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Abstract: The microscopic diagnostic differentiation of odontogenic cysts from other cysts is intricate
and may cause perplexity for both clinicians and pathologists. Of particular interest is the odontogenic
keratocyst (OKC), a developmental cyst with unique histopathological and clinical characteristics.
Nevertheless, what distinguishes this cyst is its aggressive nature and high tendency for recurrence.
Clinicians encounter challenges in dealing with this frequently encountered jaw lesion, as there is no
consensus on surgical treatment. Therefore, the accurate and early diagnosis of such cysts will benefit
clinicians in terms of treatment management and spare subjects from the mental agony of suffering
from aggressive OKCs, which impact their quality of life. The objective of this research is to develop
an automated OKC diagnostic system that can function as a decision support tool for pathologists,
whether they are working locally or remotely. This system will provide them with additional data
and insights to enhance their decision-making abilities. This research aims to provide an automation
pipeline to classify whole-slide images of OKCs and non-keratocysts (non-KCs: dentigerous and
radicular cysts). OKC diagnosis and prognosis using the histopathological analysis of tissues using
whole-slide images (WSIs) with a deep-learning approach is an emerging research area. WSIs have
the unique advantage of magnifying tissues with high resolution without losing information. The
contribution of this research is a novel, deep-learning-based, and efficient algorithm that reduces the
trainable parameters and, in turn, the memory footprint. This is achieved using principal component
analysis (PCA) and the ReliefF feature selection algorithm (ReliefF) in a convolutional neural network
(CNN) named P-C-ReliefF. The proposed model reduces the trainable parameters compared to
standard CNN, achieving 97% classification accuracy.

Keywords: CNN; deep learning; image classification; whole-slide imaging; OKC; non-KC; ReliefF

1. Introduction

The odontogenic keratocyst (OKC) is a developmental cyst that arises from the dental
lamina or remnants of the dental epithelium. It is often classified as an odontogenic cyst
due to its origin in dental tissues. The characteristic histopathological features with regard
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to the OKC are a stratified epithelium with 10–11 distinct layers of cells, the absence
of rete ridges, a well-defined basal cell layer with cuboidal or columnar cells arranged
in a palisaded fashion resembling a “picket fence” or a “tombstone appearance”, and
a thin, spinous layer with surface keratin [1,2]. Radicular cysts comprise an arcading
pattern of the odontogenic epithelium with inflammatory infiltrate, and dentigerous cysts
possess 2–3 layers of odontogenic epithelium, representing reduced enamel epithelium.
Differentiating one from another is vital, as the treatment differs. OKCs require special
attention due to their inherently aggressive biological behavior, which tends to recur after
surgical treatment [3,4]. Early and accurate histopathological diagnosis prevents unwanted
complications, such as pathological fracture or jaw resection morbidity, and achieves better
treatment outcomes [5].

A WSI, also known as a virtual slide or digital slide, is a high-resolution digital
representation of an entire histopathology glass slide in gigabytes. WSIs capture the entire
image in one go and allow regions of interest to be zoomed into and out of, which can
be a rather tedious procedure using a microscope. The resulting digital image is a large,
multi-gigapixel file that preserves all of the information present on the original glass slide.
WSIs allow for various image analysis techniques, including computer-assisted algorithms
for quantification and feature extraction [6].

CNNs are applied to whole-slide image (WSI) processing for several reasons, primarily
due to their ability to automatically learn hierarchical features from image data. The
paragraphs below explain how CNNs are applied to WSI processing and why they are used.

Local Feature Learning: WSIs are extremely large images, often containing detailed
structures and regions of interest. By applying convolutional layers, the network can
automatically learn relevant local features.

Hierarchy of Features: CNNs are designed to capture features at different levels of
abstraction, from simple edges and textures to complex structures. This hierarchical feature
learning is well suited for medical image analysis, where different structures (e.g., cells and
tissues) can have varying levels of complexity [7–9].

Automatic Feature Extraction: Traditional methods for processing medical images
often rely on manual feature extraction, which can be time-consuming and prone to human
error. CNNs can automatically learn and extract relevant features from medical images
without the need for hand-crafted features. Overall, CNNs are a powerful tool for medical
image processing due to their ability to learn relevant features, handle large images, and
automate complex tasks, making them an asset in medical imaging and other fields that
deal with high-resolution images [10].

The objective of this research was to develop an integrated deep-learning-based model
to detect OKCs with accuracy and consistency. The proposed model provides an automated
diagnostic system that can serve as a decision support tool for pathologists locally or
remotely, giving them more data and insights to improve their decision-making skills. This
reduces healthcare costs in remote places. The contribution of this research work is that
the CNN-trainable parameters are reduced significantly without compromising quality
and generalization, using an integrated approach with PCA and ReliefF. This reduction in
parameters gives the competitive advantages of reduced overfitting, lower memory usage,
less computational power, and less time to train. Therefore, this model or system can be
used in cost-effective cloud environments or resource-constrained environments.

2. Related Work
2.1. Tile Generation and Its Advantage

The act of partitioning an image into smaller sections is frequently referred to as “tiling”
or “image tiling”. Image tiles can be used for various purposes, such as the following:
parallel processing—by breaking an image into smaller tiles, multiple processing units or
cores can work on different tiles simultaneously, speeding up the overall image processing;
memory optimization—for large images, it may not be feasible to load the entire image
into the memory at once, and tiling allows the processing of smaller portions of the image
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one at a time, reducing memory requirements; image compression and transmission—in
image compression or transmission, the image can be divided into tiles, and each tile can
be independently compressed or transmitted, making the process more efficient. When
working with image tiles, it is essential to consider the potential impact of dividing the
image, especially near the edges of objects of interest, as the tiles may not capture complete
objects and context in those cases. Proper overlap or padding can be used to mitigate this
issue, depending on the specific task and requirements [11,12].

2.2. Tile-Based CNN Processing

WSI classification was achieved by preprocessing the WSI into tiles of size 224 × 224.
The authors took a specific approach to classify the slides based on the classification of the
tiles. When 100% of the tiles are negative, then it considers the slide to be negative, whereas
if one of them is positive, it is considered positive. The pretrained CNN model Resnet-34
was used [13].

2.3. CNN in WSI Classification

The first classification study using microscopic images to detect OKCs used the Google
Inception v3 model. Inception v3 uses “Inception” modules, which are a combination of
multiple convolutional layers of different filter sizes and pooling operations. The Inception
module allowed the network to capture multi-scale patterns efficiently, enabling the model
to recognize both fine-grained and large-scale features in the images. It achieved a good
accuracy rate using transfer learning [14]. For panoramic radiographs, YOLOv3 was used.
This model achieved an accuracy of 94 in detecting OKCs using radiographic features [15].
A patch-based hierarchical deep-learning framework that used two CNNs was used to
classify WSIs based on the patch level. Patch-based classification is a technique used
in computer vision and image analysis to classify images by dividing them into smaller
regions or patches and then making predictions for each patch individually. This approach
is commonly used in scenarios where the spatial distribution of objects or features of interest
varies across the image [16]. A combination of multi-scale attention and VGG16 was used
to classify slides of different resolutions. It used a bigger-tile-size image of 4096 × 4096.
Subsequently, using these tiled images, it cropped the image to a smaller size of 224 × 224
to feed into the model. It used multi-scale attention to give importance to the patch that
contributed most to the final classification [17]. A Python-based open slide framework was
used to obtain tiles from the base level of the slide pyramid. Data augmentation techniques
were applied after the selection [18] (Python 3.10).

2.4. Feature Extraction and Selection

CNN architecture can be used to extract features from different inputs [19]. One of the
major challenges in training CNNs lies in the necessity to train a large number of parameters.
In certain cases, Multilayer Extreme Learning Machines (ML-ELMs) are employed. The
random feature technique was used in ML-ELMs and was also non-iterative and fast [20].
Feature selection using various feature selection methods can enhance the classification
accuracy. Feature selection can be applied to select features from images or to select features
generated by the pretrained CNN. Feature selection can improve the overall performance.
Canonical Correlation Analysis (CCA), a multivariate-based correlation statistical method
used with ReliefF and CNN, is possible with different pretrained models [21–23].

2.5. Dimensionality Reduction and Class Imbalance Problem

A combination of principal component analysis (PCA), CNN, and an attention-based
algorithm was used to achieve higher classification accuracy. PCA transforms high-
dimensional data into a lower-dimensional space while preserving the most important
patterns and variations present in the original data. It achieves this by identifying the
principal components, which are new orthogonal axes that represent the directions of
maximum variance in the data [24]. The “Synthetic Minority Over-sampling Technique”
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(SMOTE) is a popular data augmentation method used to address class imbalance in ma-
chine learning. Class imbalance occurs when one class (the minority class) has significantly
fewer samples than another (the majority class). SMOTE works by generating synthetic
samples for the minority class to balance the class distribution. It does this by creating new
synthetic instances that interpolate between existing instances of the minority class [25].

3. Materials and Methods

This section describes the complete implementation steps and the different techniques
used in each step.

3.1. Data Collection

A multi-center study was undertaken to consolidate histopathology slides from var-
ious centers in India that volunteered to take part in the research: the Manipal College
of Dental Sciences (MCODS), Manipal; the Institute of Dental Science, Bareilly; S Nijalin-
gappa Institute of Dental Sciences and Research, Rajapur, Kalaburagi, Karnataka; Maratha
Mandala Dental College, Belagavi, Karnataka; and the SVS Institute of Dental Sciences,
Mahbubnagar, Andhra Pradesh. The institute permitted this, as the study involved archived
slides (2014–2021) and received ethics clearance (No. EC-2021/F/058) from MS Ramaiah
University of Applied Sciences. Ethics approval was waived for slides collected from di-
verse centers due to the study’s retrospective nature. Furthermore, the slides were blinded
and coded without any patient identities. Whole-slide images were captured by Morphle
Labs Whole Slide Scanner Model-Index.

Of 113 archival specimens in total, 48 OKC, 20 dentigerous cyst (DC), and 37 radicular
cyst (RC) whole-slide images were collected at 40× magnification. These slides varied in
size from 50 megabytes to 3 gigabytes depending on the region selected for scanning to
obtain the whole-slide image.

3.2. Data Preprocessing and Dataset Generation

These whole-slide images were inspected by an experienced pathologist and catego-
rized into three types: odontogenic keratocyst, dentigerous cyst, and radicular cyst. These
slides were manually labeled by an experienced pathologist.

The slides were processed through an automated pipeline system developed using a
deep zoom generator and open slide library in Python to generate tiles of 2048 × 2048 size,
as shown in Figures 1 and 2. This automation pipeline efficiently removes white tiles and
those with minimal or non-important information. This was achieved using the OTSU
threshold technique. Any blurry tiles or those that were too dark were manually segregated
and omitted from consideration.
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In this step, 48 OKC slides, 20 DC slides, and 37 RC slides were selected for the entire
tile dataset creation, as detailed in Tables 1 and 2. Non-KC WSIs had a pyramid structure
with many resolution levels. In this case, the highest zoom level was taken for each slide for
generating the tiles, as a low resolution may impact the performance of the model. Hence,
tiles generated from the base-level slide, which had the most prominent features of OKCs
and non-KCs, were fed into the classification pipeline. In our dataset, we took 48 OKC
WSIs, generated 6069 positive labels (OKC), and considered 57 (DC and RC) WSIs, which
generated 5967 tiles with negative labels. The dataset preparation flow is given in Figure 3.
The difference between the number of images in the two classes was nearly 1%; hence, there
was no class imbalance issue to address and no need for oversampling or undersampling
to balance the dataset.

Table 1. OKC WSIs and statistics of generated tiles.

Total Number of WSIs
Labeled as OKC

Total Number of White and
Non-Important Information

Tiles (Discarded)

Total Number of Tiles
Considered for Analysis

of OKC

Total Number of Tiles
Labeled as OKC (Tiles with

Epithelium Layer) by Pathologist
for Training and Validation

48 111,600 42,000 6069

Table 2. Non-KC WSIs and statistics of generated tiles.

Total Number of WSIs Labeled
as Non-KC

Total Number of White
Tiles (Discarded)

Total Number of Tiles Labeled as
Non-KC for Training and Validation

20 (DC) 53,000 2548
37 (RC) 104,500 3419
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4. Methodology
4.1. Proposed Novel Tile Classification Algorithm

The tile dataset developed as part of the preprocessing step was considered for train-
ing purposes. The Keras train generator augmentation technique (rotation range = 20;
width_shift_range = 0.1; height_shift_range = 0.1; shear range = 0.2; zoom_range = 0.2;
horizontal_flip = True) was used to process the image, which was then fed to the proposed
model for training and validation. The images were resized to 64 × 64 and then fed into
the model for training.

The 80–20 rule was followed for training and validation. All of the training and
validation data for non-KC tiles were taken only from DC and RC WSIs. Figure 4 represents
the flow of the algorithm.
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4.2. P-C-ReliefF Architecture and Parameters

The model architecture was defined using the Keras functional API. The P-C-ReliefF
summary with parameters and architecture are shown in Figures 5 and 6. The process
started with a series of Conv2D layers with varying parameters and activation functions,
followed by MaxPooling2D layers for downsampling. The architecture also included
a DepthwiseConv2D layer and a subsequent Conv2D layer. GlobalAveragePooling2D
was used to aggregate the spatial information, and flattening was applied to obtain a 1D
representation (CNN features) from the output tensor.

Dimensionality reduction with PCA: The flattened output tensor was the input
data, and it was reshaped to match the required format for applying PCA. PCA was
then performed on the training data to reduce the dimensionality to a specified number
of components.

Feature selection with ReliefF: ReliefF was applied to the PCA-transformed data
to rank the features based on their relevance to the target labels. ReliefF is a popular
feature selection algorithm used for machine-learning tasks, particularly in the context of
classification problems.

Key definitions and concepts related to the ReliefF algorithm: Feature relevance:
ReliefF aims to estimate the relevance (importance) of each feature concerning the target
class labels. It measures how well a feature discriminates between different classes. Feature
weight: Each feature is assigned a weight representing its relevance. A higher weight
indicates a more important feature for classification. Feature scores: The feature relevance
scores, also known as feature weights or feature importance, are typically represented as a
vector of real numbers, with each element corresponding to a feature.
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Nearest neighbor (NN): ReliefF is based on the idea of comparing the feature values
with those of the nearest neighbors of each instance. The nearest neighbor is typically
defined by some distance metric (e.g., Euclidean distance). Hit and miss: For each instance
in the dataset, ReliefF distinguishes between features that are like the nearest neighbor of
the same class (hit) and features that are like the nearest neighbor of a different class (miss).

Weight updating: The weights of the features are updated based on the differences
between hits and misses. If a feature’s value is close to the corresponding feature value of
the nearest neighbor of the same class (hit), its weight is increased. If the feature’s value is
close to the nearest neighbor of a different class (miss), its weight is decreased. Multiple
Iterations: ReliefF usually performs multiple iterations over the dataset to improve the
estimation of feature relevance. During each iteration, the nearest neighbors of instances
are updated.
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Efficiency: ReliefF is computationally efficient in handling datasets with many in-
stances and features. ReliefF is a widely used feature selection method because it is
relatively simple to implement, performs well on a variety of datasets, and provides in-
sights into the importance of features for classification tasks. It helps to identify relevant
features, leading to improved model performance and reduced overfitting, especially when
dealing with high-dimensional datasets.

Selecting top features with Lambda layer: In general, a Lambda layer is a custom
layer in a deep-learning model that allows one to apply arbitrary transformations to the
input data during the forward pass (also known as the forward propagation). It provides
a way to include user-defined functions or operations that are not directly available as
built-in layers in the deep-learning framework. The Lambda layer is available in various
deep-learning frameworks, such as Keras and TensorFlow. In Keras (which is now part
of TensorFlow), it is specifically named Lambda. Key points about the Lambda layer:
Custom transformations: The Lambda layer allows one to define a function (or Lambda
function) that operates on the input tensor and returns the transformed output tensor. This
function can include any operations that the user wants to apply to the input data, such as
mathematical computations, reshaping, slicing, or other custom operations. Flexibility: The
Lambda layer gives the flexibility to integrate custom logic into the model without needing
to create a new layer from scratch. It can be particularly useful when there is a need to
perform specific data manipulations that are not readily available as standard layer types.
The CNN features were selected based on the sorted importance scores (sorted indices)
using a Lambda layer and the custom select feature function. The selected features were
stored in selected features. Additional dense layers: Two dense layers were added after the
selected features, with the specified number of units and activation functions. The models
use the Adam optimizer, binary cross-entropy loss, and accuracy as the evaluation metric.
Model summary: The model summaries were printed to provide an overview of the model
architecture, including the layers, output shapes, and parameter counts.

5. Results

The experiment involved standard CNNs with similar architecture and 1,700,161 stan-
dard model CNN-generated parameters. A comparison of the model parameters and hyper-
parameters was carried out, as shown in Tables 3 and 4. VGG16 had 14,846,273 parameters,
and VGG19 had 20,155,969 parameters, whereas our P-C-ReliefF only generated
128,066 parameters. In between the two CNN layers, two depthwise convolution networks
were used. Depthwise convolution is a type of convolutional layer used in deep-learning
models, especially in mobile and resource-constrained architectures. Unlike traditional con-
volutions that apply filters across all input channels (also known as “spatial” dimensions),
depthwise convolution applies separate filters for each input channel independently. This
helped to reduce more than 95% of the trainable parameters after multiple experiments on
both depthwise and pointwise convolution layers.

Table 3. Model performance metrics and parameter comparison.

Model Recall Precision F1-Score AUC Accuracy Total
Parameters

Standard CNN 0.96 0.96 0.96 0.93 0.96 1,700,161
VGG19 0.96 0.97 0.96 0.93 0.96 20,155,969
VGG16 0.97 0.97 0.97 0.93 0.97 14,846,273

Inception V3 0.96 0.96 0.95 0.95 0.96 23,901,985
P-C-ReliefF (Proposed Method) 0.98 0.98 0.98 0.99 0.97 128,066
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Table 4. Model hyperparameters.

Component CNN P-C-ReliefF

Learning Rate 0.001 0.001
PCA Components + ReliefF Top Features NA 200

Number of Model Parameters 1,700,161 128,066
Loss Function Binary cross-entropy Binary cross-entropy

Optimizer Adam optimizer Adam optimizer

5.1. Confusion Matrix

A confusion matrix is a 2 × 2 table used in classification tasks to assess the performance
of a machine-learning model, as shown in Figure 7.
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5.2. ROC Curve

The AUC score is a useful metric in situations where class imbalances exist in the
dataset, as it assesses the classifier’s performance irrespective of the decision threshold. It
also provides a single value to compare different classifiers’ performance, making it easier
to evaluate and choose the best model for a given task. The score of 0.97 indicates that
the classifier’s performance is better than the standard CNN at 0.93, as shown in Figure 8.
The ROC (receiver operating characteristic) is used to evaluate the performance of binary
classification models. It plots the true-positive rate (sensitivity) against the false-positive
rate (1-specificity) at various classification thresholds. The ROC curve illustrates how well
the model distinguishes between positive and negative classes, with the ideal model’s
curve reaching the upper-left corner. The area under the ROC curve (AUC) is a common
metric; a higher AUC indicates better model discrimination ability.



Diagnostics 2023, 13, 3384 11 of 16

Diagnostics 2023, 13, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 7. P-C-ReliefF confusion matrix. 

5.2. ROC Curve 
The AUC score is a useful metric in situations where class imbalances exist in the 

dataset, as it assesses the classifier’s performance irrespective of the decision threshold. It 
also provides a single value to compare different classifiers’ performance, making it easier 
to evaluate and choose the best model for a given task. The score of 0.97 indicates that the 
classifier’s performance is better than the standard CNN at 0.93, as shown in Figure 8. The 
ROC (receiver operating characteristic) is used to evaluate the performance of binary clas-
sification models. It plots the true-positive rate (sensitivity) against the false-positive rate 
(1-specificity) at various classification thresholds. The ROC curve illustrates how well the 
model distinguishes between positive and negative classes, with the ideal model’s curve 
reaching the upper-left corner. The area under the ROC curve (AUC) is a common metric; 
a higher AUC indicates better model discrimination ability. 

 
Figure 8. P-C-ReliefF ROC curve. 

5.3. Training vs. Validation Loss Curve 
The training vs. validation loss curve is a plot that shows the changes in the training 

and validation loss during the training process of a machine-learning or deep-learning 
model, as shown in Figure 9. 

Figure 8. P-C-ReliefF ROC curve.

5.3. Training vs. Validation Loss Curve

The training vs. validation loss curve is a plot that shows the changes in the training
and validation loss during the training process of a machine-learning or deep-learning
model, as shown in Figure 9.
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The training vs. validation loss curve was plotted with the epochs (training iterations)
on the x-axis and the corresponding loss values on the y-axis. As the model was trained
over multiple epochs, the training loss generally decreased because the model was learning
to fit the training data better. However, the validation loss may behave differently. Initially,
it decreased along with the training loss as the model generalized better. However, at some
point, the validation loss may start to increase. This indicates that the model was overfitting
the training data, and its performance on the validation data deteriorated, even though it
improved on the training data.

5.4. Classification Report: PCNN-ReliefF

A classification report is a summary of performance metrics for a classification model,
typically presented in a tabular format. It includes key metrics such as precision, recall,
F1-score, and support for each class in a multi-class classification problem, as shown
in Figure 10. This report provides insights into the model’s performance for individual
classes, highlighting the strengths and weaknesses. It is a valuable tool for evaluating the
effectiveness of a classification model across different categories.
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5.5. Log Loss

Log loss (logarithmic loss) is a commonly used loss function for evaluating the accuracy
of probabilistic classification models, such as logistic regression or neural networks, that pre-
dict probabilities for each class. It measures the discrepancy between predicted probabilities
and actual target values, penalizing larger deviations, as shown in Table 5. Lower log-loss
values indicate better alignment between predicted probabilities and true outcomes.

Table 5. Log loss comparison.

Standard CNN P-C-ReliefF

1.390 0.129

The proposed model has a log-loss value of 0.129, indicating that the model’s predicted
probabilities are quite accurate and very close to the true labels. In binary classification, a
log loss close to zero indicates excellent performance, as it means that the model’s predicted
probabilities align well with the actual outcomes.

A standard log loss value of 1.390 means that, on average, the model’s predicted
probabilities are not very close to the true labels. It suggests that the model’s confidence
in its predictions might be relatively low or that there is room for improvement in the
model’s calibration.

5.6. Other Metrics for Proposed Model

The performance of the proposed model is shown in Table 6. These are the commonly
used metrics for a classification problem.

Table 6. Performance metrics.

Metrics Value

Accuracy 0.974
Precision 0.979

Recall 0.979
F1-Score 0.975

Matthews Correlation Coefficient 0.949
Cohen’s Kappa 0.948

Balanced Accuracy 0.974
Jaccard Score 0.949

Brier Score Loss 0.025
Specificity (True Negative Rate) 0.979
Sensitivity (True Positive Rate) 0.969

Youden’s Index (J) 0.948
G-Mean 0.974
Log Loss 0.129

Validation Loss 0.177
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6. Pipeline Result

A pipeline system was designed to predict the entire WSI as OKC or non-KC. This
pipeline system was the integration of the tile generation workflow, with each tile being
fed into a pretrained model. This pretrained model will predict the correct label of the tile.
Based on the number of tiles predicted in both classes, a threshold was designed. This
threshold was set based on the size and zoom level of the slide. Most of the time, a 20%
threshold works; however, for some smaller-sized slides, the threshold can be lower. It
was set based on the decision of the pathologist who was familiar with the whole-slide
scanner. Overall, the model was applied to 10 different slides, and the statistics are shown
in Figure 11 and Table 7.
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Table 7. Sample statistics of pipeline result.

Case No. File
Size (MB)

Base Resolution
(H, W) No. of Tiles No. of

OKC Tiles
No. of

Non-KC Tiles
Predicted

Output
Actual
Output

375_68_22 658 126,976 × 126,976 3844 968 2876 OKC OKC
275_149_20 179 126,976 × 31,744 992 50 942 Non-KC Non-KC

7. Discussion

ReliefF feature selection was performed, along with obtaining the feature importance,
sorting the importance, and using a custom Lambda layer to select the top features from
the CNN layer features. The selected features were then used to train a separate classifier
model. The feature selection technique used was ReliefF, which is a filter-based feature
selection method. It selects a subset of features based on their importance scores without
modifying the original model architecture or the number of trainable parameters. After
applying the ReliefF feature selection, the selected features are used as inputs to a separate
classifier model.

The original CNN layers remain unchanged, including their architecture and the
number of trainable parameters. ReliefF feature selection only affects the input to the
classifier model, not the CNN layers themselves. By selecting a subset of important features,
ReliefF aims to improve the performance of the classifier by reducing the potential noise or
irrelevant information present in the original features. However, it does not directly reduce
the number of trainable parameters in the CNN layers.

Dimensionality Reduction: Selecting a subset of features reduces the dimensionality of
the input space. This can help reduce computational complexity and potential overfitting,
especially when dealing with high-dimensional data. Generalization: By selecting the most
relevant features, the model may generalize better to unseen data. The selected features
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were expected to capture the underlying patterns and variations in the data, leading to
better generalization performance. Overall, feature selection can help improve the efficiency,
interpretability, and generalization ability of the model by selecting the most informative
features. It allows the subsequent dense layer to focus on the most relevant aspects of the
data, potentially leading to improved classification performance.

The objective was to significantly reduce the number of parameters while improving
the model’s performance compared to state-of-the-art models, as shown in the different
experiments in Table 3. The log-loss value of the proposed model was lower as compared
to the standard CNN. Another advantage is the improved generalization of the model
by reducing the trainable parameters using feature selection after the CNN layer. OKCs
have very distinct features, for which feature selection helped the overall accuracy with
fewer parameters.

8. Conclusions

In the proposed model, the trainable parameters were reduced significantly without
compromising accuracy; moreover, the training and validation time were also reduced
significantly with this model. OKCs and non-KCs have distinguishing features, and the
feature selection algorithm helps to reduce the complexity of dense layers for classifying
OKCs correctly. ReliefF feature selection is a popular feature selection technique with
proven results. Hence, this model’s behavior in automating pipelines is consistent in the
detection of OKCs or non-KCs. During different iterations, several experiments were
conducted to adjust the threshold over a number of tiled images with OKC features, and a
threshold of between 15 and 25% of the tiled images were detected in the WSI based on the
size or zoom level. This pipeline helps pathologists to segregate OKCs and non-KCs locally
or remotely. Even if no expert pathologist is available remotely, this pipeline can help to
manage OKCs efficiently.

9. Drawbacks

Although the proposed model’s accuracy is very high, its accuracy in detecting OKCs
can still be improved. When building the dataset, artifacts such as blurriness, too much
color variation, and poor quality of the slides were excluded for tile generation. This
means that the model requires perfect slides to diagnose OKCs correctly. Hence, research
in this area can be suitably extended by considering these slides with the help of expert
pathologists. The tile-based approach needs significant time initially to label each tile based
on the distinct features of OKCs. Since OKCs have distinct histological features visible on
high-resolution images, it was easy, but time-consuming, for the pathologist to label the
tiles. However, this research can be suitably extended to other whole-slide image problems
by suitably tuning the required model parameters. The proposed method can be further
strengthened by extending the model by integrating it with the vision transformer method.
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