 depicts the structure of the proposed CNN model with the
ResNet50 network.
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For feature extraction, an input layer provides sequences of facial data to CNN after
preprocessing. A dimension reduction layer is added before feeding the input to Resnet50
so that the shape of the input data is transformed to 224 × 224 × 3. We removed the final
FC layer of ResNet50 and replaced it with one dropout layer (0.5) and a SoftMax output
layer of three emotion classes. We used stochastic gradient descent as an optimizer with
a learning rate of 0.001 and a batch size of 32. Further, we replaced the average pooling
layer before the FC layer in ResNet50 with the max-pooling layer to subsample the input to
reduce its size, which helps decrease the calculations performed in subsequent layers.

3.3.3. Feature Level Fusion Using DCCA

In this work, we used deep canonical correlation analysis (DCCA) to fuse highly
correlated features from EEG and facial video clips. Initially, DCCA was presented by
Andrew et al. [68] to compute representations of several modalities by processing them
through multiple stacked layers of nonlinear transformations. Figure 5 depicts the architec-
ture of DCCA used in this work.

We applied a grid search approach to find optimal hyperparameters for designing the
deep learning model to be used in the DCCA method. After a series of time-consuming
experiments, we selected the regulation parameter to be 1e5, cross-entropy loss, and a
stochastic gradient descent optimizer. Further, we selected 15 optimization steps based
on the validation set as early stopping criteria, Xavier initializer as weight initializer, and
the bias vector initialized to all zeros. Moreover, Table 2 presents the tunable hyperpa-
rameters and the corresponding ranges that have been considered during the grid search
approach to find the optimal values. We tested the influence of these parameters on the
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performance of the recognition accuracy and chose the parameters that helped in achieving
the best accuracy.
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Table 2. Selected hyperparameters and corresponding range for the evaluation of optimal values to
design a 1D neural network for DCCA.

Hyperparameter Range Optimal Value

Layers 1–4 3
Batch size 18–50 32

Epochs 20–60 40
Learning rate 0.1–0.0001 0.001

Number of convolution filters (Layer 1) 100–150 128
Filter size (Layer 1) 3–5 3

Number of convolution filters (Layer 2) 100–300 256
Filter size (Layer 2) 3–5 5

Number of convolution filters (Layer 3) 200–512 512
Filter size (Layer 3) 3–5 3

Number of convolution filters (Layer 4) 200–512 -
Filter size (Layer 4) 3–5 -

The 1D model is developed using CNN architecture to improve the DCCA. The model
comprises an input layer, three convolutional layers, each attached with a max-pooling
layer, followed by one dropout layer, and finally, a SoftMax layer. The convolutional layers
are developed using 128, 256 and 512 convolution kernels with kernel sizes of 3 × 1, 5 × 1,
and 3 × 1 and stride of 1 in each layer, respectively. The non-linear function ReLU is used
as an activation function. Each max-pooling layer is designed with a pool size of 2 and a
stride of 2. The dropout layer is designed with parameter 0.4.

In this work, DCCA is used for feature transformation, and then, the transformed
features are fused together to apply classification. The DCCA model is shown in Figure 5, in
which we applied a deep learning model for feature transformation, where the CCA layer
calculates the correlation, and we use that correlation for feature fusion and classification.
Let the matrix I1 ∈ RM×n1 contain trials of the EEG modality, and matrix I2 ∈ RM×n2

contains trials of the facial video clip modality. Here, the total number of trials is denoted
by M, and the dimensions of features in the EEG trials and facial video clips are represented
by n1 and n2, respectively. To reorganize the input features in a non-linear manner, we
designed a deep neural network for each modality as follows:

O1 = f1(I1; H1)
O2 = f2(I2; H2),

(5)
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where parameters of the nonlinear transformation are denoted as H1 and H2; the resulting
features from each neural network are denoted as O1 ∈ RM×n and O2 ∈ RM×n and the
dimension of features from DCCA is denoted as n. Mutually learned parameters H1 and H2,
resulting from DCCA, have elevated the correlation between O1 and O2 as high as possible:

(H∗1 , H∗2 ) = arg max
H1, H2

corr( f1(I1; H1), f2(I2; H2)), (6)

Mutually learned parameters H1 and H2 were updated using the backpropagation algo-
rithm. The gradients of the objective function were calculated as suggested by Andrew et al. [68]
to reach the desired solution. After the training of the two neural networks, the transformed
features O1 and O2 ∈ S are in the joint hyperspace S. Primarily in DCCA [54], the authors
did not clearly report the usage of transformed features. The user is free to opt for an
approach to make use of the transformed features in the best interest of their application.
In this work, we obtained fused features from transformed features as follows:

O = αO1 + βO2, (7)

where α and β symbolize weights sustaining α + β = 1. The features O combined through
DCCA are fed to the SoftMax classifier. The classifier is trained to perform emotion
recognition tasks. As previously mentioned, there are several advantages to designing
DCCA for data fusion from multiple modalities. For instance, at feature-level fusion, DCCA
obtains O1 and O2 explicitly for each modality to observe the characteristics and correlation
of modality-centric transformations. Moreover, the nonlinear mapping functions f 1(·) and
f 2(·) can be controlled to preserve emotion-centric information. Further, in the weighted
sum fusion, we are using equal weights for both modalities.

3.3.4. Baseline Fusion Methods

We considered several feature-level fusion methods to fuse the features of EEG trials
and facial video clips and applied the classification to ensure the validity and competitive-
ness of the proposed DCCA-based fusion method for emotion recognition. The comparison
shows the importance of the DCCA-based fusion approach over other fusion methods. The
fusion methods considered for comparison are discussed below.

(1) Simple Concatenation Fusion [69]: It is a feature-level fusion method. First of all, the
feature vectors from each modality are normalized to zero mean and unit variance. Then,
the features are combined. For instance, I1 = [u1, . . . , uk] ∈ Rk and I2 = [v1, . . . , vl ] ∈ Rl

denote the feature vectors from each modality, and the combined features can be calculated
as follows:

O = [u1, . . . , uk, v1, . . . , vl ], (8)

(2) Multiple kernel learning (MKL) [70]: MKL is widespread for its capability of
instantly learning kernels and can be utilized for feature-level fusion. For the MKL prob-
lem, a suitable method is to consider that K (x1, x2) is actually a convex combination of
basis kernels:

K(x1, x2) = ∑N
n=1 wnKn(x1, x2), (9)

where N denotes the total number of kernels, wn ≥ 0 and ∑N
n=1 wn = 1.

(3) MAX Fusion [69]: It determines the resultant class by choosing the class with the
highest probability. Therefore, it is a decision-level fusion method. Suppose that there
are U classifiers and V classes; the probability distribution for each trial can be defined as
Pj(yi|xt) where j ∈ {1, . . . , U} and i ∈ {1, . . . , V}, xt denotes a trial, yi signifies the resultant
class label, and Pj(yi|xt) symbolizes the probability of trial xt of ith class resulting from jth
classifier. The mathematical formula of MAX fusion can be defined as follows:

Ŷ = argmax
i
{max

j
Pj(yi|xt)}, (10)
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(4) Fuzzy Integral Fusion [69]: It is a decision-level fusion technique. Let a fuzzy
measure λ on the set X is a function: λ : P(X)→ [0, 1] , which ensures the following the
two axioms: (1) λ (∅) = 0 and (2) A ⊂ B ⊂ X indicates λ(A) ≤ λ(B). In this work, we
considered the discrete Choquet integral to join the features of the two modalities. The
discrete Choquet integral of a function h : X → R+ with respect to λ is defined by

g(h) = ∑n
i=1(h(xi)− h(xi−1))λ(Ai), (11)

where subscript i specifies that indices are permuted as 0 ≤ h(x1) ≤ · · · ≤ h(xn),
Ai = {xi, . . . , xn}, and h(xo) = 0. In this work, we utilize the algorithm suggested by
Tanaka and Sugeno [71] to calculate the λ. This algorithm helps in minimizing the squared
error of the model by calculating λ. Tanaka and Sugeno [71] also presented that the
minimization problem can be resolved through a quadratic programming technique.

(5) Adaptive Fusion [54]: It is a decision rule-based fusion method. The fusion method
is accompanied by a deep learning model, as suggested in [54]. Finally, the decision is
made using the following equation:

y =

{
yF +

(
1 +

∣∣∣ yE−0.4
100

∣∣∣)yE i f |yE| > 0.4
yE+yF

2 otherwise
(12)

where yF denotes facial modality and yE denotes EEG modality. If the value of |yE| is
greater than 0.4, EEG modality is given more weight; otherwise, both modalities are given
equal weight.

(6) Bidirectional Long-term and Short-term Memory (BLSM) Network [57]: A three-
layered bidirectional LSTM network is designed for feature-level fusion. The complete
network is designed and implemented as described in [57]. The BLSM network’s first layer
performs the modeling of raw features into time series representation. The subsequent layer
fuses hidden features of the two modalities using linear functions, while the nonlinearity
factor is introduced with a sigmoid function to represent the fused features in a new
representation. The last layer of BLSM is responsible for the time series representation of
the output from the preceding layer.

4. Experimental Results

The proposed architecture was trained over the MAHNOB-HCI and DEAP datasets.
This section provides an overview of the results of single modalities and the fusion of EEG
and facial video clips in terms of accuracy.

4.1. Experimental Setup

For both datasets, a three-class problem (happy, neutral, and sad) is considered for test-
ing the proposed model. A leave-one-subject-out strategy was used to conduct experiments
for each dataset, and the results were compared with several state-of-the-art methods. In a
leave-one-subject-out experiment, training data comprise all subjects except one subject,
which is left for testing. Moreover, the data split for training, testing, and validation was
performed such that, from the data of N subjects, (N − 1) subjects × Number of trails for
each subject for training (90% training set, 10% validation) and 1 subject × Number of trails
for each subject for testing.

4.2. EEG-Based Results

The model proposed in Section 3.2.1 was extended with a SoftMax layer at the end
for the classification of emotions using EEG data. The proposed model was successfully
able to recognize emotions with an average accuracy of 83.27% and 74.57% using the
MAHNOB-HCI and DEAP datasets, respectively. For each user, Table 3 shows the test
results using MAHNOB-HCI and DEAP datasets. It can be observed in Table 3 that there
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are fluctuations in accuracy between users within a dataset. This is because the training
data did not include any trials from the test data.

Table 3. EEG-based results in terms of accuracy (%).

Users MAHNOB Dataset DEAP Dataset

User 1 89.3 73.7
User 2 84.9 74.5
User 3 78.8 74.1
User 4 95.1 75.6
User 5 83.7 75.9
User 6 96.4 85.4
User 7 79.7 77.5
User 8 76.1 75.3
User 9 90.2 70.9

User 10 84.8 73.6
User 11 83.1 72.5
User 12 86.5 70.8
User 13 94.2 74.9
User 14 92.8 72.8
User 15 92.6 74.2
User 16 83.6 72.1
User 17 72.4 72.5
User 18 71.1 78.3
User 19 72.9 73.1
User 20 87.8 75.2
User 21 74.8 72.8
User 22 71.9 73.3
User 23 78.7 -
User 24 80.3 -
User 25 72.1 -
User 26 85.6 -
User 27 78.8 -
Average 83.27 74.57

4.3. Facial Video Clips-Based Results

The proposed model in Section 3.2.2 was extended with a SoftMax layer at the end
for the classification of emotions using facial video clips. The proposed model for facial
video clips was able to identify emotions with an average accuracy of 92.4% and 90.5%
for the MAHNOB-HCI and DEAP datasets, respectively. For each user, Table 4 shows the
test results using the MAHNOB-HCI and DEAP datasets. It can be observed in Table 4
that there are fluctuations in accuracy between users within a dataset. This is because the
training data did not include any trials from the test data. The average results from facial
video clip data are satisfactory.

Table 4. Facial video clip based results in terms of accuracy (%).

Users MAHNOB Dataset DEAP Dataset

User 1 92.2 88.8
User 2 91.3 88.6
User 3 93.1 90.4
User 4 90.3 89.7
User 5 91.8 89.7
User 6 92.5 91.9
User 7 92.4 91.6
User 8 92.1 93.4
User 9 90.7 87.2



Diagnostics 2023, 13, 977 16 of 28

Table 4. Cont.

Users MAHNOB Dataset DEAP Dataset

User 10 95.2 87.9
User 11 95.1 91.1
User 12 93.6 92.5
User 13 94.1 92.1
User 14 93.2 90.6
User 15 92.8 92.8
User 16 94.8 87.6
User 17 94.7 90.0
User 18 94.0 91.6
User 19 90.8 91.7
User 20 92.8 91.3
User 21 95.1 90.4
User 22 93.2 91.6
User 23 92.8 -
User 24 93.7 -
User 25 95.8 -
User 26 90.5 -
User 27 93.1 -
Average 92.4 90.5

4.4. Results of Fusion of EEG and Facial Video Clips Using DCCA

After collecting features using EEG and facial video clips in respective CNN models,
the DCCA method from the proposed architecture was used to fuse the features for the
classification of emotions. The fusion model was able to identify emotions with an average
accuracy of 93.86% and 91.54% for the MAHNOB-HCI and DEAP datasets, respectively.
For each user, Table 5 depicts leave-one-subject-out tests for the MAHNOB-HCI and DEAP
datasets. It can be seen in Table 5 that the accuracy after the fusion of modalities has
improved by up to 2% from the results of facial video clips.

Table 5. Results of fusion of EEG and facial video clips using DCCA in terms of accuracy (%).

Users MAHNOB Dataset DEAP Dataset

User 1 94.91 89.21
User 2 93.63 91.97
User 3 95.43 90.92
User 4 92.6 92.07
User 5 92.12 90.24
User 6 92.91 92.39
User 7 92.72 91.96
User 8 92.39 93.86
User 9 91.68 89.65

User 10 95.56 90.86
User 11 95.45 91.52
User 12 94.01 92.99
User 13 94.42 92.61
User 14 93.65 91.04
User 15 93.18 93.32
User 16 95.21 89.92
User 17 95.94 90.57
User 18 94.34 92.01
User 19 91.14 92.15
User 20 93.25 91.73
User 21 95.42 90.84
User 22 93.66 92.09
User 23 93.16 -
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Table 5. Cont.

Users MAHNOB Dataset DEAP Dataset

User 24 94.98 -
User 25 96.19 -
User 26 92.88 -
User 27 93.45 -
Average 93.86 91.54

In this work, the multimodal fusion model did marginally better when compared to
facial expression-based emotion recognition. The reason could be based on the fact that
facial expression-based recognition has shown considerable improvement through the pro-
posed preprocessing approach, but real-time emotion recognition that is only dependent on
facial expressions is highly volatile since participants are able to deceive the system so long
as they are skilled at acting out fake emotions on their faces. In this regard, the limitations
of facial emotion recognition can be considerably offset by the EEG signals- which cannot
be deceived. As a result, the EEG signals and facial expressions are complementary to
one another rather than substituting for one another, and the multimodal fusion-based
emotion recognition utilizing both signals is, therefore, more reliable than using just one of
the two signals.

In order to show the dominance of fusion over a single modality, the results of valence
detection are presented in Figure 6. We can see that a happy state is easy to detect in
part (a), where the facial variations are easily detectable. However, in part (b), the single
modality-based facial expression detection model fails to detect the participant’s happy
state due to no particular variations in facial expressions. The fusion model helps detect
the true state of motion with the help of the EEG modality. It can also be observed that it is
unnecessary to keep all the frames of a video clip when there is no particular change in the
expression. The fusion model was able to successfully detect the true emotion state of the
participant by extracting highly correlated features between two modalities.
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Figure 6. The examples of the valence detection against time are represented for experiment number
10 using the MAHNOB-HCI dataset. (a) For participant number 26, the happy state was detected
correctly. (b) For participant number 1, it was hard to detect any particular changes on the face, but
the fusion model detected a happy state successfully.

Before explaining the results of emotion recognition, the results of the proposed
methodology are also evaluated using accuracy, recall, precision, and f1-score metrics [11].
We applied EEG and facial video clip data to detect three classes of emotions (happy,
neutral, and sad) because these are the very basic categories of human emotions. Table 6
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shows the results in terms of different evaluation metrics by applying DCCA to fuse the
features of EEG trials and facial video clips. It can be observed that MAHNOB-HCI has
been outstanding against the DEAP dataset in all metrics of evaluations, and this might
be due to the quality of signals obtained from the MAHNOB-HCI dataset. Overall, the
proposed technique of feature-level fusion on the features from deep learning methods has
shown satisfactory performance.

Table 6. Results of fusion of EEG and facial video clips using DCCA.

Accuracy (%) Recall (%) Precision (%) F1-Score

MAHNOB-HCI 93.86 92.24 92.70 0.9351
DEAP 91.54 90.82 90.80 0.9107

Tables 7 and 8 present the performance factors for each emotion; happy, sad, and
neutral on DEAP and MAHNOB-HCI datasets, respectively. It presents the performance
in terms of accuracy, precision, recall, and F1-score. It can be observed that the proposed
method shows consistency in detecting all three classes; however, it can detect a happy
state more accurately as compared to the other classes, which is because of our division
of SAM ratings into categories. As one can observe in Figure 6b, the happy state can be
the most affected class in detection using facial data only because the facial expression can
be misclassified by the model as neutral. For that reason, we have squeezed the region of
rating for the neutral class (4 < rating < 5) as it can equally affect the sad class classification.
This eventually contributed to better recognition of happy and sad classes while having
little effect on neutral class recognition accuracy.

Table 7. Class-wise performance of the DCCA-based fusion method on DEAP dataset.

Accuracy (%) Recall (%) Precision (%) F1-Score

Happy 93.4 91.1 91.4 0.9127
Sad 90.52 91.3 90.1 0.9004

Neutral 90.7 90.06 90.9 0.919

Table 8. Class-wise performance of the DCCA-based fusion method on MAHNOB-HCI dataset.

Accuracy (%) Recall (%) Precision (%) F1-Score

Happy 94.2 93 93.1 0.9413
Sad 94.1 92.32 92.4 0.936

Neutral 93.28 91.4 92.6 0.928

4.5. Comparison of Results with the State-of-the-Art

In this section, we sum up our results from the previous section on the MAHNOB-HCI
and DEAP datasets. Table 9 displays the comparison between the proposed DCCA-based
fusion approach and four existing fusion methods in terms of accuracy using the MAHNOB-
HCI and DEAP datasets. The simple concatenation-based fusion method proposed by
Lu et al. [69] resulted in the least accuracy out of all methods considered in this study.
This explains why the fusion method needs to be much more sophisticated than simple
concatenation when it comes to signals from modalities. Fuzzy integrals-based fusion [69]
of two modalities yields better results than the other baseline methods because it utilizes a
special approach to minimize the error between the two modalities while correlating the
features. The MAX fusion [69] shows good performance on both datasets and is probably
the simplest of all the methods considered in this study, but it can be easily defeated if
one modality carries features of a misleading class with a strong probability. Cai et al. [70]
applied MKL to fuse audio and visual information for emotion recognition, but it does
not seem to be equally good for the fusion of other modalities. Moreover, the adaptive
fusion [54] was also implemented for comparison, and the performance was similar to
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the fuzzy integrals. A feature-level fusion using the BLSM network [57] has shown good
performance in fusing the EEG and facial video clip features, but still, its accuracy is lower
than the adaptive fusion method. As depicted in Table 9, the DCCA-based fusion method
achieves the best accuracy of 93.86% and 91.54% on MAHNOB-HCI and DEAP datasets,
respectively. This proves that the deep learning-based fusion method (DCCA) is the most
effective in extracting the highly correlated features and a more robust method for emotion
recognition in terms of the modalities under consideration.

Table 9. Comparison of average accuracies (%) of different fusion methods with DCCA using
MAHNOB-HCI and DEAP datasets.

Fusion Methods MAHNOB-HCI DEAP

Simple Concatenation [69] 88.32 85.71
MKL [70] 88.81 86.55
MAX [69] 89.47 87.15

Fuzzy Integral [69] 90.83 88.08
Adaptive Fusion [54] 90.92 88.69

BLSM [57] 88.79 88.14
DCCA [68] 93.86 91.54

The advantage of our proposed method is proven by comparing it with state-of-the-art
methods, and we ensured that the experimental setup of the methods from the literature
considered the corresponding number of emotional categories. A comprehensive summary
of results from the proposed method and other methods is shown in Table 10. Wu et al. [72]
propose a model for facial expression and EEG data fusion based on hierarchical LSTM.
The features were combined at each time frame to identify the important signal at the next
time frame until the emotion result was predicted at the last time frame. In [73], a CNN
and decision tree-based emotion recognition model was proposed to fuse the multiple
modalities by using the probability value of each category. The process uses a mixed-fusion
approach on facial expressions, GSR (Galvanic skin response), and EEG data, which results
in a maximum of 81.2% and 91.5% accuracy using LUMED-2 (Loughborough University
Multimodal Emotion Dataset-2) and DEAP datasets, respectively. Zhang [74] investigated a
LIBSVM (library for support vector machines) model for a classification task and adopted a
fuzzy logic approach for decision-level fusion of the EEG and facial expression signals. The
author was able to improve the average emotion recognition rate to 85.7%. Huang et al. [75]
proposed two decision-level fusion approaches based on the enumerate weight rule and
an adaptive boosting technique to combine facial expression and EEG data. The fusion
results achieved 69.75% accuracy for the valence and 70.00% accuracy for the arousal space
in an online experiment. Aguiñaga et al. [53] considered a three-class (happy, angry, and
sad) classification problem and used the DEAP dataset to evaluate the performance. An
approach including a neural network for facial expression recognition and a 1D-CNN
model for EEG data was implemented and achieved a maximum accuracy of 83.33%. Zhao
and Chen [57] achieved good performance through the fusion of EEG and facial features
while analyzing time series data with the help of an LSTM model. However, the proposed
scheme shows the best performance against other methods in the literature.

Even if several qualified research procedures were studied, the majority of closely
linked research works selected the same number of emotional states. It can be observed from
Figure 7 that our proposed model has performed meaningfully better than other methods in
bimodal emotion recognition. The proposed model uses a DCCA-based feature-level fusion
method, which can extract highly correlated features in bimodal emotion recognition.
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Table 10. Comparison of proposed method with other methods from literature in terms of datasets
and number of emotion categories.

Reference No. of Emotions Dataset Accuracy (%)

Proposed 3 MAHNOB-HCI
DEAP

93.86
91.54

Wu et al. [72] 2 DEAP 85

Cimtay et al. [73] 2 DEAP
LUMED-2

79.2
82.7

Zhang [74] 4 DEAP 85.71

Huang et al. [75] 2 DEAP
MAHNOB-HCI

80
75

Aguiñaga et al. [53] 3 DEAP 83.33

Zhao and Chen [57] 2 DEAP
MAHNOB-HCI

86.8
74.6
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Figure 7. Comparison of proposed method with other state-of-the-art methods from the literature
in terms of accuracy (Aguiñaga et al. [53], Zhao and Chen [57], Wu et al. [72], Cimtay et al. [73],
Zhang [74], Huang et al. [75]).

Table 11 shows the comparison of the proposed technique with the most recent state-
of-the-art methods reported in [11], and it can be observed that the proposed method
achieved competitive performance. However, it is essential to note that our method relies
on discarding unnecessary information from the input data.

For the sake of a fair comparison, we analyzed the computational complexity of the
proposed lightweight 1D-CNN model against other lightweight models on EEG data.
For this purpose, the number of network parameters and average processing time (for
the feature extraction part only) are evaluated in Table 12. We see that Shi et al. [76] and
Saini et al. [77] consumed fewer parameters than the proposed method but were not reliable
in terms of results. This might be due to the lesser number of convolutional layers or poor
selection of convolutional filters, and sometimes the dropout layer plays a significant role
in reducing the overfitting problem. However, the proposed model not only achieved a
significant performance in terms of accuracy over the other models but also utilized fewer
parameters. It can be observed from Table 12 that the proposed model has fewer parameters
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than the other lightweight models with the least effect on performance. This is because
the pooling layer does not contain parameters. We replaced the fully connected layers
with the pooling layers, which significantly reduced the number of parameters. Several
experimental evaluations have shown that replacing the fully connected layers has little
effect on the model’s accuracy. Additionally, the proposed method saves approximately 96%
of the processing time compared to Cordeiro et al. [78]. Although the methods presented
by Shi et al. [76] and Saini et al. [77] consumed less time, they could not meet an adequate
level of accuracy as compared to the proposed method. Here we deduce that: (1) models
by Shi et al. [76] and Saini et al. [77] produced low accuracy due to their relatively simpler
structure and the usage of fewer convolution layers; (2) model by Cordeiro et al. [78]
produced the best results; however, it consumed more network parameters and processing
time; and (3) proposed model achieved significant performance as compared to the others.

Table 11. Comparison of state-of-the-art methods in terms of accuracy reported in [11].

Method Accuracy (%)

LIBSVM 85.71
Spiking neural networks 73.15

CNN 69.38
SVM 73.69

SVM, 3 Nearest Neighbors 66.28
Random Forest, SVM, logistic regression (LR) 73.08

LSTM-CNN 93.13
1D-CNN and neural networks 89.60

LSTM 91.00
Proposed 93.86

Table 12. Comparison of performance between proposed 1D-CNN model for EEG signals and other
lightweight methods.

Methods Network Parameters Processing Time (s) Accuracy on DEAP
Dataset (%)

Accuracy on
MAHNOB-HCI

Dataset (%)

Proposed 1D-CNN
model for EEG 19,042 3.823 74.57 83.27

Shi et al. [76] 1482 1.142 68.26 78.76
Saini et al. [77] 2688 2.257 70.13 79.98

Cordeiro et al. [78] 26,224,952 113.484 75.79 85.52
Qazi et al. [79] 1,028,516 59.711 75.08 84.63

Anvarjon et al. [80] 5,137,260 22.231 75.74 84.72

At the same time, we also monitored the utilization of the hardware resource by the
proposed method and other lightweight models in the training and testing phases on EEG
data. For that purpose, we ran our experiments on Intel (R) Core (TM) i7-7700K CPU @
4.5 GHz processor, using 32 GB memory and two NVIDIA GTX 1080 GPUs. We recorded
the percentage of overall processing capacity and the percentage of physical memory
occupied by the proposed and other lightweight models when they were trained/tested.

Table 13 presents the hardware resources utilized by the proposed and other models
during the training and testing phases. Although there are no data in the papers to show
the utilization of hardware resources of the models considered for comparison, it can be
seen in Table 13 that some models are more complex in terms of parameters as compared
to the proposed model. As a result, such models’ utilization of hardware resources must
be greater than those with fewer parameters. It can be observed that out of all models
considered for comparison, the model proposed by Cordeiro et al. [78] has the highest
usage of processing capacity, while that of Qazi et al. [79] has the largest memory usage.
The proposed model’s processing capacity utilization is slightly high, reaching above 19%
during training, but memory utilization is much lower. In terms of computing overhead, it
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can be shown that the suggested model performs adequately when compared to alternative
lightweight approaches.

Table 13. Comparison of hardware resource utilization of the proposed 1D-CNN model for EEG
signals and other lightweight methods.

Methods
Overall Processing

Capacity Usage
Test/Train (%)

Memory
Test/Train (%)

Accuracy on DEAP
Dataset (%)

Accuracy on
MAHNOB-HCI

Dataset (%)

Proposed 1D-CNN
model for EEG 19.5/20.5 10.9/8.7 74.57 83.27

Shi et al. [76] 17.3/19.67 8.3/7.9 68.26 78.76
Saini et al. [77] 18.5/21.8 9.6/9.0 70.13 79.98

Cordeiro et al. [78] 53.4/65.2 31.9/30.1 75.79 85.52
Qazi et al. [79] 31.49/30.9 24.1/21.4 75.08 84.63

Anvarjon et al. [80] 31.8/29.0 32.5/29/2 75.74 84.72

5. Discussion

As we know, a positive mood helps improve efficiency at work and secures the
mental health of a human being. On the other hand, a negative mood causes stress,
which ultimately leads to depression if not treated well/on time [81]. Social or physical
environments usually entice negative moods in humans. Moreover, relevant psychological
and physiological symptoms also begin to rise inside the body along with the negative
mood. Normally, these negative symptoms fade away with time if the stress does not last
much longer; otherwise, it may lead to severe damage to the body if the symptoms persist.
Therefore, it is necessary to distinguish between happy, sad, and neutral emotions.

This study performed feature extraction and fusion using data from the two modalities.
We ran simulations on the MAHNOB-HCI and DEAP datasets to see how useful the suggested
approach was. Both datasets include ratings from each subject for each stimulus in the form
of levels of arousal/valence on a discrete scale between 1–9 [13]. The most fundamental
and extensively used characteristics for representing an individual’s emotions are valence
and arousal. Valence stands for pleasure or contentment; therefore, if valence scores rise, so
too would the amount of satisfaction for any given subject (see Figure 8). However, arousal
symbolizes wakefulness; therefore, if the arousal value is low, the subject is asleep, and if the
arousal value rises, the subject is awake. We used these ratings to convert them into three
classes, namely sad (rating ≤ 4), neutral (4 < rating < 5), and happy (rating ≥ 5).
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The term “autism” was first used by Asperger [82] and Kanner [83] to describe an
organic disorder with severe behavioral, affective, communication, and social skills impair-
ment. This disorder is characterized by a lack of interest in other people, speech disorders,
attention deficits, and compulsive and repetitive behavior. A chronic neurodevelopmental
illness called autism spectrum disorder (ASD) causes difficulties in social interaction and
interpersonal communication as well as constrained, repetitive behaviors and interests [84].
Several studies have revealed that people with ASD have trouble reading others’ facial
expressions [85]. A lack of emotional awareness negatively affects one’s ability to manage
their own emotions [86] and makes it more difficult to understand the emotions of others,
which makes it challenging to interact socially. People with alexithymia are unable to
express their emotions verbally, either because they are uninformed of the feelings that go
along with these emotions or because they confuse emotional and physical experiences [87].
Because of this, they struggle to build close, intimate connections with others, comprehend
the motives and attitudes of others, and come to ethically sound conclusions that consider
the perspectives of others. One of the most significant areas of overlap between alexithymia
and ASD is these components of alexithymia, together with communication and social
skill deficiencies.

Communications and social interactions suffer when people find it difficult to read the
expressions on others’ faces. However, in this study, we have combined the features from
EEG trials and facial video clips to recognize the true emotions of a person. The proposed
system can enable such socially impaired people to function properly by identifying the
true facial expression of others. Additionally, this research may be expanded to discover
strategies for helping socially challenged individuals recognize their own emotions and
develop appropriate facial expressions.

Nonverbal cues in human contact, such as voice tone/pitch/cadence, body move-
ments/kinesthetic information, gestures, and others, that reveal to others one’s inten-
tions, thoughts, and feelings have long played a significant role in human communication.
However, the role of each type of communication becomes more important when a bod-
ily/mentally challenged person wants to convey emotions. Kumar and Ponnusamy [88]
presented a multimodal technique to identify the emotions of mentally challenged people
from facial expressions, voice, and body language. Further, Castellano et al. [89] fused fea-
tures from facial expressions, body movements, gestures, and speech to identify emotions
using a Bayesian classifier. Therefore, combining signals from several non-verbal means of
communication along with EEG and/or facial expressions can be worth studying using the
proposed method.

This study was conducted to examine the emotions of a human being using more
than one modality while preserving the necessary information and neglecting the redun-
dant information in the modalities under consideration. Thus, it is worth discussing the
classification results after designing a bimodal emotion recognition model using EEG and
facial video clips on separate deep-learning models and fusing the deep-learning features
with another deep-learning-based model to develop a highly correlated feature map. The
results suggest that deep learning-based emotion recognition models are worth studying,
and there is always room for improvement in such models in terms of efficiency. This
method consisted of deep learning models for feature extraction from EEG and facial
video clip modalities. Afterward, the extracted deep features were fused again in terms
of correlation using DCCA. The fused features were used to recognize the three different
classes of emotions.

The generalization capability of a model is better judged in a leave-one-subject-out
experiment, and the proposed work executes emotion recognition by considering a leave-
one-subject-out methodology for testing. The simulations have depicted that the model has
attained satisfactory accuracy in bimodal emotion recognition in a leave-one-subject-out
environment. Moreover, the testing of the model was performed using single modalities,
and the outcomes showed that the proposed model with the feature-level fusion of features
using DCCA could attain satisfactory outcomes.
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6. Conclusions and Future Work

This work presents a unique bimodal emotion recognition model by performing
the fusion at the feature level using DCCA. The proposed model relies on a CNN. We
assessed the proposed model on the DEAP and MAHNOB-HCI datasets for performance
measurement. Initially, we applied pre-processing steps to remove the noise from EEG data
and facial video clip data in the DEAP and MAHNOB-HCI datasets. Moreover, balancing
the class distribution helped improve the normalization capacity of the classification model.
In the end, leave-one-subject-out testing was performed for all subjects, and the SoftMax
classifier was applied to perform classification.

The simulation results proved that the features acquired from the proposed/adapted
deep learning models and fused together using DCCA achieved better and more consistent
performance. The proposed method helped overcome the missing key features problem
and enhanced the performance of emotion recognition from bimodal data by extracting
highly correlated features for classification. We proposed an emotion recognition system
that was applied to all subjects separately for testing. The model is capable of recognizing
the true emotional state, because it does not consider any features from either modality,
which can cause ambiguity during classification and enhance the accuracy and constancy
of bimodal emotion recognition. This model for bimodal emotion recognition is a powerful
interface for brain–computer interaction.

Even if the results obtained from simulations are good enough, cross-subject emotion
recognition can be a good way to study this method further. We aim to improve this method
by making it robust, optimal, and generalized for multimodal emotion recognition, and
by including some emotion-related brain neurogenic analysis in the discussion section.
Moreover, it is an established fact that the more data, the better the deep learning model will
perform. The two considered datasets (DEAP and MAHNOB-HCI) with a limited number
of subjects are not sufficient to fully train deep learning models. Therefore, it would be
interesting to study the response of the proposed model with more data generated through
new experiments and/or augmentation techniques.
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