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Abstract: Recent studies have revealed mutually correlated audio features in the voices of depressed
patients. Thus, the voices of these patients can be characterized based on the combinatorial relation-
ships among the audio features. To date, many deep learning–based methods have been proposed to
predict the depression severity using audio data. However, existing methods have assumed that the
individual audio features are independent. Hence, in this paper, we propose a new deep learning–
based regression model that allows for the prediction of depression severity on the basis of the
correlation among audio features. The proposed model was developed using a graph convolutional
neural network. This model trains the voice characteristics using graph-structured data generated to
express the correlation among audio features. We conducted prediction experiments on depression
severity using the DAIC-WOZ dataset employed in several previous studies. The experimental
results showed that the proposed model achieved a root mean square error (RMSE) of 2.15, a mean
absolute error (MAE) of 1.25, and a symmetric mean absolute percentage error of 50.96%. Notably,
RMSE and MAE significantly outperformed the existing state-of-the-art prediction methods. From
these results, we conclude that the proposed model can be a promising tool for depression diagnosis.

Keywords: audio feature; depression; regression model; correlation; graph convolutional neural
network

1. Introduction

Depression is a psychiatric disorder that can be attributed to the complex interaction
of psychological and social factors. According to the World Health Organization, approxi-
mately 280 million people suffer from depression worldwide [1]. The symptoms range from
long-term depressed mood or loss of interest to disrupted sleep and eating disorders, and
in the worst case, depression may lead to suicide [2]. Because objective and quantitative
diagnostic criteria have not yet been established, the diagnosis of depression is based on
the subjective judgment of the physician. Therefore, the diagnosis of depression is often
delayed or missed [3,4]. Depression is treated differently depending on its severity [5];
hence, appropriate and rapid identification of its severity is crucial for deciding on an
appropriate treatment plan.

In recent years, many studies have proposed methods for predicting depression
severity using deep learning algorithms to support physician diagnosis. These studies
used modality data, such as audio data [6–14], facial expression data [11,14,15], and text
data [11,14], as training data and constructed regression models based on neural networks
to predict depression severity. In particular, unique audio features (biomarkers) have
been reported in the voices of depressed patients [16,17]; accordingly, many audio-based
depression severity prediction methods have been proposed [6–10,12,13]. Furthermore,
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audio features that show a mutual correlation among the voices of depressed patients have
been detected [18]. Thus, the voices of depressed patients can be characterized based on the
combinatorial relationships among multiple audio features, which is an important aspect
that must be considered for accurately predicting depression severity. However, existing
studies have assumed that the individual audio features are independent; thus, they have
not constructed models based on the relationships among these features.

The objective of this study is to test the hypothesis that using relationships among
audio features is effective for predicting the severity of depression. Hence, in this paper,
we propose a new regression model that predicts depression severity on the basis of the
correlation among audio features. This model was constructed using a graph convolu-
tional neural network (GCNN) [19], a deep learning algorithm. A GCNN represents the
relationship among audio features as graph-structured data, which can be used to extract
the voice characteristics using a convolutional neural network (CNN) [20]. The two main
contributions of this study are as follows: (1) presenting a new method using a GCNN to
predict depression severity on the basis of the relationship among audio features; and (2)
demonstrating better prediction performance than existing state-of-the-art methods.

2. Materials and Methods

As discussed in Section 1, the voices of depressed patients are distinguished based on
combinatorial correlations among multiple audio features [18]. Hence, when learning the
voice characteristics of depressed individuals, the correlations among audio features should
be considered. Consequently, we employed a GCNN, which enables deep learning based
on correlations among audio features. This is a novel approach that has yet to be explored
in prior studies. The following sections describe the details of the proposed model.

2.1. Datasets

In this study, we used the DAIC-WOZ dataset [21], which is widely used for perfor-
mance evaluation in depression severity prediction via machine learning. This dataset
contains audio data collected from the responses of 189 subjects (102 males and 87 females)
during interviews. The subjects were assigned scores on the basis of a depression rating
scale, PHQ-8 [22]. The audio data are vectors comprising 74 audio features which are
generated every 10 milliseconds from the voiced sound of each subject’s speech using
the opensource program COVAREP [23]. We eliminated nine audio features, which were
included in “voicing or not (VUV),” “detecting creaky voice (creak),” and “harmonic model
phase distortion mean (HMPDM0-6),” from the feature vectors. This is owing to the fact
that the value variances of these features were approximately zero, and the correlation
coefficients could not be calculated correctly in the generation of similarity graphs in Sec-
tion 2.3.1. The remaining 65 audio features were adjusted to have a zero median and a one
quartile range. Finally, 6,639,782 65-dimensional feature vectors were created. The obtained
feature vectors were employed as training and testing data for the proposed model.

2.2. Definition of Depression Severity

Table 1 shows the correspondence between the PHQ-8 score and severity level [22].
The PHQ-8 score takes integer values from 0 to 24 and is used to determine the depression
severity level for each subject. Herein, following previous studies [11–14], we defined the
depression severity assigned to each feature vector as the PHQ-8 score value.

Table 1. Correspondence between PHQ-8 score and severity level.

PHQ-8 Scores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Diagnosis Non-depression Depression
Severity

level Nonsignificant Mild Moderate Moderately severe Severe
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2.3. Model Construction
2.3.1. Creation of Similarity Graphs

To predict the severity of depression according to the correlation among audio features,
we created similarity graphs for the audio features showing mutual correlation using the
feature vectors created in Section 2.1. The similarity graphs were created via the following
procedure. First, the similarities among all of the audio features were estimated using
the feature vectors for training the model. Following the literature [19], we employed the
absolute value of the correlation coefficient as the similarity between audio features. Next,
for each audio feature, n audio features (referred to as neighborhoods) were selected in
descending order of similarity. Herein, n was set to nine. Subsequently, we represented each
audio feature and its neighborhood as nodes and created similarity graphs by connecting
these nodes by edges (note that neighborhoods were not connected to each other). Finally,
we generated 65 similarity graphs for the 65 audio features. These graphs were used for
model construction and depression severity prediction.

2.3.2. Training and Prediction by GCNN

Figure 1 and Table 2 show the architecture and details of the proposed model, respec-
tively. The proposed model learns the characteristics of the subject’s voice at each severity
level on the basis of the combinations of correlated audio features in the feature vectors.
The input to the model was the 65-dimentional feature vectors converted from the audio
data. First, convolution was performed on each audio feature included in the similarity
graphs through four graph convolution layers. This process corresponds to the convolution
operation on image data using a filter matrix in CNN [20]. Subsequently, the predicted
score was obtained from the output layer through three dense layers. In this study, the
categorical cross-entropy error was used as a loss function, and Adam [24] was used as an
optimization function. The weight parameters of the network were updated on the basis of
the backpropagation algorithm by comparing the ground truth and the predicted score.
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Table 2. Details of the architecture of the proposed model.

Layer Number of Kernels Kernel Size Dropout Rate Activation Function

Graph_conv1 64 1 × 9 × 64 - ReLU
Graph_conv2 128 64 × 9 × 128 - ReLU
Graph_conv3 256 128 × 9 × 256 - ReLU
Graph_conv4 512 256 × 9 × 512 - ReLU

Dense1 - - 0.1 tanh
Dense2 - - 0.1 tanh
Dense3 - - 0.1 tanh

The procedure for predicting depression severity was as follows. First, a raw audio
sample was converted into a 65-dimensional feature vector and input into the model. The
feature vector was fed into the graph convolution layers and dense layers, and a depression
severity score was predicted by the output layer.

3. Experimental Results
3.1. Experimental Method

On the basis of the feature vectors presented in Section 2.1, data were randomly
selected and categorized as follows: 80% for training, 10% for validation, and 10% for
testing. The prediction accuracy was evaluated using three indices, root mean square
error (RMSE), mean absolute error (MAE), and symmetric mean absolute percentage error
(SMAPE) as follows:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2, (1)

MAE =
1
n

n

∑
i=1
|ŷi − yi|, (2)

SMAPE =
100
n

n

∑
i=1

|ŷi − yi|
(|ŷi|+ |yi|)/2

, (3)

where ŷi, yi, and n indicate the predicted score output from the model, actual severity score,
and the number of test data, respectively.

3.2. Results of Prediction Experiments

Table 3 shows the scores for each evaluation index obtained through the prediction
experiments and a comparison with the existing state-of-the-art studies. Similar to our
study, these studies were conducted using the DAIC-WOZ dataset. A, V, T, and A + V + T
in the modality column represent audio modality, visual modality, text modality, and
multimodality, respectively. As for SMAPE, only the value of the proposed model is
shown in this table because it has not been shown in the other studies. Yang et al. [11]
and Fang et al. [14] employed a multimodal model; hence, the findings for the respective
modalities and the multimodality are shown in Table 3. As can be seen from Table 3,
our model showed an RMSE and MAE of 2.15 and 1.25, respectively. These errors are
considerably small compared with those of the other methods. This indicates that the
proposed model can predict depression severity with higher accuracy than those methods.
SMAPE takes values between 0 and 200%. Our model showed a SMAPE of 50.96%.
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Table 3. Prediction results and comparison with the existing methods.

Author Year Modality Method Feature RMSE MAE SMAPE

Yang et al. [11] 2017 A DCNN-DNN GeMAPS based audio features 5.63 4.85 -

V DCNN-DNN Histogram of Displacement
Range 5.40 4.75 -

T DCNN-DNN Paragraph Vector 4.38 3.64 -

A + V + T DCNN-DNN fusion
framework - 5.97 5.16 -

Yang et al. [12] 2020 A DCNN DCGAN generated features 5.52 4.63 -

Lu et al. [13] 2022 A Transformer Encoder
+ CNN

eGeMAPS based audio
features 5.37 4.48 -

Fang et al. [14] 2023 A LSTM + FFN COVAREP based audio
features and Formant 6.13 5.21 -

V LSTM + FFN 3D facial_landmark, Head
Pose, Action Units, Eye Gaze 5.44 4.12 -

T Bi-LSTM + Attention USE Embedding 4.76 3.61 -

A + V + T Feature fusion
network - 3.68 3.18 -

Ours 2023 A GCNN 65 audio features 2.15 1.25 50.96%

Figure 2 shows an overlaid graph of the probability density functions of the predicted
scores and actual severity scores calculated via kernel density estimation. The horizontal
and vertical axes of the graph indicate the severity score and probability density, respec-
tively. In this graph, these two curves have a large overlap. Hence, it can be seen that the
proposed model can output highly accurate prediction values.
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4. Discussion

Yang et al. [11] introduced a multimodal model based on audio, visual, and text
modalities. Their results showed that the text modality performed best, with an RMSE and
MAE of 4.38 and 3.64, respectively, and the audio modality exhibited an RMSE and MAE of
5.63 and 4.85, respectively. They also focused on improving the audio modality, achieving
an RMSE and MAE of 5.52 and 4.63, respectively [12]. The audio modality model proposed
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by Lu et al. [13] exhibited an RMSE and MAE of 5.37 and 4.48, respectively. Fang et al. [14]
suggested a multimodal model that incorporated audio, vision, and text modalities. Their
results showed that the multimodality performed best, with an RMSE and MAE of 3.68
and 3.18, respectively, and the audio modality exhibited an RMSE and MAE of 6.13 and
5.21, respectively.

Our proposed model outperformed the aforementioned models, with an RMSE and
MAE of 2.15 and 1.25, respectively. These findings demonstrate the efficacy of predicting
depression severity using correlations among several audio features based on GCNN.
Another reason for the superior prediction performance of the proposed model may be the
number of training data. The existing methods, in which the same dataset as our study was
used, used at most 42,000 training data. Conversely, in this study, we used a large amount
of training data (i.e., >6.6 million), which were obtained in a considerably short window
width (10 milliseconds). As pointed out in the literature [12], a large amount of training
data is required to improve prediction accuracy.

Notably, the prediction errors of the proposed model were considerably smaller than
those of the other models (Table 3). The proposed model exhibited an RMSE of 2.15, while
the best RMSE among the existing models is 3.68. Moreover, the proposed model exhibited
an MAE of 1.25, while the best MAE among the existing models is 3.18. As explained in
Section 2.2, the severity level is determined by the severity score based on PHQ-8. Therefore,
larger prediction errors indicate a higher probability of misidentifying the severity levels
and severity scores. According to the literature [5], treatment policies and care methods
differ depending on the severity level of depression. Hence, the highly accurate prediction
of the severity score is crucial. However, the existing models exhibited considerably
large prediction errors; therefore, they were likely to output inaccurate prediction scores
across different severity levels. Conversely, the proposed model considerably reduces the
prediction error and thus can make it less likely to deviate from the correct severity level.

Since the existing models in Table 3 have not presented SMAPE, a comparison with the
proposed model is not possible. However, SMAPE can provide one finding regarding the
proposed model by considering the contents of Figure 2. As can be seen from the SMAPE
equation, the prediction errors for smaller actual severity scores can strongly influence the
increase in SMAPE. From Figure 2, a discrepancy between actual and predicted scores is
observed for the small severity scores of approximately 0 to 5. Conversely, in Figure 2, no
such large discrepancies in the distribution of actual and predicted scores are observed for
the large severity scores. Thus, the value of SMAPE in the proposed model may reflect the
prediction errors in the small severity scores.

As reported by Fang et al. [14], multimodal models can effectively improve the predic-
tion accuracy of depression severity. Improving the prediction accuracy of the different
modalities is critical for the further improvement of the performance of multimodal models.
Table 3 shows that the audio modalities had the largest prediction errors compared with
those of the other modalities. Improving the audio modality can considerably enhance
the prediction accuracy of multimodal models. In this study, we significantly reduced the
prediction error compared with those of the existing models. Therefore, this study will play
a role in improving the prediction performance of multimodal models in the future.

For the practical use of the model, the following three points need to be considered.
The first is that the same subject can be included in both the training data and test data
in the prediction experiments, which were conducted in the same experimental setting as
the existing studies. However, in actual medical practice, new patients not included in the
training data can be also diagnosed. Therefore, it is necessary to evaluate the generalization
performance for new patients. In the future, prediction experiments should be conducted
in a setting where different subjects are divided between the training and test data. The
second point is that the model requires numerous computational resources. The proposed
model has seven network layers for processing training data. Therefore, there are a huge
number of parameters, and using a computer with a high-performance GPU becomes
essential. Actual medical practice requires a simpler model; hence, model compression
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techniques need to be implemented [25,26]. The third point is that the robustness of the
model against noise needs to be improved. The voice data used in this experiment were
recorded in a quiet environment using the same recording equipment at the designated
location for all subjects. However, it is not always possible to record voices under such
favorable conditions in actual medical settings. To make the proposed model practical
in a wider range of applications, it is important to achieve accurate severity prediction
using noisy speech recorded with inexpensive devices or via telephone or video calls. To
achieve this objective, it is necessary to introduce a noise reduction process [27] in the
preprocessing of speech data. The introduction of a noise reduction process is expected to
enable noise-robust depression diagnosis support not only in a face-to-face format but also
in a remote format.

The key benefits of the proposed model are summarized as follows:

Diagnostics 2023, 13, x FOR PEER REVIEW 7 of 9 
 

 

considerably large prediction errors; therefore, they were likely to output inaccurate pre-

diction scores across different severity levels. Conversely, the proposed model considera-

bly reduces the prediction error and thus can make it less likely to deviate from the correct 

severity level. 

Since the existing models in Table 3 have not presented SMAPE, a comparison with 

the proposed model is not possible. However, SMAPE can provide one finding regarding 

the proposed model by considering the contents of Figure 2. As can be seen from the 

SMAPE equation, the prediction errors for smaller actual severity scores can strongly in-

fluence the increase in SMAPE. From Figure 2, a discrepancy between actual and pre-

dicted scores is observed for the small severity scores of approximately 0 to 5. Conversely, 

in Figure 2, no such large discrepancies in the distribution of actual and predicted scores 

are observed for the large severity scores. Thus, the value of SMAPE in the proposed 

model may reflect the prediction errors in the small severity scores. 

As reported by Fang et al. [14], multimodal models can effectively improve the pre-

diction accuracy of depression severity. Improving the prediction accuracy of the different 

modalities is critical for the further improvement of the performance of multimodal mod-

els. Table 3 shows that the audio modalities had the largest prediction errors compared 

with those of the other modalities. Improving the audio modality can considerably en-

hance the prediction accuracy of multimodal models. In this study, we significantly re-

duced the prediction error compared with those of the existing models. Therefore, this 

study will play a role in improving the prediction performance of multimodal models in 

the future. 

For the practical use of the model, the following three points need to be considered. 

The first is that the same subject can be included in both the training data and test data in 

the prediction experiments, which were conducted in the same experimental setting as 

the existing studies. However, in actual medical practice, new patients not included in the 

training data can be also diagnosed. Therefore, it is necessary to evaluate the generaliza-

tion performance for new patients. In the future, prediction experiments should be con-

ducted in a setting where different subjects are divided between the training and test data. 

The second point is that the model requires numerous computational resources. The pro-

posed model has seven network layers for processing training data. Therefore, there are a 

huge number of parameters, and using a computer with a high-performance GPU be-

comes essential. Actual medical practice requires a simpler model; hence, model compres-

sion techniques need to be implemented [25,26]. The third point is that the robustness of 

the model against noise needs to be improved. The voice data used in this experiment 

were recorded in a quiet environment using the same recording equipment at the desig-

nated location for all subjects. However, it is not always possible to record voices under 

such favorable conditions in actual medical settings. To make the proposed model practi-

cal in a wider range of applications, it is important to achieve accurate severity prediction 

using noisy speech recorded with inexpensive devices or via telephone or video calls. To 

achieve this objective, it is necessary to introduce a noise reduction process [27] in the 

preprocessing of speech data. The introduction of a noise reduction process is expected to 

enable noise-robust depression diagnosis support not only in a face-to-face format but 

also in a remote format. 

The key benefits of the proposed model are summarized as follows: 

▪ The proposed model can predict depression severity based on the correlations among 

audio features obtained from speech data. 

▪ Despite the fact that the proposed model only uses speech data, it performs much 

better than the existing state-of-the-art models, including multimodal models. 

The key limitations of the proposed model are listed as follows: 

▪ A substantial amount of training data, high-performance computational resources, 

and a considerable amount of computational time are required for constructing the 

proposed model.  

The proposed model can predict depression severity based on the correlations among
audio features obtained from speech data.

Diagnostics 2023, 13, x FOR PEER REVIEW 7 of 9 
 

 

considerably large prediction errors; therefore, they were likely to output inaccurate pre-

diction scores across different severity levels. Conversely, the proposed model considera-

bly reduces the prediction error and thus can make it less likely to deviate from the correct 

severity level. 

Since the existing models in Table 3 have not presented SMAPE, a comparison with 

the proposed model is not possible. However, SMAPE can provide one finding regarding 

the proposed model by considering the contents of Figure 2. As can be seen from the 

SMAPE equation, the prediction errors for smaller actual severity scores can strongly in-

fluence the increase in SMAPE. From Figure 2, a discrepancy between actual and pre-

dicted scores is observed for the small severity scores of approximately 0 to 5. Conversely, 

in Figure 2, no such large discrepancies in the distribution of actual and predicted scores 

are observed for the large severity scores. Thus, the value of SMAPE in the proposed 

model may reflect the prediction errors in the small severity scores. 

As reported by Fang et al. [14], multimodal models can effectively improve the pre-

diction accuracy of depression severity. Improving the prediction accuracy of the different 

modalities is critical for the further improvement of the performance of multimodal mod-

els. Table 3 shows that the audio modalities had the largest prediction errors compared 

with those of the other modalities. Improving the audio modality can considerably en-

hance the prediction accuracy of multimodal models. In this study, we significantly re-

duced the prediction error compared with those of the existing models. Therefore, this 

study will play a role in improving the prediction performance of multimodal models in 

the future. 

For the practical use of the model, the following three points need to be considered. 

The first is that the same subject can be included in both the training data and test data in 

the prediction experiments, which were conducted in the same experimental setting as 

the existing studies. However, in actual medical practice, new patients not included in the 

training data can be also diagnosed. Therefore, it is necessary to evaluate the generaliza-

tion performance for new patients. In the future, prediction experiments should be con-

ducted in a setting where different subjects are divided between the training and test data. 

The second point is that the model requires numerous computational resources. The pro-

posed model has seven network layers for processing training data. Therefore, there are a 

huge number of parameters, and using a computer with a high-performance GPU be-

comes essential. Actual medical practice requires a simpler model; hence, model compres-

sion techniques need to be implemented [25,26]. The third point is that the robustness of 

the model against noise needs to be improved. The voice data used in this experiment 

were recorded in a quiet environment using the same recording equipment at the desig-

nated location for all subjects. However, it is not always possible to record voices under 

such favorable conditions in actual medical settings. To make the proposed model practi-

cal in a wider range of applications, it is important to achieve accurate severity prediction 

using noisy speech recorded with inexpensive devices or via telephone or video calls. To 

achieve this objective, it is necessary to introduce a noise reduction process [27] in the 

preprocessing of speech data. The introduction of a noise reduction process is expected to 

enable noise-robust depression diagnosis support not only in a face-to-face format but 

also in a remote format. 

The key benefits of the proposed model are summarized as follows: 

▪ The proposed model can predict depression severity based on the correlations among 

audio features obtained from speech data. 

▪ Despite the fact that the proposed model only uses speech data, it performs much 

better than the existing state-of-the-art models, including multimodal models. 

The key limitations of the proposed model are listed as follows: 

▪ A substantial amount of training data, high-performance computational resources, 

and a considerable amount of computational time are required for constructing the 

proposed model.  

Despite the fact that the proposed model only uses speech data, it performs much
better than the existing state-of-the-art models, including multimodal models.

The key limitations of the proposed model are listed as follows:
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The number of neighborhoods with strong correlations may differ for each audio
feature. However, the proposed model has a limitation in that the number of neighbors
is fixed.

5. Conclusions

In this paper, we proposed a new regression model based on GCNNs to predict
depression severity scores. The proposed model enabled depression severity prediction
based on the correlation among audio features, which was not considered previously.
The experimental results demonstrated that the proposed model has an RMSE, MAE,
and SMAPE of 2.15, 1.25, and 50.96%, respectively. Notably, the RMSE and MAE were
considerably better than those of the current state-of-the-art prediction methods. Hence,
the proposed model can be a promising support tool for the diagnosis of depression for
medical as well as personal use. In the future, for practical use, we will evaluate the
generalization performance of the model and introduce a model compression technique
and a noise reduction process.
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