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Abstract: Background: Machine-learning (ML) and radiomics features have been utilized for survival
outcome analysis in various cancers. This study aims to investigate the application of ML based
on patients’ clinical features and radiomics features derived from bone scintigraphy (BS) and to
evaluate recurrence-free survival in local or locally advanced prostate cancer (PCa) patients after the
initial treatment. Methods: A total of 354 patients who met the eligibility criteria were analyzed and
used to train the model. Clinical information and radiomics features of BS were obtained. Survival-
related clinical features and radiomics features were included in the ML model training. Using the
pyradiomics software, 128 radiomics features from each BS image’s region of interest, validated by
experts, were extracted. Four textural matrices were also calculated: GLCM, NGLDM, GLRLM, and
GLSZM. Five training models (Logistic Regression, Naive Bayes, Random Forest, Support Vector
Classification, and XGBoost) were applied using K-fold cross-validation. Recurrence was defined as
either a rise in PSA levels, radiographic progression, or death. To assess the classifier’s effectiveness,
the ROC curve area and confusion matrix were employed. Results: Of the 354 patients, 101 patients
were categorized into the recurrence group with more advanced disease status compared to the
non-recurrence group. Key clinical features including tumor stage, radical prostatectomy, initial PSA,
Gleason Score primary pattern, and radiotherapy were used for model training. Random Forest (RF)
was the best-performing model, with a sensitivity of 0.81, specificity of 0.87, and accuracy of 0.85.
The ROC curve analysis showed that predictions from RF outperformed predictions from other ML
models with a final AUC of 0.94 and a p-value of <0.001. The other models had accuracy ranges from
0.52 to 0.78 and AUC ranges from 0.67 to 0.84. Conclusions: The study showed that ML based on
clinical features and radiomics features of BS improves the prediction of PCa recurrence after initial
treatment. These findings highlight the added value of ML techniques for risk classification in PCa
based on clinical features and radiomics features of BS.
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1. Introduction

Prostate cancer (PCa) ranks as a major health concern due to its high incidence and
its position as the fifth leading cause of cancer death among men. In 2020 alone, it was
estimated that globally, 1.4 million men were diagnosed with PCa, and 375,000 men died of
it [1]. The approach to PCa treatment is determined by considering the patient’s expected
lifespan, the classification of PCa risk, and the anticipated outcomes of the therapy [2].
Therefore risk stratification and recurrence prediction are pivotal when diagnosing and
treating PCa [2]. Currently, the D’Amico classification and the AJCC (American Joint
Committee on Cancer) TNM system serve as the cornerstone for PCa risk stratification and
prognosis prediction [2,3]. However, despite their widespread adoption, these classification
systems still fall short of accurately predicting the varied behaviors of localized or locally
advanced PCa [4]. This highlights a pressing need for a more refined risk stratification sys-
tem and the development of a robust recurrence prediction model. In the last two decades,
the health sector has turned to Artificial Intelligence (AI) for managing extensive datasets
and optimizing patient care [5]. Machine Learning (ML), as a subset of AI, has been applied
to various facets of PCa, including predicting outcomes of robotic radical prostatectomy
(RP), assessing radiation therapy (RT) responses, and differentiating metastatic bone lesions
associated with PCa [6–9]. Such advancements reinforce the notion that ML models, which
encompass features across multiple dimensions, can potentially further predict survival
outcomes and refine risk stratification.

The AJCC TNM system relies on conventional imaging; thus, the European Association
of Urology (EAU) and NCCN guideline recommend both computed tomography (CT) and
bone scintigraphy (BS) as essential tools for assessing the extent of disease [2,10]. Although
BS is an important tool for PCa staging, metastasis detected by BS is only 0.8% and 10% of
intermediate and high-risk PCa, respectively [11]. The low detection rate of metastatic PCa
and non-specific findings are the major limitations of BS [12]. The failure of BS to detect
metastasis partly explains the early recurrence or biochemical recurrence (BCR) in a quarter
to half of patients who were initially diagnosed with localized PCa [13,14]. Since undetected
metastasis in BS is a contributing factor to early recurrence in patients initially diagnosed
with, or misclassified as having, localized or locally advanced PCa [13]. Improving the
detection rate of BS remains an imperative issue yet to be addressed. Radiomics, a novel
method of ML, extracts data from medical images and transforms them into quantitative
features using bioinformatics approaches [15,16]. Radiomics features have shown the
potential to discover disease patterns or metastatic lesions that were unnoticed by the
human eye [15,17]. Furthermore, radiomics features have been demonstrated its efficacy in
early disease detection across various cancers [18]. The aforementioned literature provides
a theoretical foundation for the role of radiomics in enhancing BS and improving cancer
staging or risk stratification. However, the integration of the ML model with radiomics
features of BS for prognostic prediction in PCa remains underexplored. Therefore, we
focused on the patients with local or locally advanced PCa who received initial treatment
and dissected those with early recurrence. This study aims to develop and compare
different types of ML-trained recurrence-prediction models of local or locally advanced
PCa by combining clinical features and radiomics features of BS.

2. Methods
2.1. Study Population

This study is a retrospective analysis of patients with local or locally advanced,
treatment-naïve PCa at China Medical University Hospital between 24 March 2011 and
14 November 2019. The study was approved by the local Institutional Review Board
(certificate numbers: DMR99-IRB-293-(CR-11)). The inclusion criteria for the study were
patients with local or locally advanced PCa as defined by board-certified urologists using
the clinical, image, and pathological features based on the recommendations of NCCN
or EAU guidelines [2,10]. Exclusion criteria included patients with incomplete medical
records, those diagnosed with metastatic PCa, or those who were treated as if they had
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metastatic PCa. All patients included in this study underwent comprehensive studies in-
cluding digital rectal examination, PSA testing, prostate biopsy, soft-tissue imaging (either
CT or MRI) and whole-body BS as part of the routine staging procedure according to the
NCCN or EAU guidelines [2,10].

2.2. Study Endpoints and Design

Figure 1 illustrates a flowchart of patient selection and study design. A total of
354 patients who met the inclusion/exclusion criteria were included in the analysis and
model training. All primary prostate lesions were confirmed by biopsy and evaluated
by board-certified uropathologists. From the point of their initial diagnosis of PCa, all
patients were consistently monitored for a minimum of five years or until the recurrence
of the disease. Recurrence of PCa after initial treatment was defined as either the identifi-
cation of rising PSA levels (BCR), radiographic progression (local recurrence, new lymph
node involvement, new metastases), or death due to PCa. The definition of BCR after
initial treatment was established as follows: (1) after RP: as a serum PSA ≥ 0.2 ng/mL
followed by a second confirmatory level; (2) after RT, cryotherapy, or high-intensity focused
ultrasound (HIFU): the RTOG-ASTRO Phoenix Consensus Conference definition as any
PSA increase > 2 ng/mL higher than the PSA nadir value; (3) after androgen deprivation
therapy (ADT): three consecutive rises in PSA at least one week apart resulting in two 50%
increases over the nadir, and a PSA > 2 ng/mL plus castrate serum testosterone < 50 ng/dL
or 1.7 nmol/L.

2.3. Clinical Features

The survival outcomes were analyzed based on several clinical features including
age, baseline comorbidity, PSA level at diagnosis (or initial PSA), cancer stage, Gleason
score of PCa, D’Amico Risk Classification, and the type of initial treatment modality. The
cancer stage was defined by the AJCC TNM staging system of PCa. The extent of PCa,
including lymph node involvement and distant metastasis, was assessed using conventional
imaging by board-certified uro-radiologists and nuclear medicine physicians. Baseline
comorbidity was categorized based on the Charlson Comorbidity Index. Gleason grade was
defined by the International Society of Urological Pathology (ISUP) Consensus Conference.
The initial treatment modalities were classified as active surveillance (AS), RP, RT, HIFU,
cryotherapy, and adjuvant ADT. The choice of the initial treatment modality was made
by the surgeon and based on patient preference. The follow-up period was defined as the
interval extending from the date of the initial PCa diagnosis to the date of either disease
recurrence or the most recent clinical visit.

2.4. Image Acquisition

Whole-body BS with 99 mTc-labeled diphosphonates is a type of nuclear imaging test
that uses a radiotracer to evaluate the distribution of active bone formation in the skeleton
related to cancer bone metastasis, as well as physiological processes, particularly in PCa
bone metastases. All patients underwent BS within 90 days (mean ± SD, 22.5 ± 13.9 days)
after being diagnosed with PCa. Routine whole-body scans were performed 2–4 h after
the intravenous administration of 20 mCi of 99 mTc-labeled MDP with a scan speed of
14–17 cm/min on either a Millennium MG, Infinia Hawkeye 4, or Discovery NM/CT 670
Pro scanner (GE Healthcare, Chicago, IL, USA). Each patient’s BS produced two images,
specifically anterior and posterior images, with a resolution of 1024 × 256 pixels.

2.4.1. Radiomic Analysis

The body range within a user-specified region of interest (body mask) was identified
using the image value relationship between each pixel and adjacent pixels. The body mask
was defined using a relative threshold of background noise, specifically, an image value
greater than or equal to 2. We found that this approach maximized the probability of
connection between the extracted image value and the adjacent body.
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Figure 1. Flow chart.

Details of automatic body mask or Region of Interest (ROI) creation are illustrated
in Figure 2 and elaborated upon in the subsequent description. The process is started by
converting the BS image into a grayscale image with pixel values ranging from 0 to 1. This
is followed by dilation and erosion procedures aimed at filling minor, fragmented gaps.
Noise reduction is achieved via additional rounds of erosion and dilation to eliminate
extraneous white dots. At this stage, a preliminary version of the bone skeleton mask is
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available. Compared to other medical images, BS images are simpler. The ROI for the entire
body can be extracted using basic image processing techniques rather than AI. Moreover,
professional nuclear medicine physicians have also validated all these ROI images. The
next step involves eliminating the smallest interconnected regions, such as superfluous
catheters. The final step in the procedure is to fill any remaining blank spaces within the
image, resulting in a mask designed for the extraction of radiomics features (Figure 2).
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Figure 2. Bone scintigraphy mask for extracting radiomics features.

A morphological closing and morphological opening algorithm was applied to sepa-
rate the body and adjacent anatomic structures if they were misclassified. The software
used for feature extraction was developed by pyradiomics 3.1.0. For each BS image,
64 radiomics features, including first-order statistics and texture features, were extracted
from the ROI. The BS images were classified into two groups, front and back, resulting in a
total of 128 radiomics features for each patient. Furthermore, in order to calculate texture
features, the values within the ROI were discretized. To describe the heterogeneity of the
discretized value within the ROI, four textural matrices were calculated: the gray-level
cooccurrence matrix (GLCM), the neighboring gray-level dependence matrix (NGLDM),
the gray-level run-length matrix (GLRLM), and the gray-level size zone matrix (GLSZM).
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2.4.2. Data Imbalance and Oversampling

We incorporated the Imblearn function to the model to randomly resample the imbal-
anced data. The two types of labels of our data are 253 and 101, respectively. Imbalanced
data occurs in the classification task. This situation is common and requires rectification. To
address this, we utilized both the methods of duplicating the minority class and reducing
the majority class. We employed the approach of SMOTE (Synthetic Minority Oversampling
Technique) as described by Nitesh Chawla et al. in their 2002 paper, “SMOTE: Synthetic
Minority Over-sampling Technique” [19]. SMOTE operates by selecting instances that are
proximate in the feature space, drawing a line between these instances, and generating a
new sample at a point along that line. Specifically, a random instance from the minority
class is selected. Then, k of its nearest neighbors are identified. One of these neighbor is
selected, and a synthetic sample is produced at a randomly chosen point between the two
instances in feature space.

2.4.3. K-Fold Cross-Validation

The patients were used as the training data, and StratifiedKFold from scikit-learn 1.1.3
was utilized for k-fold cross-validation to assess the robustness of the proposed model.
The training cohort was divided into five groups, each with an equivalent proportion of
patients with and without PCa recurrence. Each group was used only once as a test set,
and the rest were combined to form a dataset for training (Figure 3).
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Figure 3. K-fold cross-validation (K = 5).

All data were randomly added to the index according to label 0 and label 1. Each fold
should be equally distributed between label 0 and label 1, and the index cannot be repeated
in another batch. The data were trained to complete one epoch. According to the typical
distribution of the labeling category, a part of all the data is used as verification data. Then,
the remaining data are k-folded into training and testing data. Label 0 indicates without
PCa recurrence; label 1 indicates recurrence of PCa.

2.5. Machine Learning Model

ML: For BS images, we utilized radiomic analysis to extract 128 features and combined
them with continuous-type clinical data, which was transformed into a range of values from
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0 to 1. The category of clinical data was converted through One-Hot Encoding and added
to the training data for the model (Figure 4). The model implementation is as follows:

1. Logistic Regression: Logistic regression (LR) is a statistical model used for binary
classification tasks. The LR model is an extension of linear regression, but instead of
predicting continuous values, it predicts the probability of an event occurring. The
predicted probability is then transformed using a logistic (sigmoid) function to ensure
it lies between 0 and 1.

2. Naive Bayes: Naive Bayes (NB) is a classification algorithm based on Bayes’ theorem
with the assumption of independence among the predictor variables. It assumes that
the probability of a certain class, given the occurrence of other features, can be calcu-
lated using prior probabilities and conditional probabilities. In the NB classification,
we are focused on calculating the probability of a class.

3. Random Forest: Random Forest (RF) is a supervised ML algorithm that is used widely
in classification problems. It builds decision trees on different samples and takes their
majority vote for classification or the average in the case of regression.

4. Support Vector Classification: Support Vector Classification (SVC) is based on Support
Vector Machine (SVM). The goal is to create the best line or decision boundary that
can segregate n-dimensional space into classes. It aims to find a hyperplane in a
high-dimensional feature space that can separate the feature of different classes with
the largest margin.

5. Xtreme Gradient Boosting: Xtreme Gradient Boosting (XGBoost) is based on Gradient
Boosting, combined with the advantages of the bagging method of RF. Each decision
tree is related to the other, and the previous errors are corrected by the decision tree
generated later, with L1/L2 Regularization to avoid overfitting.
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The first four models were sourced from scikit-learn 1.1.3, and the XGBoost model
came from XGBoost 1.6.2.
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Statistical Analysis

For the clinical characteristics in the 354 study patients, the numerical variables were
displayed by the median and interquartile range (IQR). The categorical variables were
displayed as the percentage (%). The t-test was employed for continuous variables, while
the Chi-square (χ2) test was utilized for categorical variables. A p-value of less than 0.05
was considered statistically significant. To evaluate the effectiveness of the classifier, the
area under the curve (AUC) derived from the receiver operating characteristic (ROC) curve
was utilized. Performance indicators included sensitivity, specificity, precision, F1-score,
and accuracy. The analysis was conducted using SPSS software (version 26; IBM, Armonk,
NY, USA).

3. Results
3.1. Patient Characteristics

In the baseline characteristics, 253 patients (71.47%) were categorized into the non-
recurrence group, while 101 patients (28.53%) were classified into the recurrence group
(Table 1). The mean age in both groups was close to 70 and there was no significant
difference in baseline comorbidities between the groups (Table 1). The recurrence group
had a higher median initial PSA level (10.23 ng/dL, p-value < 0.052), a higher-grade group
(42.57% with grade group > IV, p-value < 0.01), a more advanced T stage (65.35% with
T ≥ 3, p-value < 0.01), more lymph node involvement (19.80% vs. 8.30%, p-value < 0.01),
and a higher proportion of high-risk patients (73.27% vs. 43.48%, p-value < 0.01) (Table 1).
Additionally, more patients underwent RP in the recurrence group compared to the non-
recurrence group (80.20% vs. 55.73%, p-value < 0.01).

Table 1. Clinical characteristics in 354 study patients.

PCa Population

No Recurrence Recurrence

Population N = 253 (71.47%) N = 101 (28.53%) p Value
a Diagnosis Age * 70 (64–75) 69 (64–74) 0.38

b Comorbidity
Cancer (exclude Leukemia/Lymphoma) 45 (17.79%) 15 (14.85%) 0.51

Lymphoma 1 (0.40%) 0 (0.00%) 0.53
Metastatic solid tumor 4 (1.58%) 1 (0.99%) 0.67

Chronic pulmonary disease 41 (16.21%) 10 (9.90%) 0.13
Peripheral vascular disease 3 (1.19%) 0 (0.00%) 0.27
Prior myocardial infarction 5 (1.98%) 3 (2.97%) 0.57

Congestive heart failure 7 (2.77%) 2 (1.98%) 0.67
Cerebrovascular disease 33 (13.04%) 13 (12.87%) 0.97

Dementia 16 (6.32%) 6 (5.94%) 0.89
Peptic ulcer disease 57 (22.53%) 16 (15.84%) 0.16

Diabetes 39 (15.42%) 19 (18.81%) 0.44
Diabetes with chronic complications 19 (7.51%) 7 (6.93%) 0.85

Mild liver disease 15 (5.93%) 6 (5.94%) 1.00
Moderate or severe liver disease 0 (0.00%) 1 (0.99%) 0.11
Moderate-to-severe renal disease 44 (17.39%) 14 (13.86%) 0.42

Rheumatologic disease 2 (0.79%) 0 (0.00%) 0.37
a Initial PSA * 10.56 (7.02–19.77) 10.23 (9.34–29.42) 0.05

b Value ≤ 10 ng/mL 116 (45.85%) 30 (29.70%) <0.01
b Value > 10 ng/mL and Value ≤ 20 ng/mL 76 (30.04%) 32 (31.68%) 0.76

b Value > 20 ng/mL 61 (24.11%) 39 (38.61%) <0.01
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Table 1. Cont.

PCa Population

No Recurrence Recurrence

Population N = 253 (71.47%) N = 101 (28.53%) p Value
b Gleason score primary pattern * 4 (3–4) 4 (4–4) <0.01

1 0 (0.00%) 0 (0.00%)
2 6 (2.37%) 0 (0.00%)
3 90 (35.57%) 19 (18.63%)
4 146 (57.71%) 75 (74.26%)
5 11 (4.35%) 7 (6.93%)

b Gleason score secondary pattern * 4 (3–4) 4 (3–5) <0.01
1 0 (0.00%) 0 (0.00%)
2 6 (2.37%) 1 (0.99%)
3 90 (35.57%) 43 (17.00%)
4 146 (57.71%) 28 (27.72%)
5 11 (4.35%) 29 (28.71%)

b Gleason Score_Grade Group <0.01
I 27 (10.67%) 4 (3.96%)
II 68 (26.88%) 14 (13.86%)
III 96 (37.94%) 40 (39.60%)
IV 19 (7.51%) 9 (8.91%)
V 43 (17.00%) 34 (33.66%)

b T <0.01
T1 30 (11.86%) 4 (3.96%)
T2 161 (63.64%) 31 (30.69%)
T3 60 (23.72%) 58 (57.43%)
T4 2 (0.79%) 8 (7.92%)

b N <0.01
N0 232 (91.70%) 81 (80.20%)
N1 21 (8.30%) 20 (19.80%)

b Risk classification <0.01
Low risk 18 (7.11%) 3 (2.97%)

Intermediate risk 125 (49.41%) 24 (23.76%)
High risk 110 (43.48%) 74 (73.27%)

b Bone scintigraphy Result 0.41
No definite bone metastasis 241 (95.26%) 94 (93.07%)

Equivocal findings 12 (4.74%) 7 (6.93%)
b Cancer Treatment

RP 141 (55.73%) 81 (80.20%) <0.01
RP and RT 10 (3.95%) 0 (0.00%) 0.04

RP and ADT 5 (1.98%) 3 (2.97%) 0.57
RP and ADT and RT 9 (3.56%) 3 (2.97%) 0.78

RT 56 (22.13%) 7 (6.93%) <0.01
RT and ADT 19 (7.51%) 4 (3.96%) 0.22

HIFU 1 (0.40%) 0 (0.00%) 0.53
Cryotherapy 3 (1.19%) 1 (0.99%) 0.88

First-generation antiandrogen 2 (0.79%) 0 (0.00%) 0.37
AS 7 (2.77%) 2 (1.98%) 0.67

a Cancer Follow-up period (Years) * 6.4 (5.51–7.54) 2.08 (1.24–3.43) <0.01

* Values are denoted as the median (IQR); a independent sample t-test; b chi-square (χ2) test. The Gleason Score is
as follows: the first number represents the cells that make up the most significant tumor area; the second number,
the cells from the next largest area. The Grade group has five categories based on pathological characteristics. T
denotes tumor; N stands for nodes; RP signifies radical prostatectomy; RT represents radiation therapy; ADT
indicates androgen deprivation therapy; HIFU means high-intensity focused ultrasound; and AS stands for
active surveillance.

Among the top ten important features determined by the training model, the following
five clinical features were included: tumor stage (TNM system), RP, initial PSA, Gleason
Score primary pattern, and radiotherapy (RT) (Figure 5).
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3.2. Patient-Based Prediction

As detailed in Table 1, a total of 354 patients in the training cohort were assessed
both with and without recurrence. The recurrence-prediction model employing ML was
subsequently analyzed. Among the top ten salient features highlighted by the training
model, the following five radiomics features were included: Gray Level Size Zone Matrix,
Skewness, Total energy, Kurtosis, and Range (as shown in Figure 5). The RF_clinical and
BS radiomics model, boasting the best performance metrics with a final AUC of 0.94, was
utilized for making predictions based on the BS radiomics from the 5-fold assessment of
the 354 patients.

The performance metrics of the RF_clinical and BS radiomics model are as follows:
accuracy (0.85), sensitivity (0.81), specificity (0.87), precision (0.71), F1-score (0.76), and AUC
(0.94). The results of other training models displayed a range of accuracies (0.52 to 0.78)
and AUCs (0.52 to 0.78), as detailed in Table 2. A confusion matrix details the performance
of the RF_clinical and BS radiomics classification model, as illustrated in Table 3, with a
precision of 0.71 and a recall of 0.81.

ROC curve analysis ascertains that the RF_clinical and BS radiomics predictions
surpassed the performance of other ML models, registering a culminating AUC of 0.94
(p-value < 0.0001), as visualized in Figure 6. A comparative review of the receiver operating
characteristic (ROC) for the RF_clinical and BS radiomics model against the other nine
models is delineated in Table 4. This confirms that the RF_clinical and BS radiomics model
notably outperformed the rest.



Diagnostics 2023, 13, 3380 11 of 17

Table 2. Comparison of the performance of different prediction models (Cross-validated data).

k-Fold Test Result (K = 5)

Machine Learning Model Accuracy Sensitivity Specificity Precision F1-Score AUC

LR_D’Amico only 0.61 (0.61–0.61) 0.73 (0.67–0.79) 0.56 (0.52–0.59) 0.40 (0.32–0.44) 0.52 (0.45–0.57) 0.64 (0.62–0.68)
LR_TNM only 0.73 (0.72–0.73) 0.65 (0.53–0.81) 0.75 (0.68–0.81) 0.52 (0.50–0.57) 0.58 (0.51–0.62) 0.70 (0.69–0.74)

LR_clinical only 0.75 (0.70–0.81) 0.71 (0.57–0.79) 0.76 (0.74–0.82) 0.55 (0.48–0.63) 0.62 (0.52–0.70) 0.81 (0.74–0.85)
NB_clinical only 0.52 (0.49–0.54) 0.87 (0.75–1.00) 0.38 (0.29–0.41) 0.36 (0.33–0.39) 0.51 (0.46–0.56) 0.69 (0.61–0.81)
RF_clinical only 0.76 (0.70–0.87) 0.71 (0.58–0.90) 0.78 (0.71–0.86) 0.56 (0.48–0.71) 0.63 (0.56–0.79) 0.83 (0.76–0.94)

SVC_clinical only 0.77 (0.74–0.81) 0.71 (0.63–0.82) 0.80 (0.74–0.88) 0.59 (0.54–0.67) 0.64 (0.60–0.70) 0.82 (0.80–0.86)
XGBoost_clinical only 0.73 (0.70–0.77) 0.64 (0.53–0.73) 0.77 (0.71–0.83) 0.53 (0.46–0.59) 0.58 (0.53–0.62) 0.76 (0.74–0.79)

LR_clinical and BS radiomics 0.78 (0.73–0.81) 0.76 (0.57–0.90) 0.79 (0.75–0.82) 0.59 (0.52–0.64) 0.66 (0.55–0.71) 0.84 (0.76–0.89)
NB_clinical and BS radiomics 0.51 (0.44–0.54) 0.82 (0.70–1.00) 0.38 (0.29–0.47) 0.35 (0.30–0.39) 0.49 (0.42–0.56) 0.67 (0.60–0.81)
RF_clinical and BS radiomics 0.85 (0.76–0.99) 0.81 (0.60–1.00) 0.87 (0.73–0.98) 0.71 (0.54–0.96) 0.76 (0.60–0.98) 0.94 (0.83–1.00)

SVC_clinical and BS radiomics 0.77 (0.74–0.80) 0.71 (0.62–0.79) 0.80 (0.77–0.82) 0.59 (0.54–0.61) 0.64 (0.58–0.68) 0.84 (0.75–0.90)
XGBoost_clinical and BS radiomics 0.73 (0.70–0.76) 0.65 (0.53–0.73) 0.76 (0.71–0.84) 0.52 (0.46–0.56) 0.58 (0.54–0.62) 0.76 (0.75–0.80)

Table 3. Confusion matrix for the RF_clinical and BS radiomics prediction.

Predicted

No Yes

True
No 219 34
Yes 19 82
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Table 4. Comparison of receiver operating characteristic (ROC) between the best model and
other models.

The Best Model Other Model p-Value

RF_clinical and BS radiomics

LR_D’Amico only <0.0001
LR_TNM only <0.0001
LR_clinical only <0.0001
NB_clinica only <0.0001
RF_clinical only <0.0001
SVC_clinical only <0.0001
XGBoost_clinical only <0.0001
LR_clinical and BS radiomics 0.0003
NB_clinical and BS radiomics <0.0001
SVC_clinical and BS radiomics 0.0003
XGBoost_clinical and BS radiomics <0.0001

4. Discussion

Our study aimed to evaluate the usefulness of ML based on multiple clinical features
and radiomics features of BS in differentiating PCa recurrence. In total, 354 local or
locally advanced PCa patients who underwent comprehensive studies, including BS before
initial treatment, were enrolled in the study retrospectively. The radiomics features of BS
were extracted and calculated within a body mask frame. All images were automatically
extracted using an algorithm approved by experts. The results showed that combining
the clinical features and radiomics features of BS, the ML-trained model could predict the
recurrence status after initial treatment. Moreover, the RF_clinical and BS radiomics model,
which effectively predicts recurrence status, is the best-performing model. These findings
may facilitate personalized medical care by aiding physicians in identifying patient groups
with a high risk of recurrence. The sensitivity and specificity of the RF_clinical and BS
radiomics model were 0.81 and 0.87, respectively. In an ideal scenario, a diagnostic test
would have 100% sensitivity and specificity; however, such outcomes are rarely observed
in practice. The specificity of our model surpassed its sensitivity. A diagnostic test with
high specificity suggests that if the test result is positive, there’s a high probability of
future recurrence. Clinically, this indicates the potential need for more intensive adjuvant
treatments or more vigilant follow-up strategies post initial therapy [2,10]. Conversely,
we can also differentiate patients in the low-risk recurrence group, thereby preventing the
potential of overtreatment.

Currently, the D’Amico classification and the AJCC (American Joint Committee on
Cancer) TNM system are the most widely used methods for PCa risk stratification and
prognosis prediction [2,3]. Zelic et al. demonstrated that a more detailed risk stratification
provided better discrimination, with the MSKCC nomogram and CAPRA score performing
better than the D’Amico and TNM systems [20]. This inspired the development of a more
sophisticated risk stratification system, which might be achieved with the support of the
ML model. In a multicenter study, ML model methods outperformed LR in predicting
clinical deterioration on the ward [21]. Furthermore, it demonstrated that the RF algorithm
surpassed other ML methods in accuracy [21]. Deist et al. compared various ML models,
including decision trees, RF, neural networks, SVM, elastic net logistic regression, and
LogitBoost. They found that the RF and elastic net logistic regression exhibited superior
discriminative performance in (chemo)radiotherapy outcomes across 12 different cancer
datasets [22]. Similar to previous studies, in this research, the RF outperformed all other
ML models in predicting the disease progression. The RF excels in clinical data analysis,
offering high accuracy by integrating multiple decision trees, each based on various sub-
datasets from the original data [23]. The introduction of randomness in RF prevents
overfitting, enhancing adaptability to new data amid clinical complexity. Therefore, RF
can improve accuracy over single prediction models, even with smaller datasets [23]. RF
is well-suited for the high-dimensional and irregular scales found in clinical data and
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can handle numerous features and assess their importance. Instead of selecting only the
best feature, RF trains on diverse feature subsets [24]. Notably, RF is insensitive to data
scale and does not require feature regularization, contributing to practicality in clinical
applications. The ensemble nature of RF effectively addresses imbalanced data distribution,
ensuring consistent performance across diverse sample categories. Given these attributes,
it’s evident that RF is especially tailored for deciphering the intricacies of medical datasets.

Current risk stratification systems for PCa consider a restricted set of factors and
employ simple grading. Consequently, they fall short in addressing the pronounced hetero-
geneity inherent to PCa. For instance, neither the D’Amico nor the TNM system takes into
account crucial survival-related factors such as age and comorbidities, both of which were
incorporated in our study [25,26]. Another drawback of the existing PCa risk stratification
system is that it treats each constituent factor with equal importance, which may differ from
the heterogeneity observed in PCa. Moreover, the significance weight of each factor should
take into account the accuracy of each respective test. For example, Gleason scoring is
based on biopsy samples that might not represent the entire prostate, and the PSA value can
be affected by age and benign conditions [27,28]. In our study, the predictive value based
on the D’Amico or TNM system was less powerful than the ML models. Conventional
prognostic models primarily rely on linear regression, which can potentially mis-weight
contributing factors. This may lead to inaccuracies in risk stratification and the prediction
of PCa recurrence. ML models, by presenting a nonlinear, multidimensional perspective on
the heterogeneous biology of cancer, offer solutions to these challenges and have proven
their applicability across various diseases [29]. In addressing the heterogeneity of PCa, Lee
C et al. verified that ML algorithms, which build multivariable models through the auto-
matic integration of optimal attributes, outperform conventional tiered risk stratification
systems [30]. Compared to deep learning, ML algorithms are more suitable for the context
of this study, which involves a smaller sample size and single-label classification. In our
study, combining the clinical features with the image features showed improved predictive
accuracy for PCa recurrence compared to clinical features alone, similar to previous studies
in head-and-neck and lung cancer [31]. Taken together, we presented an initial attempt to
show that an ML-trained prediction model using multiple clinical features and radiomics
features of BS can enhance the accuracy of PCa prognosis and provide individualized risk
assessments tailored to specific patient characteristics.

With the aid of AI, it is possible to detect early PCa bone metastasis and uncover
bone lesions in BS [32]. Through radiomics, image data are transformed into first-order
features (which describe non-spatial values), second-order features (commonly referred
to as “texture” features), and higher-order features [16]. Radiomics features have been
found to reflect tumor biology and are significantly associated with cancer genomics,
proteomics, and metabolomics, helping to capture the spatial heterogenicity of PCa [33]. The
aforementioned literature provides a foundational rationale for enhancing the diagnostic
power of BS through radiomics. Radiomics consists of three main parts: segmentation
of the ROI, extraction of image properties, and statistical analysis/modeling of these
properties [16]. Pyradiomics, which was used in our study, supports both feature extraction
in 2D and 3D and can be used to calculate single values per feature for a ROI or to generate
feature maps. However, the difference in the same feature in different classes is more
important than the number of features. Usually, the number of extracted 2D radiomics
features was less than that of 3D features because 2D features were extracted based on
a single slice. Though the difference in the same feature across different classes is more
important than the number of features, it has been pointed out that 2D features showed
better performance by Chen Shen et al. [34]. Considering the cost of the radiomics features
calculation and the cost of medical imaging, 2D features are more recommended for
extracting radiomics features from images of BS. The Radiomics Quality Score (RQS) serves
as a benchmarking tool for appraising radio-histology studies based on their features and
the quality of reporting [35]. In this context, our study achieved an RQS score of 16 points
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(44.44%). This score is notably higher than the average RQS observed in previous studies
(mean RQS of 23% ± 19.6%), underscoring the robustness of our research [36].

Our study utilized the recurrence of PCa as a reference, identifying five radiomics
features—Gray Level Size Zone Matrix, Skewness, Total Energy, Kurtosis, and Range-as
significant for PCa prognosis. These radiomics features are described as follows: Gray Level
Size Zone Matrix signifies spatial relationships; Skewness represents the asymmetry of pixel
intensities; Total Energy corresponds to the sum of pixel intensity; Kurtosis quantifies the
degree of tailedness; and Range describes the overall spread or variability of the intensity
values. The association between radiomics features and biological correlates remains an
area ripe for in-depth exploration. In the realm of PCa research, there is limited research
directly linking radiomics to biology [36]. However, certain radiomic features, such as
Skewness, Kurtosis, Range, and GLCM, have shown associations with bone density and
osteoporosis [37]. Furthermore, research indicates that CT radiomics features can differenti-
ate between significant RANKL status, a crucial pathway in bone modeling [38]. Zhang W
et al. underscores the role of the bone metastasis in the formation of secondary metastasis,
as evidenced by the progression of PCa cells from primary bone metastasis, tracked using
an evolving barcode system [39]. These findings hint at a potential connection between
radiomics features and the bone micro-environment or turnover. The exact pathways or
genetic regulations underpinning these associations warrant further investigation. The sub-
sequent evidence underscores the clinical significance of the radiomics features highlighted
in our research. Spohn SKB et al. showed that an MRI-based radiomics feature (Gray Level
Size Zone Matrix) could predict the BCR following RP, with a reported accuracy of 0.78 [40].
Skewness obtained from 18F-fluoride and 18F-FDG positron emission tomography, was
independently correlated with the progression-free survival of breast cancer [41]. Moreover,
CT-based radiomics features including total Energy and Kurtosis, predicted the BCR of PCa
following RT [40]. Consistent with the previous literature, we offer a unique perspective
suggesting that these five radiomics features represent the heterogeneous texture, which
may assist in identifying micrometastatic or undetected bone lesions and predicting the
recurrence of PCa.

Briefly speaking, our study obtained multiple clinical features and body images, and
then fed them into the radiomics and ML to predict whether PCa would recur, followed by
an assessment of accuracy. To our knowledge, this study is the first to assess the prognostic
value of ML for clinical features combined with the automated classification of BS. However,
our study is not without limitations as follows. Firstly, our study is primarily limited by the
fact that the research population consisted solely of Taiwanese individuals. Consequently,
the results may primarily be generalized to the Asian population. The applicability of these
findings to other ethnicities is inherently constrained, primarily due to the well-established
variations in PCa across different racial groups [42]. Second, the lack of later-stage treatment
and toxicity profile resulted in an incomplete view of the entire therapeutic course, but
this is beyond the scope of our study. Third, our study had a short follow-up duration,
leading to an imbalance between the recurrence and non-recurrence groups. This could
affect model training, but we implemented SMOTE methods to address this limitation [19].
While we do not have mature overall survival data, previous studies have indicated that
recurrence-free survival is a pertinent indicator of overall survival [43]. Lastly, the use of
training and testing sets does not replace full external validation. To address this issue, we
tested our models with a five-fold cross-validation scheme, which showed high stability
and is widely used in the field of computer-aided detection [44]. In future endeavors, we
eagerly anticipate collaborations with various medical institutions across different nations
to address issues related to generalizability, racial differences, and external independent
validation. Furthermore, we plan to extend the follow-up period to capture complete
overall survival outcomes and toxicity profiles for each treatment, thereby offering a more
holistic perspective on long-term PCa treatment.
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5. Conclusions

Our study showed that combining significant clinical features and radiomics features
of BS enhances the prediction of local or locally advanced PCa recurrence after initial
treatment. These results not only highlight the added value of ML techniques in risk
stratification for PCa but also serve as a proof of concept that ML models, combined with
radiomics features from BS, can be effectively applied to PCa. We believe the ML model
with radiomics features of BS will aid in identifying patients at high risk of recurrence.
Nevertheless, larger-scale multicenter prospective studies are essential in the future to
validate the application of ML and radiomics features for recurrence prediction, and to
confirm their predictive capacity for overall survival and toxicity profiles across various
stages of PCa.

Author Contributions: Y.-D.W.: research conception and design, data acquisition, formal analy-
sis, original draft preparation; C.-P.H.: methodology: data acquisition, original draft preparation,
manuscript editing; Y.-R.Y.: research conception and design, data acquisition, manuscript review;
H.-C.W.: methodology: interpreted data, manuscript editing; Y.-J.H.: methodology visualization,
statistical analyses, interpreted data, original draft preparation; Y.-C.Y.: research conception and
design, data acquisition, figure and table visualization; P.-C.Y.: research conception and design, data
acquisition, figure and table visualization; K.-C.W.: methodology visualization, statistical analyses,
interpreted data, original draft preparation; C.-H.K.: conception and design, statistical analyses,
interpreted data, original draft preparation, manuscript editing, administrative support. All authors
have read and agreed to the published version of the manuscript.

Funding: This study is supported in part by China Medical University Hospital (DMR-112-072,
DMR-112-073). The funders had no role in the study design, data collection, analysis, the decision
to publish, or the preparation of the manuscript. No additional external funding was received for
this study.

Institutional Review Board Statement: The data used in this project were approved by the
Insti-tutional Review Board of China Medical University Hospital under certificate number
DMR99-IRB-293-(CR-11).

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

2. NCCN Clinical Practice Guidelines in Oncology, Prostate Cancer, Version 3. 2023. Available online: https://www.nccn.org/
login?ReturnURL=https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (accessed on 24 August 2023).

3. D’Amico, A.V.; Cote, K.; Loffredo, M.; Renshaw, A.A.; Schultz, D. Determinants of prostate cancer-specific survival after radiation
therapy for patients with clinically localized prostate cancer. J. Clin. Oncol. 2002, 20, 4567–4573. [CrossRef]

4. Bolton, D.; Cheng, Y.; Willems-Jones, A.J.; Li, J.; Niedermeyr, E.; Mitchell, G.; Clouston, D.; Lawrentschuk, N.; Sliwinski, A.; Fox,
S.; et al. Altered significance of D’Amico risk classification in patients with prostate cancer linked to a familial breast cancer
(kConFab) cohort. BJU Int. 2015, 116, 207–212. [CrossRef] [PubMed]

5. Chen, J.; Remulla, D.; Nguyen, J.H.; Aastha, D.; Liu, Y.; Dasgupta, P.; Hung, A.J. Current status of artificial intelligence applications
in urology and their potential to influence clinical practice. BJU Int. 2019, 124, 567–577. [CrossRef] [PubMed]

6. Hung, A.J.; Chen, J.; Che, Z.; Nilanon, T.; Jarc, A.; Titus, M.; Oh, P.J.; Gill, I.S.; Liu, Y. Utilizing Machine Learning and Automated
Performance Metrics to Evaluate Robot-Assisted Radical Prostatectomy Performance and Predict Outcomes. J. Endourol. 2018,
32, 438–444. [CrossRef] [PubMed]

7. Abdollahi, H.; Mofid, B.; Shiri, I.; Razzaghdoust, A.; Saadipoor, A.; Mahdavi, A.; Galandooz, H.M.; Mahdavi, S.R. Machine
learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate
cancer. Radiol. Med. 2019, 124, 555–567. [CrossRef]

8. Wong, N.C.; Lam, C.; Patterson, L.; Shayegan, B. Use of machine learning to predict early biochemical recurrence after robot-
assisted prostatectomy. BJU Int. 2019, 123, 51–57. [CrossRef]

https://doi.org/10.3322/caac.21660
https://www.ncbi.nlm.nih.gov/pubmed/33538338
https://www.nccn.org/login?ReturnURL=https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf
https://www.nccn.org/login?ReturnURL=https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf
https://doi.org/10.1200/JCO.2002.03.061
https://doi.org/10.1111/bju.12792
https://www.ncbi.nlm.nih.gov/pubmed/24784491
https://doi.org/10.1111/bju.14852
https://www.ncbi.nlm.nih.gov/pubmed/31219658
https://doi.org/10.1089/end.2018.0035
https://www.ncbi.nlm.nih.gov/pubmed/29448809
https://doi.org/10.1007/s11547-018-0966-4
https://doi.org/10.1111/bju.14477


Diagnostics 2023, 13, 3380 16 of 17
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