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Abstract: In this study, a small sample of patients’ neuromonitoring data was analyzed using machine
learning (ML) tools to provide proof of concept for quantifying complex signals. Intraoperative
neurophysiological monitoring (IONM) is a valuable asset for monitoring the neurological status of a
patient during spine surgery. Notably, this technology, when operated by neurophysiologists and
surgeons familiar with proper alarm criteria, is capable of detecting neurological deficits. However,
non-surgical factors, such as volatile anesthetics like sevoflurane, can negatively influence robust
IONM signal generation. While sevoflurane has been shown to affect the latency and amplitude of
somatosensory evoked potential (SSEP), a more complex and nuanced analysis of the SSEP waveform
has not been performed. In this study, signal processing and machine learning techniques were used
to more intricately characterize and predict SSEP waveform changes as a function of varying end-tidal
sevoflurane concentration. With data from ten patients who underwent spinal procedures, features
describing the SSEP waveforms were generated using principal component analysis (PCA), phase
space curves (PSC), and time-frequency analysis (TFA). A minimum redundancy maximum relevance
(MRMR) feature selection technique was then used to identify the most important SSEP features
associated with changing sevoflurane concentrations. Once the features carrying the maximum
amount of information about the majority of signal waveform variability were identified, ML models
were used to predict future changes in SSEP waveforms. Linear regression, regression trees, support
vector machines, and neural network ML models were then selected for testing. Using SSEP data from
eight patients, the models were trained using a range of features selected during MRMR calculations.
During the training phase of model development, the highest performing models were identified as
support vector machines and regression trees. After identifying the highest performing models for
each nerve group, we tested these models using the remaining two patients’ data. We compared the
models’ performance metrics using the root mean square error values (RMSEs). The feasibility of
the methodology described provides a general framework for the applications of machine learning
strategies to further delineate the effects of surgical and non-surgical factors affecting IONM signals.

Keywords: machine learning; neural networks; principal component analysis; phase space curve
analysis; support vector machine; regression learners; time-frequency analysis; intraoperative
neuromonitoring; somatosensory evoked potential; sevoflurane

1. Introduction

The field of spine surgery has the privilege of integrating cutting-edge technology
into daily practice. An example is intraoperative neuromonitoring (IONM), which is a
technology frequently used during spine procedures to monitor neurophysiologic param-
eters in order to detect potential intraoperative injury and allow time for intervention to
minimize the development of neurologic deficits [1]. IONM utilizes different channels or
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modalities to capture and transmit various sources of neurophysiologic data. The data
are obtained by applying stimulation to leads connected to the patient, either peripherally
or to the skull, depending on the specific pathway being monitored. The primary IONM
modalities include somatosensory evoked potential (SSEP), transcranial motor evoked
potentials (TcMEPs), and spontaneous or triggered electromyography (EMG) [2–4]. Using
specific stimulation paradigms designed for optimal data collection during a spine opera-
tion, IONM technicians inspect incoming stimulation data for any signal alteration from
baseline, which may indicate a neurologic insult from surgical manipulation, non-surgical
factors, or not uncommonly, from mechanical artifacts. An example of a non-surgical
factor can be seen during patient positioning, which if carried out improperly, can trigger
detectable signal alteration that allows the surgeon to immediately re-position the patient
to avert any potential deficit [5,6]. Nevertheless, distinguishing surgical from non-surgical
factors or mechanical artifacts leading to signal alteration is of paramount importance for
proper troubleshooting of IONM waveform disturbances.

A non-surgical factor that has been shown to significantly affect IONM modalities is the
anesthetic regimen used during a particular spine operation. Surgeons, anesthesiologists,
and IONM technicians must be aware of this finding, as it can have significant implications
on IOMN signal validity and directly affect patient outcomes [7]. Specifically, volatile
anesthetic agents have been shown to affect robust IONM signal generation [8,9]. This
effect has been observed with TcMEPs, with evidence suggesting that evoked responses
traveling within polysynaptic pathways are more susceptible to anesthetic agents, resulting
in a deviation from the signal baseline. Achieving a deep neuromuscular blockade is
not possible during TcMEP monitoring due to the necessary muscular activity needed
for measurement, such that a short or intermediate duration of action muscle relaxant is
typically utilized [10]. As relevant to this current investigation, SSEPs are also affected
by volatile anesthetic agents, yet the investigation into SSEP waveform changes is not as
robust as that for TcMEPs. Moreover, the research available on SSEP and volatile anesthesia
is limited to quantifying the dose effects of these agents on SSEP waveforms. In addition,
recent focus has shifted to optimizing the anesthetic regimen rather than improving the
technology that enables the best pharmacologic agents to be used. For example, total
intravenous anesthesia (TIVA) has been favored over inhaled anesthetics in recent years
due to TIVA’s lower inhibitory effect on SSEP signals [11]. TIVA is an anesthesia protocol
that typically pairs an intravenous agent such as propofol with a commonly used opioid
such as remifentanil, while eliminating the use of inhaled anesthetics. However, TIVA
is not the ideal anesthesia for post-operative evaluation due to the prolonged recovery
time, which delays the accurate assessment of the patient’s neurological status [12,13].
However, as previously mentioned, due to the inhibitory nature of volatile anesthetics on
SSEP waveforms, low dose agents with a minimum alveolar concentration (MAC) of less
than 0.5 and up to 1 are typically used [14]. One study investigating the dose-dependent
effects of sevoflurane and desflurane at varying concentrations of MAC found that the
amplitudes of SSEP signals were decreased and the latencies delayed with increasing
concentrations [15]. Furthermore, recommendations for IONM troubleshooting during
SSEP signal changes for correctable causes include searching for the use of halogenated
anesthetics [16]. Regardless, it is worth noting that volatile anesthetics such as sevoflurane,
desflurane, enflurane, halothane, and isoflurane have a shorter recovery time to allow for
faster post-operative neurological evaluation and, just as important, are less expensive
when compared to TIVA [17].

Yet, despite these recognized advantages of volatile anesthetics, their effects on IONM
signals make this class of medications challenging to use. Specifically, volatile anesthetics
can affect SSEP signal amplitude and latency, prompting the need for multi-modal IONM
techniques [15,18,19]. The integration of combined SSEP, TcMEPs, and EMG provides a
more accurate and multi-angle viewpoint of the functional integrity of the spinal cord,
which can enhance surgical precision and reduce the risk of neurological injury [20–23].
Nonetheless, the massive amount of data generated from multi-modal monitoring makes it
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difficult to quantify the range of variability seen from these waveforms. As such, machine
learning (ML) has been identified as a potential solution to better characterize the range of
IONM disturbances affecting signal waveforms [24].

Machine learning (ML) is a subset of artificial intelligence (A.I.) that enables systems
to learn from previous data to predict future outcomes. A number of ML models are
available, depending on the degree of direct human involvement. Supervised ML models
use human-generated labeled data to train and validate algorithms to classify data or predict
outcomes [25,26]. Conversely, unsupervised learning ML models are guided very little by
their users. These models work independently to identify patterns and trends in datasets
that are not easily detectable by humans [27]. This is achieved by using dimensionality
reduction techniques to extract meaningful information from seemingly chaotic or random
datasets. Dimensionality reduction techniques such as principal component analysis (PCA),
time-frequency analysis (TFA), and phase space curves (PSCs) can be used to detect changes
to IONM signal waveforms. This study attempts to use machine learning to understand the
relationship between a volatile anesthetic agent and SSEP in humans. It aims to investigate
the potential of an unsupervised ML technology to model and predict the effects of changing
end-tidal sevoflurane concentrations on SSEP waveforms in patients undergoing spine
surgery. The successful application of ML strategies to analyze IONM data is the major
contribution of this study. To develop fully automated IONM systems, it is necessary to
take a methodical approach to identifying sources of signal artifacts. The data included
in the study are the first steps towards the development of ML IONM predictive models.
Due to the lack of existing literature or methodology applied to neuromonitoring data, our
study utilized a small sample of patients for quantifiable proof of concept using ML tools.

2. Materials and Methods
2.1. Patient Population

This study was approved by the Institutional Review Board (IRB). All patients were
consented before their surgeries. Patients who underwent surgical treatment for the pathol-
ogy of the thoracic and lumbar spine and were 40 years of age and older were included.
Patients were excluded if they received surgical treatment for cervical spine pathology.
Cases that were administered sevoflurane exclusively as a volatile anesthetic were consid-
ered. Furthermore, patients were excluded if they were administered any other volatile
anesthetic agent besides sevoflurane or if patients experienced intraoperative difficulties
resulting in new deficits. Following patient selection, ten patients (seven men and three
women, ages ranged from 49 to 74 years old) who underwent surgeries between January
2023 and August 2023 were entered into the study (Table 1). One surgeon performed the
surgeries at a single academic medical center.

Table 1. Patient demographics table.

Patient Number Gender Age Procedure

1 Male 62 Lumbar Decompression and Fusion

2 Male 74 Lumbar Decompression and Fusion

3 Male 60 Lumbar Decompression and Fusion

4 Female 52 Lumbar Decompression and Fusion

5 Male 51 Lumbar Decompression and Fusion

6 Male 50 Lumbar Decompression and Fusion

7 Female 63 Lumbar Decompression and Fusion

8 Female 66 Thoracic Decompression and Fusion

9 Male 49 Lumbar Decompression and Fusion

10 Male 61 Lumbar Extradural Tumor Excision and Fusion
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2.2. Anesthesia Protocol

Following induction of anesthesia and endotracheal intubation, a bite block was
placed in the mouth to prevent damage inflicted on the teeth, cheeks, or gums during
neuromonitoring. Inspired sevoflurane was administered at varying concentrations during
each procedure, and the anesthesiologists decided on any concentration changes to ensure
stable hemodynamic parameters.

2.3. IONM Protocol

A local third-party provider for neuromonitoring services was used for all cases.
All patients were monitored using multiple IONM modalities, including SSEP, EMG,
and TcMEPs. The technicians used Cascade Surgical Studio software version 3.5.1680
by Cadwell for streaming and storage of IONM case data. For this study, only SSEP
waveforms were extracted from each case. Figure 1 displays the cortical electrodes and
Figure 2 peripheral nerve targets for SSEP monitoring. Neuromonitoring SSEPs were
collected from the upper extremities using peripheral leads stimulated using a constant
current with intensity ranging from 0.025 to 0.034 amperes (A) applied with normal polarity
to the left and right ulnar nerves. For the lower extremities, a constant current was applied
during stimulation to the left and right posterior tibial nerves with an intensity ranging
from 0.04 to 0.06 (A) and normal polarity. SSEP waveforms were recorded using specified
electrode pairs attached to each patient’s scalp, with one subcortical lead at the level of
C5. The ulnar nerve was targeted for the upper extremities to monitor SSEPs in the right
and left arm. The posterior tibial nerve was targeted for the lower extremities to monitor
SSEPs in the left and right leg. The three channels that SSEP waveforms were collected
from varied slightly depending on the targeted nerve. The channels used to record the left
ulnar nerve waveforms consisted of the following montages: CP4 (active body site)–Fpz
(reference body site), CP4 (active body site)–CP3 (reference body site), and CS5 (active,
subcortical body site)–Fpz (reference body site). For the right ulnar nerve, the channels
data collected were CP3 (active body site)–Fpz (reference body site), CP3 (active body
site)–CP4 (reference body site), and CS5 (active, subcortical body site)–Fpz (reference body
site). For the left posterior tibial nerve, the channel data collected came from CPz (active
body site)–Fpz (reference body site), CP3 (active body site)–CP4 (reference body site), and
CP3 (active body site)–Fpz (reference body site). Lastly, for the right posterior tibial nerve,
the channel data were collected from CPz (active body site)–Fpz (reference body site), CP4
(active body site)–CP3 (reference body site), and CP4 (active body site)–Fpz (reference
body site).
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Figure 1. Cortical electrode placement. This figure displays the cortical electrode placement for SSEP
signal recording used by the technicians from which waveform data were collected. The percentage
values shown in the figure correlate to the approximate distance from the center reference point, Cz.
For example, Fz is 20% of the distance from the center reference point to the anterior reference marker
(nasal bridge), Fpz is located an additional 20% of the distance from Fz or 40% of the distance from
Cz. The same applies to all reference markers and the associated percentages. The lateral reference
markers are in line with the center of the ears, while the posterior reference marker is the center of
the occiput.
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2.4. Data Collection

Anesthesia data for end-tidal sevoflurane concentrations were recorded by the anesthe-
sia information system (sampling rate: 1 reading/min) and uploaded to the patient’s digital
healthcare charts (EPIC) actively throughout the case. These data were manually reviewed,
extracted, and entered into a Microsoft Excel spreadsheet for future analysis. End-tidal
sevoflurane concentrations were chosen for data analysis over inspired sevoflurane concen-
trations because they represented the level of volatile anesthesia circulating and expressing
its effects throughout the body. IONM case data were exported from the technicians’ record-
ing workstations in a (zipped) file format. Using Cadwell export software, (zipped) case
data files were exported in a (.json) file format for further analysis. Time points for end-tidal
sevoflurane concentrations and IONM trial data were imported into MATLAB software
version R2022a for timepoint synchronization in later stages. De-identification of patient
data was completed after successfully importing all desired datasets into the MATLAB.

2.5. Feature Generation

Further data processing and analysis were performed in MATLAB (MathWorks
v.R2022a). Sourced (.json) files were converted into MATLAB (.mat) datafile format. SSEP
data were identified and exclusively extracted from each trial. SSEP waveforms from
different trials were sorted into new variables based on their respective nerve–channel
pairing (e.g., left ulnar nerve: CP4–Fpz). Following the sorting of SSEP waveforms, feature
generation metrics were developed as follows:

(1) Phase Space Curve. The Phase Space Curve is recognized as a mathematical tool for
plotting a solution to a set of equations that describe the motion of the phase plane
or phase flow through space [28]. It is used to help process data that trend towards
chaos by generating a three-dimensional (3D) geometric shape representative of the
data points within a set timeframe.

(2) Evoked Response Latency. This data feature is commonly used to describe SSEP
waveforms for the first two channels of the ulnar nerve. The N20 (negative peak
at 20 milliseconds following stimulation) and P30 (positive peak at 30 milliseconds
following stimulation) values relay information about the latency of evoked responses.
The N13 (negative peak at 13 milliseconds following stimulation) and P14 (positive
peak at 14 milliseconds following stimulation) values are used for the third channel
of the ulnar nerve. For the left and right posterior tibial nerves, P37 (positive peak
at 37 milliseconds following stimulation) and N45 (negative peak at 45 milliseconds
following stimulation) values were assessed for all three channels.

(3) Evoked Response Amplitude. Data for evoked response amplitudes correlate to the
height of signal waveforms at the latency time points. These values were extracted
from SSEP waveforms only for the time points of interest.

(4) Time-Frequency Analysis. This method translates information from two domains
in one dimension (time domain and frequency domain) into one domain in two
dimensions [29]. It enables the analysis of these two domains simultaneously, allow-
ing users to analyze the more commonly recurring signal frequencies within a set
amount of time. In TFA, the peak or dominant frequency is the greatest frequency
value recorded for any signal within a given time segment. The power at the peak
frequency is another feature extracted from TFA spectrograms. Lastly, the timestamp
of the intercept for peak frequency and power provides information about when this
response occurred.

(5) Principal Component Analysis. This technique is useful for reducing the variables
associated with large datasets. Reducing the number of variables, or principal com-
ponents, to the minimum amount afforded allows for retaining most of the signal
waveform information and prompts for more robust signal clustering [30].

The features that were generated for SSEP waveform analysis were derived from the
qualities of the signal processing tool used on the datasets. For example, the area of the
phase curve was the feature associated with PSC, while TFA presented data in a format



Diagnostics 2023, 13, 3389 7 of 22

that allowed for interpretation of peak signals and frequencies. Figure 3 displays the metric
categories from which features were generated for this study.
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Figure 3. Metric categories for SSEP waveforms. Figure 3 displays the metric categories for which
SSEP data were analyzed for feature generation using all the trials from one patient as an example.
(a) is a raw SSEP waveform from a left ulnar nerve cortical channel demonstrating the different
features of signals. Shown here is the positive peak signal latency, representing the delay associated
with the positive peak ‘P30′ occurring at 30 milliseconds following applied stimulation. Similar signal
characteristics are applied for the negative latency occurring earlier following applied stimulation.
The ‘N20′ latency and amplitude are correlated to the lowest trough value at 20 milliseconds following
stimulation. (b) is a graph showing the results of SSEP waveform data processed using principal
component analysis. Shown in the graph are the first three principal components accounting the for
majority of variance found in the different trials for this patient. The baseline waveforms are plotted
with blue datapoints, while abnormal waveform trials are shown in red. The sphere demonstrates
the clustering of normal waveforms. (c) shows a phase space curve connecting the different trial
points. This higher dimensional representation of signals allows for comparison between different
trials using geometric shapes for calculating the area of the curve. (d) is a time–frequency domain
spectrogram, plotting signal frequencies and demonstrating the power of these frequencies within
a set timeframe. Red areas of the plot are associated with higher powers compared to green and
blue areas.

2.6. Synchronization of Anesthesia and IONM Timepoints

The clock time of the IONM workstation and the clock time of the anesthesia informa-
tion system were confirmed to be synchronized during the cases. Time points of end-tidal
sevoflurane concentrations that occurred during SSEP trials were exclusively identified and
extracted. The end-tidal sevoflurane concentrations at these identified time points were
assigned as the independent variable.

2.7. Normalization of Data

All features within the metric categories generated were normalized using interquartile
range normalization (IQR). The IQR is calculated using the difference between the third
and first quartiles [31]. Using this method to normalize the data between different features,
outliers in the dataset are less likely to affect future predictive models generated.

2.8. Reverse Regression Analysis

Following the normalization step, all the data from ten patients were consolidated for
regression analysis to identify the features more directly correlated with the changing end-
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tidal sevoflurane concentrations. The current study involves a single input or independent
variable (end-tidal concentration of sevoflurane) and the dependent variable as the SSEP
waveforms. Eleven different metric categories were generated to characterize the SSEP
waveforms. The goal was to understand how changes in sevoflurane concentration could
impact the outcome variables, identified as the 11 SSEP features. We employed reverse
regression analysis for this scenario. In the reverse regression analysis, the independent
variable (sevoflurane concentration) was flipped to become the dependent and continuous
output variable [32,33], while the 11 SSEP features were assigned to serve as the indepen-
dent or predictor variables. The data were then input into the MATLAB regression learner
application for further processing and modeling.

Figure 4 displays the total features representing the output variables for which reverse
regression analysis was performed. Five individual metric categories were assessed for
each channel used when targeting SSEP for monitoring. These metric categories consisted
of phase space curve analysis (one feature—the area of the curve), evoked response la-
tency (two features—latency peak and latency valley), evoked response amplitude (two
features—amplitude peak and amplitude valley), time-frequency metrics (three features—
peak frequency, power at peak frequency, and timestamp at peak frequency), and principal
component analysis (three features—generated from the first three principal components
accounting for approximately 95% of waveform shape). The number of features developed
totals 11 features for each channel, 33 features for each nerve (three channels per nerve),
and 132 features for each patient (four monitored nerves per patient).
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Figure 4. Feature generation diagram for each monitored nerve. This figure shows the framework for
how 132 total features were generated for each patient. Each nerve shown in the ‘SSEP Target’ column
has three channels from which SSEP signals were recorded. Each of these channels recorded trials that
were entered into each of the metric category. Within the metric categories, different features were
generated depending on the metric category being analyzed. Shown in the features column were
the entirety of features generated from the five metric categories. The total features for each channel
totaled 11 features. Eleven features for each channel and thirty-three features between three channels
for each of the four nerves monitored was how the one-hundred and thirty-two total features were
generated for each patient.
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2.9. Feature Selection

The MATLAB regression learner application was used for feature selection and re-
gression modeling. For feature selection, the minimum redundancy maximum relevance
(MRMR) method was used to estimate an important score for each feature. Using the
33 features obtained through the signal processing tools for each channel within each nerve
group, the importance of each feature was compared. By analyzing the development of
SSEP signals over time and the significance of each feature, we were able to determine the
features that were most indicative of changes in IONM signals. The top ten highest features
were selected for modeling based on their MRMR importance score.

2.10. Regression Modeling

Two patients’ data from the total dataset were set aside for testing the results of the
validation metrics performed later. The other eight patients from the data pool were used
for training the models. During training stages, ML models and their internal variables,
or parameters, were assigned varying weights to fine-tune the models’ predictive capa-
bilities. Cross-validation fold five was used. The data were introduced for the following
different models:

(1) Linear Regression. This is a useful model when estimating the association of indepen-
dent predictor variables, and the continuous output variables are maintained [34].

(2) Regression Trees (fine tree, medium tree, coarse tree). This model encompasses a
range of different predictive models that start with the first leaf, or node, and follows
a tree pattern to the next leaf containing the value for the response. Fine, medium,
and coarse describe different leaf sizes for desired data fitting goals.

(3) Support Vector Machine (linear, quadratic, cubic). SVMs use kernel functions (linear,
quadratic, cubic) to determine the transformation applied to datasets before training.
Plotting datapoints against a hyperplane in high-dimensional space allow SVM binary
classifiers to assign incoming data to the possible output classes [35].

(4) Neural Networks (narrow, medium, wide). Neural networks combine layers of
network input at varying sizes (narrow, medium, wide) to feed forward to the next
connected layer. Each layer multiplies the network input by a weight matrix, and then
assigns a bias vector. The final layer generates the predictive output [36].

The performance of each model was evaluated based on their associated root mean
square error values (RMSEs), which measure the average difference between the values that
any given model may predict and the actual data values within a dataset [37]. This value
serves as a measure of accuracy to identify which models could assign the most significant
predictive value for the features provided to the models. Once all models were trained
using the highest performing features identified in each nerve group, the models with
the most accurate predictive capabilities were chosen for testing. The highest-performing
models were tested on the remaining two patients from the original dataset. Figure 5 shows
an overview of the steps taken during the development of the prediction model.
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Figure 5. Development for machine learning system. The figure depicts the pathway towards the
final ML predictive model used for analyzing SSEP data. Stage 1 comprised of data acquisition of the
various datasets that were to be included in the study. Stage 2 was the generation of features used
to represent the datasets in different signal processing tools, and the subsequent ranking of those
features for their importance. Stage 3 was the training of the ML models that were considered for this
study. Lastly, stage 4 was when the models were tested, and performance metrics were compared.

3. Results
3.1. Patient Details

The primary purpose of this study is to provide a proof of concept for the use of
machine learning applications for neuromonitoring data. In light of this, a small sample
size of patients was initially selected to be included in the study. The patients included
in the study were primarily male, with three female patients. The average age of patients
included in the study was 58.8 years old, with a standard deviation of 7.7 years. Eight
of the ten patients in the study were surgically treated with lumbar decompression and
fusion for compressive symptoms. One patient was treated with thoracic fusion, and one
patient had an extradural neoplasm excised in addition to a lumbar fusion. The details of
the patients included in the study can be found in Table 1.

3.2. Feature Selection for Each Monitored Nerve

Figure 6 displays the raw data points from each feature generated for each trial for
all ten patients included in the study. To determine which features were more closely
associated with the fluctuating end-tidal sevoflurane concentrations, the MRMR algorithm
was used to calculate importance scores for each feature. These features were reduced to
the top ten features demonstrating the most significant importance values. The results for
each nerve after performing MRMR on all 132 features are summarized in Figure 7.
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Figure 6. Raw data points of the metric categories for SSEP trials. This figure shows the plotted
changes derived from the different metric categories and their associated features shown in Figure 3
for all ten patients. (a) is the plotted changes in sevoflurane concentration over the different trials.
(b) is the plotted changes in the areas of the phase space curve over the different trials. (c) is the
changes in the evoked responses latency peak and valleys for the different trials. (d) is the changes
in the evoked responses amplitude peak and valleys for the different trials. (e) is the changes for
all three features (peak frequency, power at peak frequency, and timestamp at peak frequency) in
time frequency analysis signal processing for the different trials. (f) is the changes in the first three
principal components for the different trials.
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Figure 7. MRMR results for feature selection. This figure shows the results of feature selection for the
different nerve categories after performing MRMR to determine which of the 132 features was most
highly correlated to the changes in sevoflurane concentrations and the subsequent fluctuations in
the SSEP waveforms. Each subfigure represents a different nerve: left ulnar (a), right ulnar (b), left
posterior tibial (c) and right posterior tibial (d). Each subfigure displays the top features selected. The
associated SSEP channel for each feature is shown in the left column in each figure.
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3.2.1. Left Ulnar Nerve Dataset

Following MRMR for the feature section, the top ten features with the highest impor-
tance scores were selected for regression modeling. These features in order of importance
were: the peak amplitude of the evoked response for channel CP4–Fpz, the latency valley
of the evoked response for channel CS5–Fpz, the first principal component for channel
CP4–CP3, the first principal component for channel CS5–Fpz, the third principal compo-
nent for channel CP4–Fpz, the third principal component for channel CS5–Fpz, the peak
or dominant frequency for channel CP4–CP3, the third principal component for channel
CP4–CP3, the peak or dominant frequency for channel CP4–Fpz, and the valley amplitude
for the evoked response for channel CS5–Fpz.

3.2.2. Right Ulnar Nerve Dataset

Ten different features were identified from the MRMR calculation for the right ulnar
nerve. The ten highest features selected for regression modeling in order were: the peak
amplitude of the evoked response for channel CP3–CP4, the latency peak for the evoked
response for channel CP3–CP4, the third principal component for channel CP3–CP4, the
second principal component for channel CP3–Fpz, the peak or dominant frequency for
channel CS5–Fpz, the peak or dominant frequency for channel CP3–CP4, the third principal
component for channel CS5–Fpz, the area of the PSC for channel CS5–Fpz, and the valley
amplitude for the evoked response for channel CS5–Fpz.

3.2.3. Left Posterior Tibial Nerve Dataset

Only five features were assigned importance scores for the left posterior tibial nerve
as all other features were not recognized as significant. Those five features selected for
regression modeling in order were: the latency valley for the evoked response for channel
CPz–Fpz, the first principal component for channel CPz–Fpz, the area of the PSC for
channel CP3–Fpz, the third principal component for channel CPz–Fpz, and the third
principal component for channel CP3–CP4.

3.2.4. Right Posterior Tibial Nerve Dataset

Similarly, for the right posterior tibial nerve, MRMR assigned importance scores for
only five features, as all others were insignificant. Those five features selected for regression
modeling in order were: the latency peak for the evoked response for channel CPz–Fpz,
the first principal component for channel CPz–Fpz, the second principal component for
channel CP4–Fpz, the second principal component for channel CPz–Fpz, the third principal
component for channel CPz–Fpz, the third principal component for channel CP4–Fpz, and
the third principal component for channel CP4–CP3.

3.3. Modeling Results

Following feature selection for each nerve using MRMR, the models were trained and
tested to determine which ML prediction model was the most accurate at predicting SSEP
waveforms considering variable end–tidal sevoflurane concentrations. After training each
model using the first eight patients’ SSEP data, the models were tested with the remaining
two patients’ datasets. Summarized in Table 2 are the metrics for the highest-performing
model found in each SSEP nerve dataset. To compare the performance of each model, RMSE
values were compared. Lower RMSE values are representative of more accurate models.

Importantly, ML models and their associated parameters and hyperparameters contain
much of the information about how the algorithm is performing. Implementing various
parameter combinations during the learning, or training stage, is the process of coefficient
optimization. By adjusting the coefficients, the model’s internal variables can continue
learning and achieve maximum accuracy. After training, the quadratic SVM and coarse
regression tree models tied for the greatest predictive performance. Table 3 shows the
SVM ML model’s associated parameters and hyperparameters. This table displays the
different information about the internal properties or components of the quadratic SVM
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algorithms utilized in this study. Furthermore, Table 4 presents the hyperparameters used
in the quadratic SVM model. Table 5 presents the parameters used in the other top model,
the coarse regression tree model. Table 6 subsequently shows the hyperparameters for the
coarse regression tree.

Table 2. Model parameters and performance.

Left Ulnar Right Ulnar Left Posterior Tibial Right Posterior Tibial

Model Coarse Tree Quadratic SVM Coarse Tree Quadratic SVM
RMSE (Validation) 0.91699 0.96147 1.0229 0.99482

R–Squared
(Validation) 0.23 0.09 0.03 0.1

MSE (Validation) 0.84086 0.92442 1.0464 0.98968
MAE (Validation) 0.57944 0.5955 0.66129 0.62981
Prediction Speed

(Observations/sec) 5300 27,000 23,000 27,000

Training Time (Sec) 12.712 5.0486 2.1419 2.4806
Test Results (RMSE) 2.3247 2.4047 2.244 2.17

Table 3. Support vector model parameters.

Property Value

Box Constraint 0.7413

Cache Size 103

Caching Method Queue

Clip Alphas 1

Epsilon 0.0741

Gap Tolerance 10−3

Iteration Limit 106

Kernel Function Polynomial

Kernel Scale Auto

Solver SMO

Standardize Data 1

Save Support Vectors 1

Version 2

Type Regression

Table 4. Support vector model hyperparameters.

Property Value

Preset Quadratic SVM

Kernel Function Quadratic

Kernel Scale Automatic

Box Constraint Automatic

Epsilon Automatic

Standardize Data Yes
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Table 5. Regression tree model parameters.

Property Value

Split Criterion MSE

Minimum Parent 72

Minimum Leaf 36

Maximum Splits 406

NVar To Sample All

Merge Leaves On

Prune On

Prune Criterion MSE

QEToler 10−6

NSurrogate Off

Maximum Cat 10

AlgCat Auto

Predictor Selection All Splits

Use Chi-Square Test 1

Version 3

Method Tree

Table 6. Regression tree model hyperparameters.

Property Value

Preset Coarse Tree

Minimum Leaf Size 36

Surrogate Decision Splits Off

3.3.1. Left Ulnar Nerve

The coarse tree was the model with the most significant validation score on SSEP
waveforms for the left ulnar nerve due to changing end-tidal sevoflurane concentrations.
The course tree model demonstrated an RMSE value of 0.91699 for validation using training
data. The trained coarse tree model when tested on the testing dataset yielded an RMSE
score of 2.3247. The modeling results for the left ulnar nerve are shown in Figure 8.
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Figure 8. Left ulnar nerve prediction modeling results. The results of the prediction values for SSEP
trials in the left ulnar nerve, which were generated by the coarse tree model. The true values are
shown in blue, and the corresponding predicted values calculated by the model are shown in yellow.

3.3.2. Right Ulnar Nerve

A different model displayed greater future predictability for the right ulnar nerve than
the coarse tree model used for the left ulnar nerve. The quadratic SVM model showed a
validation RMSE value of 0.96147 using training data. Using the features selected from
MRMR calculations, the RMSE value on the test data was 2.4047. The modeling results for
the right ulnar nerve are shown in Figure 9.
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Figure 9. Right ulnar nerve prediction modeling results. The results of the prediction values for SSEP
trials in the right ulnar nerve, which were generated by the quadratic SVM model. The true values are
shown in blue, and the corresponding predicted values calculated by the model are shown in yellow.

3.3.3. Left Posterior Tibial Nerve

For the left posterior tibial nerve, similar to the left ulnar nerve, the coarse tree model
showed the most remarkable future predictability on SSEP waveforms. The course tree
model demonstrated an RMSE value of 1.0229 for validation of the training data. During
testing, this model showed an RMSE value of 2.244. The modeling results for the left
posterior tibial nerve are shown in Figure 10.
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Figure 10. Left posterior tibial nerve prediction modeling results. The results of the prediction values
for SSEP trials in the left posterior tibial nerve, which were generated by the coarse tree model. The
true values are shown in blue, and the corresponding predicted values calculated by the model are
shown in yellow.

3.3.4. Right Posterior Tibial Nerve

As with the right ulnar nerve, the quadratic SVM model showed the most significant
future predictability on the right posterior tibial nerve SSEP waveforms. During the
validation of training data, this model showed an RMSE value of 0.99482. During the
testing stage of this model, the RMSE value for the two patients’ data was 2.17. The
modeling results for the right posterior tibial nerve are shown in Figure 11.
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model are shown in yellow.

4. Discussion

This study examined the relationship between end-tidal sevoflurane concentrations
and SSEP waveforms, with the primary objective of using signal processing and machine
learning techniques to more finely characterize and predict SSEP waveforms. Signal
processing techniques such as principal component analysis, time frequency analysis, and
phase space curves, coupled with the analysis of evoked response amplitude and latency,
enabled the conversion of complex SSEP datasets into measurable metrics. A specific set of
features was generated from these various metric categories to expand the scope with which
an SSEP waveform can be delineated. After using the minimum redundancy maximum
relevance (MRMR) model for feature selection, a select group of SSEP features closely
related to the change in end-tidal sevoflurane concentrations was identified. Interestingly,
while the top feature for all the nerves monitored was derived from the evoked response,
one of the three principal components relaying information about the waveform shape was
also found to be among the top three highest-scoring features. This finding indicates that
varying anesthetic concentrations can also affect the shape of SSEP waveforms as much as
other quantifiable features describing the signal.
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After identifying the features with the most significant importance scores, various
machine learning models were then used to train datasets to determine the optimal model
that can predict SSEP waveform form based on sevoflurane concentration. By applying the
ulnar nerves’ top ten features and the posterior tibial nerves’ top five features to predictive
models, it was found that the coarse tree and quadratic SVM models were the most effective
in predicting future SSEP waveform distortions as a function of sevoflurane concentration.
Root mean square error (RMSE) values were used to determine which ML method yielded
the lowest error rate. Interestingly, the RMSE values for training the models showed less
favorable predictive capabilities for the posterior tibial nerves, as compared to that of the
ulnar nerves. This discrepancy may be due to the increased applied stimulation intensity
(ranging from 0.04 to 0.06 amperes) necessary to generate robust evoked responses in the
posterior tibial nerves, as compared to that of the ulnar nerves (ranging from 0.025 to
0.034 amperes), which is half the intensity applied. This finding suggests that an increased
stimulation intensity maintains some capability to overpower the suppressive effects of
sevoflurane on SSEP waveforms.

Anesthetic-driven alterations in SSEP signals are a well-known phenomenon. Volatile
agents specifically tend to produce a dose-dependent increase in SSEP latency and a de-
crease in amplitude. Sevoflurane distinctively has less amplitude reduction compared
to other volatile agents. The anesthetic cocktail of sevoflurane and remifentanil is pre-
ferred during SSEP monitoring due to sevoflurane’s rapid off effect and remifentanil’s
short half-life, which together facilitates rapid on/off anesthesia [12,15,38]. However, this
is not without controversy, as some articles have argued against sevoflurane having a
significant effect on SSEP latency or amplitude [19,39]. Despite this, it is widely accepted
that inhaled volatile anesthetics have a dose-dependent latency increase and decrease in
amplitude [12,15,38]. Also, over recent years, the superiority of remifentanil with either
propofol or sevoflurane has been highly discussed. The consensus is that sevoflurane has
faster suppression and recovery of SSEP latency and more within-patient variability, with
faster cessation of anesthetic effect and a more rapid awakening. In contrast, propofol has
less impact on SSEP waveforms, but prolonged awakening from anesthesia and lengthy
time to SSEP changes from concentration adjustments [38,40]. Ultimately, it has been
shown that SSEPs can still be monitored safely despite the depressive effects of sevoflurane
discussed above [12].

To improve the outcomes of the prediction models, future investigations must consider
the limitations of the current study. First, developing accurate machine learning models is
a significant challenge due to the requirement of large data pools for generating reliable
prediction metrics. In this case, only ten patients were used for feature generation, of which
eight were used for training and the remaining two for testing. As a result, the availability
of data was a significant hurdle. Secondly, while sevoflurane is known to suppress SSEP
waveforms in a dose-dependent manner, its variability during the procedure can hinder
the establishment of a clear correlation. In these cases, the variability mainly occurs at
the beginning or end of the operations, specifically during the transition from induction
to maintenance anesthesia, and from asleep to awake at the end of the case when the
inspired sevoflurane is decreasing. This indicates that there are only two small windows
within each case where the sevoflurane end-tidal concentrations can be more variable than
during the operation’s middle portion. Third, this study did not account for the changes
in other variables during the operation, such as oxygenation, blood pressure, heart rate,
or other administered medications. To improve the accuracy of the prediction models,
fluctuations in variables associated with hemodynamic parameters, signal disturbance
caused by positioning or instrumentation, and other sources, such as preexisting deficits,
need to be considered. Ultimately, to generate the most robust model, a collaborative effort
between multiple institutions to collect a larger dataset while controlling for intraoperative
variables is of the utmost importance. Additionally, the lack of standardization of IONM
protocols among different institutions and IONM technicians makes it challenging to
analyze IONM data. This lack of standardization has been recognized for some time and,
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in large part, is one of the foundational reasons to use predictive machine learning tools to
further develop neuromonitoring capabilities [41].

Deviations from baseline SSEP signals are important to surgeons, anesthesiologists,
and, most importantly, to patients. The primary purpose of IOMN monitoring is to detect
any impending sign of neurologic injury early with the goal of identifying and reversing
the original insult before a permanent deficit occurs. While surgical factors leading to signal
alterations are deemed most important, numerous other factors such as hemodynamic
parameters, patient positioning, monitoring equipment malfunction, and medications
are important considerations to avoid treating a false alarm [38]. When deviations from
baseline SSEPs occur, it takes troubleshooting and communication by all operating room
personnel to identify the cause. This added time to the procedure can distract the surgeon
and prolong the operation. As a result, having the ability to predict in real-time the different
etiology related waveforms alterations can significantly benefit all parties involved. This
study is a small step towards that goal. It applies machine learning strategies to quantify
and predict the effect of one particular factor, namely sevoflurane on SSEP waveforms. The
results demonstrate the need to expand the variables and metric categories for analyzing
IONM signals. Subsequent investigations will involve other anesthetic agents, non-surgical
factors, and additional vital sign parameters to delineate the various effects of these vari-
ables on SSEP waveforms. Given the limited dataset available, the primary goal of this
study has been to explore how the principles of machine learning can be applied to the
analysis of a complex set of neurophysiologic data, rather than to generate meaningful
conclusions regarding the effects of volatile anesthetics on SSEP. Future studies with a
larger dataset, using the principles established from this research, are expected to provide
more meaningful conclusions.

5. Conclusions

The findings of this study are expected to contribute to the advancement of our under-
standing of neuromonitoring and its potential, and to pave the way for the development of
new diagnostic and therapeutic tools for neurological disorders. This research provided
preliminary evidence that ML models can be used to predict SSEP signals alterations when
provided with non-surgical factors and that the integration of non-surgical factors can
improve the predictive accuracy of IONM ML models. The findings provide a glimpse
into the future of the healthcare industry, as clinicians may one day use more advanced
models to anticipate the outcome of surgical procedures and take proactive measures to
prevent adverse events. As more development is made to these systems, more data about
non-surgical factors can be added to these models. This will allow for more robust predic-
tive capabilities and lead to the development of the next generations of IONM systems.
As such, the outlook for application of machine learning strategies to intraoperative neu-
romonitoring is promising. This study shows that it is possible to break down the complex
SSEP waveforms into measurable and definable features, which allows for a more complex
and nuanced analysis of this interesting phenomenon, elevating it from just simple analysis
of amplitude and latency of evoked responses. The use of human data is also of significant
relevance to clinical application. By presenting a detailed protocol to predict the effect of
a volatile anesthetic on SSEP waveform, the findings highlight the potential for machine
learning applications to advance patient safety and care in spine surgery.
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