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Abstract: Radiomics has the potential to aid prostate cancer (PC) diagnoses and prediction by ana-
lyzing and modeling quantitative features extracted from clinical imaging. However, its reliability
has been a concern, possibly due to its high-dimensional nature. This study aims to quantita-
tively investigate the impact of randomly generated irrelevant features on MRI radiomics feature
selection, modeling, and performance by progressively adding randomly generated features. Two
multiparametric-MRI radiomics PC datasets were used (dataset 1 (n = 260), dataset 2 (n = 100)). The
endpoint was to differentiate pathology-confirmed clinically significant (Gleason score (GS)≥ 7) from
insignificant (GS < 7) PC. Random features were generated at 12 levels with a 10% increment from 0%
to 100% and an additional 5%. Three feature selection algorithms and two classifiers were used to
build the models. The area under the curve and accuracy were used to evaluate the model’s perfor-
mance. Feature importance was calculated to assess features’ contributions to the models. The metrics
of each model were compared using an ANOVA test with a Bonferroni correction. A slight tendency
to select more random features with the increasing number of random features introduced to the
datasets was observed. However, the performance of the radiomics-built models was not significantly
affected, which was partially due to the higher contribution of radiomics features toward the models
compared to the random features. These reliability effects also vary among datasets. In conclusion,
while the inclusion of additional random features may still slightly impact the performance of the
feature selection, it may not have a substantial impact on the MRI radiomics model performance.

Keywords: radiomics; reliability; random features; prostate cancer; MRI; machine learning

1. Introduction

Radiomics is a field of medical imaging that encompasses the extraction and analysis
of quantitative features from medical images. Radiomics offers the potential to unveil
imaging patterns and biomarkers that may help improve disease characterization, treatment
selection, and the monitoring of treatment response [1,2]. Prostate cancer (PC) is one of the
most prevalent cancers in men, particularly affecting older men [3]. The incidence rates of
PC vary across countries and populations, with higher rates observed in African-American
men [4]. Multiple risk factors, including age, family history, genetic mutation, and obesity,
contribute to the development of PC [3–5]. Recent advancements in early detection and
treatment options, such as radiotherapies, targeted therapies, and immunotherapies, have
contributed to improved mortality rates in PC patients [4]. Given the heterogeneous
nature of PC and the varying responses to treatment observed among patients, an accurate
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assessment of its aggressiveness is of utmost importance in determining appropriate
treatment strategies [3,5]. By understanding the specific characteristics of PC, including
its growth rate and potential for metastasis, healthcare professionals can tailor treatment
plans to maximize efficacy while minimizing unnecessary interventions. The Gleason
score, a histopathological grading system, has traditionally been used for assessing PC
aggressiveness [6]. It assesses the architectural patterns of the tumor cells obtained through
biopsy or surgery and assigns a grade ranging from 1–5 to the two most prevalent patterns
observed. The sum of these two grades represents the Gleason score, with higher scores
indicating more aggressive cancer [6]. While the Gleason score has been an important
metric in PC diagnosis and treatment planning, it has some limitations. The Gleason
score relies on subjective interpretation by pathologists and can be affected by sampling
errors due to the heterogeneity of prostate tumors. This has led to an increased interest in
incorporating other measurements, such as the utilization of imaging-based information,
to enhance the accuracy and reliability of PC assessment. The Prostate Imaging–Reporting
and Data System (PI-RADS) and Likert scoring system were proposed and developed
to standardize the interpretation of prostate MRI and quantify radiologists’ confidence
in the presence of PC, respectively [7]. Both scoring systems were shown to have high
detection rates of clinically significant PC, which could complement the Gleason score
in PC assessment, but they relied too much on readers’ experience and were subject to
inter-observer disagreement [7]. Quantitative MRI analysis, such as MRI radiomics, has
been actively investigated and reported to aid in the objective detection and grading of
PC [8–10].

Although MRI radiomics studies have shown great promise, there is a concern regard-
ing the reliability of radiomics [11–13]. This issue requires further investigation to address
various unresolved issues and ensure the accuracy and dependability of radiomics-based
approaches in practical healthcare applications. These reliability issues could stem from
many contributing factors, which could happen during image acquisition, reconstruction,
feature extractions, and other procedures [14–16]. Furthermore, radiomics studies normally
involve an extremely large number of features, which could pose challenges in data analysis
and interpretation. Having more features/data could intuitively provide more information,
which could aid in building more comprehensive and better models, which consequently
help improve the predictive performance of the models [17]. However, having a large
number of features could also result in a high-dimensional dataset or the inclusion of
unwanted or irrelevant features. While some radiomics features generated may contribute
to predicting or understanding the clinical endpoint references, not all features are deemed
important or highly associated with the clinical endpoint references, which could become
irrelevant features. These irrelevant features could potentially overshadow or dilute the
real valuable radiomics information, which can lead to inaccurate and inefficient results.
Using a high-dimensional dataset is also prone to overfitting, increased computational
complexity, and further decreased interpretability of the results [18].

Some machine learning techniques were used to mitigate this situation, which include,
but are not limited to, feature selections and data modeling. Feature selection methods
could discern the most critical features and eliminate the redundant and irrelevant features
from the large amount of data extracted from the medical images. These features would
then be fitted into models via data modeling techniques, which could predict or classify
the patients [19,20]. Recursive feature elimination (RFE), minimum redundancy maximum
relevance (MRMR) feature selection, and least absolute shrinkage and selection operator
(LASSO) are some of the most commonly used feature selection methods, while random
forest (RF) and LASSO modeling are commonly applied technique in MRI radiomics
modeling [19–23]. However, it is unclear how this high-dimensional dataset with the
inclusion of irrelevant features will affect this machine learning technique (especially
feature selection or modeling) in building a robust MRI radiomics model. Hence, this
study aims to quantitatively investigate and evaluate the impact of random features, which
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are completely irrelevant to the endpoints on MRI radiomics feature selection, modeling,
and performance.

2. Materials and Methods

This study employed publicly accessible radiomics feature datasets, which facilitated
reproducibility and external validation. Consequently, the retrospective nature of the study
allowed for the waiver of Institutional Review Board (IRB) approval.

2.1. Datasets

Two publicly available MRI prostate radiomics feature datasets were used in this study
(Table 1). The clinical outcome of both datasets was divided into clinically significant PC
(Gleason score ≥ 3 + 3) and non-clinically significant PC (Gleason score = 3 + 3). These
outcomes are lesion-based, with one derived from MR-guided biopsy [21] and another
from whole-mount prostatectomy [22]. Both methods were mentioned in the previous liter-
ature [21,22]. Only the radiomics feature values provided in the original studies were used
in this study. Z-score normalization was conducted to normalize the radiomics features.
The feature names used in this study are shown in Supplementary Tables S1 and S2.

Table 1. Overview of the PC datasets used in this study.

Dataset Sample Size No. of Features Outcome Outcome
Balance (%) Modality DOI

Song
(dataset 1) [21] 260 lesions 265

clinically significant
vs. non-clinically

significant PC
49

Multiparametric
MRI (T2W, DWI,
and ADC maps)

https://doi.org/10.137
1/journal.pone.0237587

(accessed on
12 April 2023)

Toivonen
(dataset 2) [22] 100 lesions 7106

clinically significant
vs. non-clinically

significant PC
80 T2-TSE, DWI, and

T2 mapping

https://doi.org/10.137
1/journal.pone.0217702

(accessed on
12 April 2023)

Training Dataset and Testing Dataset

The data from each dataset were separated into training and hold-out testing datasets
with a ratio of 7:3.

2.2. The Addition of Randomly Generated Irrelevant Features

The randomly generated irrelevant features (random features) were added by ran-
domly fabricated features using the uniform distribution with the range of randomly
picked radiomics features of the dataset for each new feature. The details of the random
feature generation are described in Supplementary Figure S1. The number of randomly
generated features was added at 12 levels with an increment of 10% and an addition of a
5% increment (0%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%) and were
repeated 20 times at each level to increase the accuracy and the reliability of the results.
Each repetition was conducted with a different random sample selection of the radiomics
features, where its range will be mimicked to generate the random features.

2.3. Radiomics Feature Selection Methods

The Mann-Whitney U test (with a 0.05 threshold) was conducted to filter the radiomics
features. After filtering, 3 different feature selection methods, which were commonly used
in radiomics studies [21–23], were used to select 20 and 50 features at maximum. They were
recursive feature elimination (RFE), LASSO and minimum redundancy maximum relevance
(MRMR). The parameter settings of the feature selections are listed in Supplementary Table S3.

https://doi.org/10.1371/journal.pone.0237587
https://doi.org/10.1371/journal.pone.0237587
https://doi.org/10.1371/journal.pone.0217702
https://doi.org/10.1371/journal.pone.0217702
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2.4. Machine Learning Classifiers

After passing through feature selection, two classifiers were utilized to build the
models: random forest (RF) classifiers and LASSO. Finally, 12 radiomics models (3 fea-
ture selection algorithms × 2 classifiers × 2 maximum threshold) were built for each
reference permutation. They were LASSO + RF, RFE + RF, MRMR + RF, RFE + LASSO,
MRMR + LASSO, and LASSO + LASSO for each maximum threshold (20 and 50). The
parameter settings of the classifiers are listed in Supplementary Table S4.

2.5. Data Training, Validation, and Testing

Dataset 1 was trained using ten-fold stratified cross-validation, while dataset 2 was
trained using five-fold stratified cross-validation due to its relatively smaller sample size.
Oversampling was conducted to help address the data imbalance. The performances of
the radiomics models trained with or without the additional random features were first
assessed and compared. True performances of these radiomics models were also evaluated
using the hold-out testing datasets.

2.6. Features Importance

Feature importance was calculated to evaluate the contribution of each feature to the
model’s performance. To calculate the distribution of contribution of the features in the
model built using RF classifiers, the varImp function in R was used, which determines
feature importance by assessing the reduction in model performance when each predictive
feature is randomly permuted while keeping other features unchanged. For models built
using LASSO, the feature importance is denoted using the absolute value of the magnitude
of the coefficients obtained from the LASSO models. The obtained feature importance
values were further scaled to a 0–100 percentage range for ease of interpretation.

The importance of the top 10 radiomics features was calculated by averaging the
importance of each feature across all repetitions and different feature selection methods
for different ratios of additional random features. Similarly, the importance of the top
10 random features was calculated by averaging the 10 highest importance of random
features combined across all repetitions and different feature selection methods for the
different ratios of additional random features.

2.7. Statistics

The Jaccard Similarity Coefficient (JSC) was used to evaluate the consistency of the
radiomics feature selected by different feature selection methods (Formula (1)) [24]. The JSC
ranges from 0 to 1, with 0 representing no feature commonly selected and 1 representing the
exact same features selected. Since there were 20 repetitions in each permutation level, the
JSC was calculated by the intersection of radiomics features selected from all 20 different
permuted datasets over the union of those datasets (Formula (2)).

JSC =
A∩ B
A∪ B

(1)

JSC =
D1 ∩D2 ∩ . . . D20

D1 ∪D2 ∪ . . . D20
(2)

A = Dataset A
B = Dataset B
Di = Dataset i (with i representing the number of repetitions)

The area under the curve (AUC) of the Receiver Operating Characteristics (ROCs)
curve, sensitivity, specificity, and accuracy of each model were computed and compared us-
ing an ANOVA test with a Bonferroni correction [25]. A significance level of a p-value < 0.05
was utilized to determine statistical significance. These statistical analyses were performed
in R Studio.
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3. Results
3.1. Feature Selection

The number of random features selected by each feature selection varied across differ-
ent levels, with additional random features added to the dataset. The results of the three
different feature selection methods with different maximum thresholds (20 and 50 features
selected) in selecting random features are shown in Figure 1. Overall, there is an increasing
trend of random features selected by feature selection methods with an increasing number
of additional random features. LASSO feature selection selected the most random features
from both datasets, followed by MRMR, which selected at most 55% (n = 11) when the
maximum threshold = 20 and 36% (n = 18) when the maximum threshold is 50 in dataset
2. Meanwhile, compared to other feature selections, RFE relatively selected the fewest
random features for both maximum thresholds in both datasets, especially when the ratio of
random features added into the datasets was equal to or greater than 50% (≥50%) (p < 0.05).
The ratio is also higher when the threshold is 20 compared to when the threshold is 50,
which means the number of random features selected is comparable for both thresholds.
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Figure 1. The ratio of the random features selected by the feature selection (least absolute shrinkage
and selection operator (LASSO), minimum redundancy maximum relevance (MRMR), and recursive
feature elimination (RFE)) with different maximum thresholds across different levels of additional
random features.

The most stable features selected using different feature selection methods in each
dataset are shown in Supplementary Table S3. The JSC calculated to compare the selected
radiomics features in all 20 repetitions by every feature selection method across different
levels of additional random features to the dataset was represented in Figure 2. MRMR
selected the most consistent features during the 20 repetitions in both datasets, with better
performance in dataset 1 than dataset 2, while LASSO and RFE performed comparably.
There is a slight decrease in the JSC with the increase in the number of random features
added to the datasets.

3.2. Model Performances
3.2.1. Area under the Curve (AUC)

The AUCs in the training sets were not significantly different among different combi-
nations of the feature selection and data modeling technique across different numbers of
random features added to the dataset (mean AUCtraining set without the additional random
features = 0.96; 0.97 for dataset 1 and dataset 2 consecutively; mean AUCtraining set with
random features = 0.95; 0.95 for dataset 1 and 2 consecutively; p > 0.05). AUCs in the
testing set were also not significantly different among the different combinations of feature
selection and data modeling technique (mean AUCtesting set without the additional random
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features = 0.91; 0.72 for dataset 1 and dataset 2; mean AUCtesting set with additional random
features = 0.93; 0.67 for dataset 1 and dataset 2; p > 0.05) despite different numbers of
random features added into the dataset, as shown in Figure 3.
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features in all 20 repetitions by every feature selection method (least absolute shrinkage and selection
operator (LASSO), minimum redundancy maximum relevance (MRMR), and recursive feature
elimination (RFE)) across different levels of additional random features for the dataset.

3.2.2. Model Accuracy

The accuracy trend in both training and testing sets was similar to the trend of the
performance measured by the AUC, with no significant difference among the different
combinations of feature selection and data modeling technique despite different numbers
of random features added to the dataset (p > 0.05), as shown in Figure 4.

The accuracy measurements of the models in the training sets were not signifi-
cantly different across different numbers of random features added to the dataset (mean
accuracytraining set without the additional random features = 0.94; 0.96 for dataset 1 and
dataset 2 consecutively; mean accuracytraining set with random features = 0.91; 0.90 for
dataset 1 and 2 consecutively; p > 0.05). Accuracy measurements in the testing set were
also not significantly different despite different numbers of random features added to the
dataset (mean accuracytesting set without the additional random features = 0.91; 0.81 for
dataset 1 and dataset 2; mean accuracytesting set with additional random features = 0.93;
0.79 for dataset 1 and dataset 2; p > 0.05). The sensitivity and specificity of the models are
shown in Supplementary Figures S2 and S3.

3.2.3. Feature Importance

Feature importance was calculated for all the models. Figure 5 shows the importance
of the top 10 most important features (both radiomics and random) along with the total
mean contribution of random features for dataset 1 and dataset 2 when the maximum
threshold was set to 20. The figures of the top 10 most important features (radiomics and
random features) toward the model, with the maximum threshold set to 50 for the feature
selection methods, are shown in Supplementary Figure S4. Overall, the importance of the
random features is significantly lower for the top-performing random radiomics features
(maximum (average): 0.47–1.20%) compared to the importance of the top radiomics features
(maximum (average): 8.32–22.64%) (p < 0.05).
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and least absolute shrinkage and selection operator (LASSO) classifiers for dataset 1 (a,b), respectively,
and dataset 2 (c,d), respectively, with the maximum threshold set to 20 for the feature selection
methods across every repetition and different feature selection methods for the different ratios of
additional random features.

4. Discussion

With its inherently large size and complexity, the radiomics dataset inevitably may
include random features that are irrelevant to the clinical endpoint references and could
pose significant challenges for data analysis. This could affect the accuracy, efficiency, and
reliability of the performance of the built model. This study investigated the impact of these
random irrelevant features on MRI radiomics, modeling, and performance by progressively
adding randomly generated features to MRI radiomics datasets. Radiomics features were
assumed to have more association with the clinical endpoint references, while the random
features were deemed purely irrelevant to the clinical endpoint references.

This study showed that there is a slight tendency to select more random features with
the increasing number of random features introduced to the datasets, especially when
using LASSO feature selection. The ratio of the selected random features is higher when the
maximum threshold is set to 20 than when it was set to 50. This decreasing ratio, despite
the increase in the maximum threshold, indicated that there was no significant increase in
the number of random features selected, even with a higher threshold for feature selection.
The reliability of the feature selection measured by the JSC with 20 repetitions also did
not change with the increase in the maximum threshold. This finding showed that the
threshold set for the feature selection might not substantially affect the feature selection’s
reliability and the number of random features selected. Overall, the results showed that
additional random features, although irrelevant, could impact the reliability of the feature
selection, with its influence increasing with the number of random features introduced.
Some feature selection methods, such as MRMR, were also shown to be more reliable than
others. However, this reliability effect also varies among datasets, where it might perform
better in certain datasets than others.

Although the feature selection methods selected some random features for data mod-
eling, the performance of the radiomics-built model did not seem to be especially impacted.
Generally, the models performed relatively well and similarly across different numbers
of random features introduced to the datasets. There are some factors that could result
in this. Firstly, the number of random features selected after the feature selection was
relatively few, especially when the additional random feature level was low. Secondly, the
potentially strong performance of the modeling classifiers contributes to the building of an
effective classification model. In addition, from the feature importance calculation, which
assesses the contribution of the features to the radiomics models, the results showed that
radiomics features generally were regarded as more important for the models compared
to random features. The feature importance calculation showed that the radiomics model
could identify the radiomics features, which could have a stronger association with the
clinical endpoint references. Hence, when random features were introduced, their impact
on the model’s performance was limited. These findings further highlighted the important
and unique value of radiomics features in predicting the outcome and, parallelly, the ro-
bustness of these predictive model classifiers, as well as their abilities to discern meaningful
patterns amidst random features.

In dataset 1, the performance of the models with the testing datasets was even slightly
better when there were random features in the datasets than when there were none. These
additional random features might also increase the diversity of the training data, which
could improve the performance of the models [16,26]. On the other hand, in dataset 2, the
model’s performance deteriorated slightly after the introduction of the additional random
features. This finding showed that adding random features to this dataset might have
introduced additional irrelevant information, causing the model to be less accurate. This
discrepancy suggests that the impact of additional random feature information on model
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performance could still depend on the specific characteristics and complexity of the dataset.
Hence, it emphasizes the importance of dataset-specific analysis and cautions against
generalizing the effects of random features on model performance. However, the overall
effect of the additional random features added to the dataset is minimal.

In the era of data-driven analyses and the increasing popularity of radiomics model-
ing, recent clinical models have increasingly utilized complex and high-dimensional data.
This approach aims to capture a more comprehensive representation of the state of the
disease, thereby enhancing the predictive capabilities of the models [17,27,28]. Essentially,
this suggests that more data may lead to improved performance of the model. A study
conducted by Gentile F et al. showed that by incorporating the prostate health index into
multiparametric MRI, the resulting model not only exhibited superior classification perfor-
mance of clinically significant PCs to non-clinically significant ones but also demonstrated
greater reliability and repeatability compared to models using either multiparametric MRI
or the prostate health index alone [28].

However, it is also important to acknowledge that the increasing number and com-
plexity of data can cause the models to be susceptible to irrelevant information, which
may consequently impact their performance [18]. This study showcases the potential of
MRI radiomics-built models, which encompass complex and high-dimensional original
radiomics datasets, including random features that are completely irrelevant to the clinical
endpoint of differentiating clinically significant PCs from clinically insignificant ones. Re-
markably, the overall performance of these MRI radiomics models, though data-dependent,
is relatively robust in the presence of random features. This finding highlights the great
potential of both radiomics features and machine learning modeling techniques in build-
ing clinical models, particularly for prostate cancer classification. The findings from this
study could enhance confidence in the applicability of MRI radiomics-built models for
clinical purposes.

Despite its findings, this study has several limitations. Firstly, the study design was
retrospective and simulation-based, which could introduce selection bias, as the dataset
may not represent the entire population or have incomplete information. The simulation
nature of the study that tries to mimic real-world scenarios also might not fully capture
the complexities and variability of actual clinical settings. Furthermore, it should be noted
that this study only focused on generating uniformly distributed random features. It is
important to acknowledge that different ways of generating random features could possess
varying degrees of influence on the obtained results, which could be further evaluated in
future studies. Secondly, using the public radiomics dataset in this study offered advantages
in terms of reproducibility and external validation. However, it lacks image data, which
prevents the visual demonstration of specific imaging features or patterns associated with
the analyses. Consequently, the interpretation and discussion of results are solely based
on quantitative radiomics data. In addition, this study only selected MRI PC datasets.
Hence, the results might not be directly transferable to other organs, diseases, or imaging
modalities. Moreover, PC often coexists with other prostatic conditions, such as prostatic
hyperplasia or prostatitis [4]. The presence of these coexisting diseases could impact
the performance of the MRI radiomics models in classifying PC, which was not part
of this study. Further research is warranted to extend the study to PC with coexisting
prostatic disease, other diseases, or imaging modalities. Lastly, the use of only three feature
selection methods and two classifiers might not represent the broad range of available
machine learning algorithms used in radiomics. However, we believe that the use of these
commonly used methods in radiomics is deemed to be sufficient to give insights into the
study focus. The optimization and comparative performance using different machine
learning techniques are out of the scope of this study.
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5. Conclusions

In conclusion, while the inclusion of additional random features, although irrelevant,
could affect the feature selection process, it may not substantially impact the MRI radiomics
model performance. It is still crucial to carefully consider the characteristics of the dataset
and the relevance of the additional features added to the original datasets to build a robust
and reliable MRI radiomics model. Future research can further explore advanced feature
selection and data modeling techniques to ensure the inclusion of important/contributing
features while mitigating the adverse effects of additional random features.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/diagnostics13233580/s1, Table S1: Showing the feature index with the
feature name in Dataset 1. Table S2. Showing the feature index with the feature name in Dataset 2.
Table S3. Showing the parameters of the feature selections used in this study. Table S4. Showing the
parameters of the LASSO and Random Forest models. Table S5. Showing the indices of robust features
selected by 3 different feature selection in each datasets with different ratio of pertubed endpoints.
Figure S1. Showing the diagram to generate random features. Figure S2. showing the sensitivity of
the radiomics model both in training dataset and testing dataset for dataset1 and dataset2. Figure S3.
Showing the specificity of the radiomics model both in training dataset and testing dataset for
dataset1 and dataset2. Figure S4. Shows the importance of the top 10 most important radiomics and
random features towards the radiomics model along with the total mean contribution of random
features using Random Forest and LASSO classifiers for dataset 1 (a,b respectively) and dataset 2 (c,d
respectively) with the maximum threshold set to 50 for the feature selection methods across every
repetition and different feature selection methods for the different ratio of additional random features.
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