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Abstract: Bacteremia is associated with significant morbidity and mortality. Timely, appropriate
therapy may improve clinical outcomes, and therefore, determining which patients benefit from more
comprehensive diagnostic strategies (i.e., direct specimen testing) could be of value. We performed an
assessment of procalcitonin (PCT) and clinical characteristics in the discrimination of bacteremic hos-
pitalizations. We analyzed 71,105 encounters and 14,846 visits of patients with bacteremia alongside
56,259 without an admission. The area under the receiver—operating characteristic (AUROC) curve
for the prediction of bacteremia via procalcitonin was 0.782 (95% CI 0.779–0.787). The prediction
modeling of clinical factors with or without PCT resulted in a similar performance to PCT alone.
However, the clinically predicted risk of bacteremia stratified by PCT thresholds allowed the targeting
of high-incidence bacteremia groups (e.g., ≥50% positivity). The combined use of PCT and clinical
characteristics could be useful in diagnostic stewardship by targeting further advanced diagnostic
testing in patients with a high predicted probability of bacteremia.

Keywords: procalcitonin; diagnostics; risk factors; bloodstream infection; blood culture

1. Introduction

Sepsis results in significant morbidity and mortality and, specifically, is associated
with 20% of all global deaths annually [1]. Early appropriate antimicrobial therapy has
been established as paramount to improving clinical outcomes in septic patients [2]. Blood
cultures are routinely used to direct appropriate therapy in patients with sepsis, but while
useful, they are incrementally limited in their clinical impact when considering time to
positivity and turnaround time in conventional microbiology processing.

Molecular rapid diagnostic testing (RDT) has been shown to improve the management
of patients with sepsis and bloodstream infections (BSIs) [3]. Similarly, the direct specimen
RDT has been shown to have the potential to allow for more rapid tailoring of antibiotics
in patients with sepsis [4,5]. However, ubiquitous testing among sepsis patients is limited
by the laboratory burden in relation to testing costs and staffing resource limitations when
performing a related volume of testing. Therefore, targeting testing through diagnostic
stewardship to select patients with a high likelihood of BSIs may allow for the application
of advanced diagnostics to direct specimens in an effective and efficient manner [6].

Procalcitonin (PCT), a 116-amino-acid precursor to calcitonin, while normally pro-
duced by the thyroid in healthy individuals, peaks 12 to 24 h at several-fold higher levels
and is produced by a variety of other organs in response to bacterial infection [7]. PCT
has been FDA-approved for prognostic use in ICU-admitted sepsis patients and as an
aid in antibiotic decision-making in lower respiratory tract infections [8]. Additionally,
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research on PCT has shown promise in predicting BSIs either alone or in combination with
clinical prediction models [9,10]. However, research has been limited due to its single center
and/or smaller sample size, thus limiting conclusions on clinical utility. Further research
may inform the diagnostic stewardship of direct specimen rapid diagnostics [6].

Our objective was to characterize the performance of PCT when predicting bacterial
bloodstream infections across a national inpatient cohort in the US, along with evaluating
the additional utility of clinical predictors to identify BSIs, as both approaches could inform
diagnostic stewardship efforts toward the effective use of direct specimen RDTs.

2. Materials and Methods
2.1. Data Source

Hospital encounters were derived from the Premier Healthcare Database (PHD; Pre-
mier Inc., Charlotte, NC, USA) [11]. The PHD, which represents 20% of acute care hospi-
talization nationwide, includes retrospective, observational patient-level encounters with
demographics as well as the 10th revision of the International Statistical Classification of
Diseases and Related Health Problems (ICD-10), including diagnostic and procedure codes
present on admission, invoiced items per day including medications, general laboratory
and microbiology data with collection and result alongside the day and times, and facility
characteristics. The PHD includes both inpatient and outpatient encounters for over one
billion visits over 20 years from currently over 1000 geographically diverse hospitals of
varying sizes in both rural and urban areas. This database is compliant with the Health
Insurance Portability and Accountability Act. As this study used a fully de-identified
database, it was exempt from ethics review under US 45 CFR 46.101(b)4.13 [12].

2.2. Study Population

Patients were included if they underwent hospital admission from 1 January 2017
through to 31 December 2019. Adults (≥18 years of age) were selected if they had one
or more blood cultures and a PCT level obtained on day one of admission. Encounters
were classified by the admission of blood cultures into bacteremic encounters for bacterial
etiologies or negative encounters based on culture-based microbiology results. Common
contaminants (e.g., coagulase-negative Staphylococcus spp., Micrococcus spp., etc.) were
excluded due to the absence of data on vitals (e.g., heart rate and temperature) provided by
the PHD, and therefore, we were unable to adjudicate likely contamination by standardized
definitions [13,14]. Fungal and mycobacterial bloodstream infections were also excluded
due to the discrimination performance of PCT being specific and robust for typical bacterial
infections [15,16].

2.3. Outcomes and Definitions

Descriptive data were analyzed for the cohort, including baseline patient and hospital
characteristics, in addition to patient encounter characteristics. Chronic disease comor-
bidities were evaluated using the Charlson Comorbidity Index, which was derived from
standardized ICD-10 codes [17]. Similarly, admission diagnoses were evaluated using
ICD-10 codes (Supplementary Table S1). Laboratory values were selected based on their
Logical Observation Identifiers Names and Codes (LOINC®; Supplementary Table S2) and
evaluated based on clinically relevant abnormalities. Maximum values of lactate and serum
creatinine on admission were assessed, while minimum values of albumin and platelets
were evaluated. WBCs were assessed for the presence of leukopenia (<4000 cells/mm3)
or leukocytosis (>12,000 cells/mm3). Inpatient mortality was determined by hospital
encounter discharge records.

The discrimination performance of PCT for diagnosing bacteremia was assessed for
the overall cohort. Subgroups were analyzed among those admitted with a diagnosis
(overall cohort, pneumonia, pyelonephritis, and febrile neutropenia) and were evaluated
based on relevance from previous studies [9,10]. Likewise, age, comorbidities, admission
diagnosis, and laboratory-based clinical predictors of bacteremia on admission were exam-
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ined through the derivation of a regression model based on previously described prediction
models [9,10]. The predictors evaluated included an admission or present on admission
diagnosis (pyelonephritis, pneumonia, febrile neutropenia), PCT level, elevated serum crea-
tinine (>2 mg/dL), elevated lactate (>2 mmol/L), leukocytosis or leukopenia, low platelets
(<150,000/mm3), and low albumin (≤3 g/dL) [9,10]. The erythrocyte sedimentation rate
(ESR), C-reactive protein (CRP), and lactate were not included, as they are not routinely
used in practice in the majority of facilities for sepsis patients (i.e., missing data for at least
40% of the study population) and were thus prohibitive to imputation. All time-varying
predictors (i.e., laboratory values) were assessed based on day one of admission labs.

2.4. Statistical Analysis

Patient, hospital, and encounter-related characteristics were summarized using the
median (IQR) and number (percentage). The performance of PCT to predict bacteremia
was assessed using sensitivity, specificity, and the area under the receiver operating char-
acteristic curve (AUROC). An AUC of 0.5 reflects the discrimination capacity consistent
with chance, while 1 reflects perfect discrimination. The optimized cutoff for PCT was
determined using Youden’s index value.

Additional encounter predictors were evaluated along with PCT in an unconditional
logistic regression model for the evaluation of bacteremia [9]. Multivariable logistic re-
gression was performed with the least absolute shrinkage and selection operator (LASSO),
a penalized least squares method, with candidate variables for model development and
model selection based on a lambda shrinkage parameter with best performance in a ten-fold
cross-validation [18]. Final variables were modeled with logistic regression, as LASSO could
bias final model coefficients toward zero based on its soft thresholding property [18–20].
The sample size was assessed using the pmsampsize package for prediction modeling
using 14 candidate parameters with a potential prevalence of 5% bacteremia and an average
derivation model of 0.79 c-statistic from previous models [21]. The estimated required sam-
ples and events were at least 2125 and 107, respectively. Single imputation was performed
if data were missing. Model performance was evaluated for discrimination (C-statistic)
and calibration (agreement between predicted and observed using calibration slopes).

We performed all analyses in R, version 4.0.1 (R Foundation for Statistical Computing,
Vienna, Austria). Comorbid conditions were mapped from ICD-10s using the comorbid-
ity package (v0.5.3), ROC curve analysis with the pROC package (v1.18.0), and LASSO
regression with the glmnet package (v4.1-4) [17,22,23]. Prediction model derivation was
reported according to the transparent reporting of a multivariable prediction model for the
individual prognosis or diagnosis (TRIPOD) checklist [24].

3. Results

We identified 71,105 patients meeting the eligibility criteria of at least one procalcitonin
level and blood culture obtained on the day of admission; 14,846 were bacteremic, and 56,259
were non-bacteremic encounters. Patient and hospital characteristics among bacteremic and
non-bacteremic encounters were overall similar (Table 1). The median age of the cohort was
68 years (IQR 56–79), and 49.8% were female. The Charlson Comorbidity Index was the same
across groups (median 3, IQR 2–4); however, bacteremic patients had a higher proportion of
diagnoses for chronic renal disease (33.2% vs. 28.6%) and chronic hepatic disease (11.4% vs.
7.1%) compared to non-bacteremic patients. The majority of patient encounters occurred in
hospitals with ≤500 beds (36.1%) and in urban settings (92.3%).

The clinical characteristics of patient encounters can be found in Table 2. The majority
of encounters occurred in hospitalist or internal medicine wards as the admission service
(78.0%). Among admission or present-on-admission diagnoses, as described in previous
derivation or validation models for predicting bacteremia, pneumonia, and sepsis were
common, occurring in 42.1% and 42.7% of encounters, respectively. Notably, bacteremia
occurred less commonly among pneumonic patients (34.8% vs. 44.0%) and was more
common among sepsis patients (80.3% vs. 32.8%). Abnormal laboratory values were
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more common among bacteremic patients, and specifically, the median PCT was 2.44 (IQR
0.45–13.81) among bacteremic patients and 0.19 (0.07–0.73) among non-bacteremic patients.
Finally, the length of stay (4 vs. 6 days) and mortality (6.0% vs. 11.0%) were lower among
non-bacteremic patients than bacteremic patients.

Table 1. Patient and hospital characteristics.

Characteristic All Patients
(N = 71,105)

Bacteremic
(N = 14,846)

Non-Bacteremic
(N = 56,259)

Age 68 (56–79) 67 (56–78) 68 (56–79)
Sex

Female 35,392 (49.8) 6937 (46.7) 28,455 (50.6)
Male 35,713 (50.2) 7909 (53.3) 27,804 (49.4)

Race/ethnicity
Black 10,014 (14.1) 1954 (13.2) 8060 (14.3)
White 53,436 (75.2) 11,020 (74.2) 42,416 (75.4)
Other 7655 (10.7) 1872 (12.6) 5783 (10.3)

Comorbidities
Charlson Comorbidity Index 3 (2–4) 3 (2–4) 3 (2–4)
Chronic renal disease 21,000 (29.5%) 4936 (33.2%) 16,064 (28.6%)
Chronic hepatic disease 5704 (8.0%) 1698 (11.4%) 4006 (7.1%)
Chronic obstructive pulmonary

disease 29,406 (41.1%) 4602 (31.0%) 24,804 (44.1%)

Congestive heart failure 24,446 (34.4%) 4921 (33.1%) 19,525 (34.7%)
Malignancy 9057 (12.7%) 1962 (13.2%) 7095 (12.6%)

Hospital Beds
0–99 5685 (8.0) 1080 (7.3) 4605 (8.2)
100–199 11,242 (15.8) 2374 (16.0) 8868 (15.8)
200–299 8660 (12.2) 1812 (12.2) 6848 (12.2)
300–399 12,022 (16.9) 2708 (18.2) 9314 (16.6)
400–499 7853 (11.0) 1550 (10.4) 6303 (11.2)
>500 25,643 (36.1) 5322 (35.8) 20,321 (36.1)

Hospital location
Rural 5497 (7.7) 1305 (8.8) 4192 (7.5)
Urban 65,608 (92.3) 13,541 (91.2) 52,067 (92.5)

Data as median (IQR) or no. (%).

Table 2. Clinical characteristics of patient encounters.

All Patients
(N = 71,105)

Bacteremic
(N = 14,846)

Non-Bacteremic
(N = 56,259)

Admitting service
Family practice 5148 (7.2) 1118 (7.5) 4030 (7.2)
Hospitalist/

Internal medicine 55,461 (78.0) 11,331 (76.3) 44,130 (78.4)

Pulmonary/
Critical care 3034 (4.3) 877 (5.9) 2157 (3.8)

Other 4877 (6.9) 1063 (7.2) 3814 (6.8)
Unspecified 2585 (3.6) 457 (3.1) 2128 (3.8)

Admitting diagnosis
Febrile neutropenia 513 (0.7%) 147 (1.0%) 366 (0.7%)
Pneumonia 29,937 (42.1%) 5162 (34.8%) 24,775 (44.0%)
Pyelonephritis 960 (1.4%) 559 (3.8%) 401 (0.7%)
Sepsis 30,359 (42.7%) 11,924 (80.3%) 18,453 (32.8%)

Laboratory values
PCT, ng/dL 0.27 (0.08–1.55) 2.44 (0.45–13.81) 0.19 (0.07–0.73)
Leukopenia or leukocytosis 33,543 (47.2%) 8478 (57.1%) 25,065 (44.6%)
Platelets < 150,000/mm3 12,530 (17.6%) 4124 (27.8%) 8406 (14.9%)
Lactate > 2 mmol/L 17,488 (24.6%) 5287 (35.6%) 12,201 (21.6%)
Albumin ≤ 3 g/dL 22,141 (31.1%) 6384 (43.0%) 15,757 (28.0%)

Creatinine > 2 mg/dL 13,749 (19.3%) 4186 (28.2%) 9563 (17.0%)
Clinical outcomes

LOS 5 (3–8) 6 (4–10) 4 (3–7)
Mortality 4987 (7.0) 1639 (11.0) 3348 (6.0)

Data as median (IQR) or no. (%). Abbreviations: ICU, intensive care unit; PCT, procalcitonin; LOS, length of stay;
WBC abnormality as <4000 cells/mm3 or >12,000 cells/mm3; ICU admit on day of admission. Among all patients,
the absence of lab results occurred for WBC 12.7%, platelets 14.4%, lactate 44.1%, albumin 17.5%.
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The diagnostic performance of PCT for bacteremia had good discrimination with an
AUROC of 78.2% (95% CI, 77.9 to 78.7). Discrimination performance decreased among
pneumonia and pyelonephritis admission or present-on-admission diagnoses (Figure 1).
Sensitivity-balanced (72.9%) and specificity-balanced (70.2%) discrimination performance
was maximized at a cutoff threshold of 0.53 ug/mL. Additionally, a regression model was
developed (Table 3) based on clinical characteristics and lab results including PCT, which
reflected moderate discrimination performance (C-statistic 80.7%) and calibration (Supple-
mentary Figure S1). In the absence of PCT in this model, discrimination performance was
slightly lower (C-statistic 79.4%), and calibration was similar. Prediction model regression
equations can be found in the Supplementary Materials (Table S3).
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Table 3. Predictive model for bacteremia.

Predictor Variable Crude OR (95% CI) Adjusted OR (95% CI) p-Value *

Baseline characteristics
Age 0.9976 (0.9965–0.9987) 1.0 (1.0013, 1.0027) 0.047
Diabetes 1.17 (1.13, 1.22) 1.09 (1.04, 1.14) <0.001
Hepatic disease 1.68 (1.59, 1.79) 1.26 (1.17, 1.35) <0.001
Malignancy 1.06 (1, 1.11) 0.92 (0.86, 0.98) <0.001
COPD 0.57 (0.55, 0.59) 0.77 (0.73, 0.8) <0.001
Renal disease 1.25 (1.2, 1.3) 1.04 (0.99, 1.09) 0.155
Congestive heart failure 0.93 (0.9, 0.97) 1.09 (1.04, 1.14) <0.001

Admission diagnosis
Sepsis 8.37 (8.01, 8.75) 7.06 (6.74, 7.4) <0.001
Pneumonia 0.68 (0.65, 0.7) 0.55 (0.52, 0.57) <0.001
Pyelonephritis 5.45 (4.79, 6.2) 2.73 (2.36, 3.15) <0.001
Febrile neutropenia 1.53 (1.26, 1.85) 1.17 (0.93, 1.46) 0.18
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Table 3. Cont.

Predictor Variable Crude OR (95% CI) Adjusted OR (95% CI) p-Value *

Laboratory
Creatinine >2 mg/dL 1.92 (1.84, 2) 1.06 (1, 1.12) 0.056
Albumin ≤ 3 g/dL 1.94 (1.87, 2.01) 1.3 (1.24, 1.36) <0.001
Platelets < 150,000/mm3 2.19 (2.1, 2.29) 1.68 (1.6, 1.77) <0.001
Leukocytosis or leukopenia 1.66 (1.6, 1.72) 1.11 (1.07, 1.16) <0.001
Procalcitonin, ng/dL 1.03 (1.03, 1.03) 1.02 (1.02, 1.02) <0.001

* Variable selection by LASSO depends on performance in the model for a ten-fold cross-validation; therefore, all
variables in the final logistic model may not be significant.

Bacteremia incidence varied when evaluated using PCT-only stratified cutoffs, a
prediction model with PCT stratifications, and a prediction model without PCT (Table 4).
For PCT only, levels of >2 to <10 ng/dL and >10 ng/dL were associated with a bacteremia
incidence of 40% or more compared to 20.9% for the overall cohort. Similarly, using
the clinical prediction model without PCT, a medium (25–75%) and high (>75%) risk of
bacteremia predicted the probability of bacteremia incidence in patients as 42% or more.
When using both PCT and the clinical prediction model with stratified cutoffs together, a
bacteremia incidence of 53% or more was noted with medium risk and PCT > 2 ng/dL,
while all high-risk patients had an incidence of 70% or higher.

Table 4. Bacteremia incidence via PCT only and clinical prediction models.

Predicted Risk without PCT Predicted Risk with PCT

PCT Level
(ng/dL)

PCT only
N = 71,105

Low (<25%)
N = 44,767

Med
(25–75%)

N = 26,182

High (>75%)
N = 156

Low (<25%)
N = 46,137

Med
(25–75%)

N = 23,813

High (>75%)
N = 1155

<0.5 9.1%
(3935/42,810) - - - 5.6%

(1938/34,828)
24.1%

(1993/8278)
100%
(4/4)

0.5< to <2 25.4%
(3059/12,060) - - - 13.2%

(893/6783)
41.0%

(2159/5267)
70%

(7/10)

>2 to <10 40.4%
(3557/8811) - - - 21.4%

(740/3460)
52.5%

(2800/5331)
85%

(17/20)

>10 60.3%
(4295/7124) - - - 27.1%

(289/1066)
63.0%

(1828/4937)
80.0%

(897/1121)

Overall 20.9%
14,861/71,105

8.2%
(3693/44,767)

42.1%
(11,029/26,182)

79.5%
(124/156)

8.4%
(3860/46,137)

42.3%
(10,061/23,813)

80.0%
(925/1155)

4. Discussion

In our comprehensive cohort study of 71,105 hospitalized patients from whom we
obtained blood cultures and procalcitonin, we demonstrated a moderate diagnostic dis-
crimination performance when predicting bacteremia for both procalcitonin testing and
clinical prediction modeling. Our findings showcase a moderate level of performance for
both methodologies. When considering the immense challenge and critical importance of
timely bacteremia detection, the potential utility of either approach in guiding advanced
diagnostic testing from blood cultures becomes evident. While either approach may be
beneficial in driving advanced diagnostic testing from blood cultures, the use of both
approaches at stratified ranges can allow increased incidence risk groups who are most
likely to benefit from advanced diagnostic testing to be targeted. These evaluations reflect
a diagnostic stewardship approach of enriching patient selection for advanced diagnostic
testing to ensure the right test for the right patient at the right time [25]. Furthermore, we
observed that PCT discrimination performance across admission diagnoses was mostly
comparable, with the exception of pyelonephritis and pneumonia, which had lower per-
formance. This insight underscores the complexities and variables inherent in bacteremia
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diagnostics. Additionally, we found high proportions (60.3%) of bacteremic patients with a
PCT > 10 ng/dL, reinforcing the value of PCT as a diagnostic marker.

Previous studies of clinical prediction modeling when predicting bacteremia have
resulted in an AUROC of 0.60–0.83, while pooled estimates of PCT have reflected an AU-
ROC of 0.79 [9,10]. We observed discrimination performance to be similar among both
PCT and clinical prediction models. In a systematic review and meta-analysis of procalci-
tonin for diagnostic accuracy on bacteremia for 58 studies and 16,514 patients (3420 with
bloodstream infection), cut-off values for PCT varied between 0.10 ng/dL and 17 ng/dL
(median 0.5 ng/dL) [9]. Similarly, in our overall cohort, we observed 0.53 ng/dL as the
threshold for balancing sensitivity and specificity. This balance assumes that false positives
and false negatives are equally important, which might not be applicable to all clinical
scenarios [26]. For instance, a febrile neutropenia patient admitted to an ICU on pressors
could benefit from a low threshold that increases sensitivity. By contrast, a young adult
floor patient without comorbidities likely has a threshold favoring increased specificity.
Additionally, when used to evaluate advanced diagnostic testing decisions, this threshold
may be a function of prevalence for disease or a potential for therapy modification based on
advanced diagnostic. Moreover, continuous prediction models without specific thresholds
could help facilitate individual-level decision-making in certain use cases, allowing for
personalized medicine [26]. As we look ahead, there is a compelling need for research that
dives deep into crafting prediction models tailored to specific advanced diagnostics and
patient populations, ensuring that the chosen thresholds resonate with the unique demands
of each clinical context.

Recent research has evaluated the unique characteristics of patients with lower PCT
levels (<2, 0.5 to 2, and <0.5 ng/dL) and bacteremia [27], noting that these patients are
difficult to identify based on observed attributes. In the context of a clinical presentation
that is consistent with potential bacteremia, these PCT levels could make appropriate
workup and diagnosis challenging. We found that bacteremia incidence was 9.1% and
25.4% for <0.5 and 0.5 to <2 ng/dL, respectively, but higher likelihoods could be targeted
through clinical prediction modeling to >24% and >40% for these cutoffs if restricted
to medium- and high-risk-prediction-model patients, reflecting the synergistic value of
PCT and clinical prediction models for determining patients who are likely bacteremic.
This combined approach not only augments diagnostic accuracy but also underscores the
importance of a multi-faceted strategy when managing complex clinical scenarios.

The realm of direct specimen testing often enters intricate territories. Direct specimen
testing can be problematic, as testing is driven by often subjective judgments of who benefits
from testing or their perceived pre-test probability of a bloodstream infection [4,6]. If
optimal testing is not approached through diagnostic stewardship, a lower diagnostic yield
and avoidable increased costs without meaningful clinical impacts may result. To recognize
these inherent challenges and address this issue, we performed a retrospective evaluation
of the diagnostic accuracy of PCT and a validation of clinical prediction for bacteremia.
Our findings illuminate a promising path: harnessing the insights from these tools offers
a strategic direction for advanced testing. This aligns with previous research in this area,
which has found PCT to be an avenue for improving direct specimen testing with SeptiFast
real-time PCR (Roche Diagnostics GmbH, Mannheim, Germany) in a more cost-effective
manner [6]. While we evaluated a retrospective national cohort using conventional culture
diagnostics, we believe our data build on this literature and aforementioned systematic
reviews through our combination approach of PCT and clinical prediction models, which
allows a variety of bacteremia incidence groups to be targeted with increased precision.
As the implementation of advanced diagnostics can occur across varied, heterogenous
settings with competing needs, limited resources, and clinical practice, the implementation
and prioritization of advanced diagnostics should be tailored. Therefore, our suggested
approach can allow flexibility based on these needs. In an envisioned diagnostic framework,
patients exhibiting a predicted incidence of bacteremia greater than 50% could be selectively
prioritized for advanced direct specimen testing. This strategic direction could harness
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the synergistic power of both PCT and clinical risk prediction models, as illustrated in a
hypothetical diagnostic pathway in Supplementary Table S4. To truly realize the potential
of these integrated approaches, it is imperative that future research engages in subsequent
external validations of the prediction model. Furthermore, future investigations focusing
on these approaches with the practical clinical utility of specific advanced diagnostic
methodologies could be instrumental in refining and substantiating our proposed strategies.

Our study has several limitations. As our data were retrospective, the blood cultures,
procalcitonin, and other labs were not systematically collected and thus subject to clinical
variability and bias. However, the performance reported herein likely reflects pragmatic
real-world utility. While our study is derived from 1200 diverse hospitals and is likely
nationally representative, generalization to specific hospitals should be undertaken with
caution and proceed with local validations. In contrast with our present study, most pre-
vious studies are limited to single centers in a specific geographic setting with samples
of 200–2000, and, therefore, our data likely reflect a typically expected discrimination
performance. In our research, we did not incorporate data related to erythrocyte sedimen-
tation rate (ESR) or the C-reactive protein (CRP) as predictive markers for bacteremia. The
rationale behind this exclusion stemmed from several considerations. First, these particular
biomarkers, while valuable in assessing systemic inflammation, have only sporadically
been incorporated into bacteremia prediction models in prior studies [10]. This limited
inclusion might reflect their broader role in indicating inflammation rather than specifi-
cally identifying bacterial infections. Second, existing research using extensive national
US cohorts underscores a notable trend: approximately 80% of clinical encounters do
not involve the use of these biomarkers for this purpose, suggesting a prevailing clinical
practice pattern that often omits ESR and CRP in the bacteremia diagnostic process in
the US [28]. While our study sought to mirror current practices and prevailing research
trends, we acknowledge the potential utility of these markers. Future investigations might
benefit from a comprehensive evaluation of ESR and CRP, potentially revealing additional
insights into their diagnostic relevance in bacteremia. We also did not analyze pediatric
patients. We focused on adults as labeling-supported and clear cutoffs that exist to guide
evaluations and analysis [8]. By contrast, pediatric patients, particularly neonates and
young infants, may have elevated PCT in the absence of bacterial infection [29]. While we
believe our approach of either clinical prediction, PCT, or a combination thereof offers merit
in predicting bacteremia and driving advanced diagnostic testing in pediatrics as well,
specific models and thresholds should be evaluated in future research for this population.
Finally, our goal was to find reliable predictors to drive advanced diagnostic testing, and
the current study only provides a potential approach toward that goal. Future research
should evaluate the use of PCT, clinical prediction models, or a combination thereof as a
diagnostic stewardship and pre-analytical strategy to drive advanced diagnostic testing.

5. Conclusions

In our study, spanning 71,105 hospitalized patients, the pivotal role of procalcitonin
(PCT) and clinical prediction modeling in bacteremia diagnosis is underscored. Both in-
dividually and in tandem, these methods offer significant diagnostic accuracy. Elevated
PCT levels in a notable 60.3% of bacteremic patients highlight its diagnostic potential. Fur-
thermore, the combined strength of PCT and clinical models points to a nuanced, tailored
approach for patient selection in advanced diagnostic testing—epitomizing diagnostic
stewardship. While direct specimen testing brings its own set of challenges, our research
underscores the necessity for a more integrated diagnostic approach. As the landscape of
bacteremia diagnostics evolves, our findings set the stage for future research, emphasizing
the importance of refining and validating these tools in diverse clinical contexts.
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