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Abstract: In orthopedic surgeries, such as osteotomy and osteosynthesis, an intraoperative 3D
reconstruction of the bone would enable surgeons to quickly assess the fracture reduction procedure
with preoperative planning. Scanners equipped with such functionality are often more expensive
than a conventional C-arm fluoroscopy device. Moreover, a C-arm fluoroscopy device is commonly
available in many orthopedic facilities. Based on the widespread use of such equipment, this paper
proposes a method to reconstruct the 3D structure of bone with a conventional C-arm fluoroscopy
device. We focus on wrist bones as the target of reconstruction in this research as this will facilitate
a flexible imaging scheme. Planar markers are attached to the target object and are tracked in the
fluoroscopic image for C-arm pose estimation. The initial calibration of the device is conducted
using a checkerboard pattern. In general, reconstruction algorithms are sensitive to geometric
calibration errors. To assess the practicality of the method for reconstruction, a simulation study
demonstrating the effect of checkerboard thickness and spherical marker size on reconstruction
quality was conducted.

Keywords: three-dimensional data; tracking; computed tomography; fluoroscopy; preoperative plan;
distal radius fracture

1. Introduction

Radiographic imaging is a crucial technology in modern healthcare systems and
medical diagnostics. Interventional radiologists use minimally invasive procedures guided
by various modalities of medical imaging. Orthopedic surgeries, such as osteosynthesis and
osteotomies, also benefit from intra-operative X-ray imaging [1,2]. Computed tomography
(CT) scans prior to surgery are used to plan and simulate the fracture reduction process,
while intra-operative X-ray images are used as guidance for positioning implants or cutting
bones during surgery [3–7]. However, an apparent drawback with such an image-based
navigation system is the loss of depth perception due to the transmission nature of X-ray
images. To compensate for the loss of 3D information, a line of research focuses on
registering preoperative 3D models to the intraoperative X-ray images [8]. While this
serves as visual guidance during surgery, it would be beneficial to also have a registered
3D model of the current subject undergoing the surgery. This need could be fulfilled by
mobile cone beam CT (CBCT) devices which have become more common in recent years [9].
These devices have a motorized iso-centric arm that can capture motion trajectory with
high precision and reconstruct the volume inside the region of interest. However, many
C-arm devices that are currently in practical use do not have tomographic capabilities since
they are not designed for such use cases. Moreover, the initial cost of installing a mobile
CBCT device is too high for rural sites. Therefore, a simple and easy-to-setup system for
3D reconstruction using a conventional C-arm fluoroscopy device would be beneficial in
such cases.
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In the field of computer vision, 3D reconstruction from multi-view images of a scene
has been researched extensively [10,11]. In structure from motion [11], the problems of
camera calibration and pose estimation are solved by decomposing the fundamental matrix
obtained by point-to-point correspondences in multi-view images, which is followed by the
triangulation step for initial reconstruction. Unfortunately, these methods cannot be applied
to X-ray images since point correspondences cannot be established due to overlapping
structures. In the field of CT reconstruction, techniques such as FDK- (Feldkamp, Davis,
Kress) [12] and ART-based (Algebraic Reconstruction Technique) [13] methods are state-
of-the-art techniques for tomographic reconstruction. These techniques require accurate
geometry information beforehand. Therefore, accurate geometric calibration is required for
applying these techniques in devices that are not designed for the use of these techniques.
To circumvent the problem of accurate geometric calibration, some of the related works use
a data-driven approach for reconstruction. In [14–16], the authors reconstructed the shape
of a distal femur from multiple X-ray images using statistical shape models. These methods
first require a statistical shape model, which is obtained by applying a principal component
analysis to various CT models of similar structures. The obtained model is deformed so that
its simulated projection is consistent with the acquired real projection. In [17], the author
proposed a deep learning-based approach that uses a generative adversarial network to
reconstruct CT models from biplanar X-rays. On the other hand, other works have focused
either on C-arm calibration [18,19], reconstruction [20], or both given the initial geometry
estimates [21].

Closely related to our work, Abella et al. [22] proposed a low-cost solution for tomo-
graphic reconstruction using a 3D scanner mounted on the C-arm. They identified three
major issues that occur during tomographic reconstruction using a conventional C-arm
device. First, the acquisition trajectory may deviate from the circular path and the me-
chanical stress causes each projection to have different acquisition parameters (i.e., source
position, detector position, detector rotations). Second, these acquisition parameters are not
repeatable for consecutive acquisitions. Third, the problem of limited angle tomography
needs to be solved. To solve these issues, they used the calibration phantom developed
by Cho et al. [23] for the geometric calibration of the device. Furthermore, the geometric
errors originating from the non-repeatability of the C-arm trajectory were corrected using
the information from the 3D scanner. An algorithm incorporating surface information was
also introduced to account for the limited-angle tomography problem.

In this paper, an image-based framework for the tomographic reconstruction of wrist
bones is proposed. A simulation study to evaluate its practicality was conducted. The
proposed method assumes rotation of the target subject instead of the C-arm, which is
possible for wrist bones. This way, the internal parameters, such as detector-to-source
distance and detector rotations, remain constant between projections. For estimating the
internal parameters of the C-arm device, a single checkerboard-based calibration was used,
as demonstrated in [24]. A simple, easy-to-use, attachable calibration plane is proposed
to estimate the C-arm pose without relying on external sensors. An open-source library
“Tomographic Iterative GPU-based Reconstruction Toolbox” (TIGRE) [25] in MATLAB was
used for reconstructing the volume. Equations were derived to convert results from the
camera system to the tomography device system used in TIGRE.

2. Materials and Methods

Figure 1 shows the flow diagram of the proposed method. The C-arm calibration
step is required before the acquisition of the subject to estimate the internal parameters
such as the distance between the source to the detector and the piercing point (i.e., the
point of intersection of the detector plane and the ray originating from the source, which
is perpendicular to the detector). Pose estimation involves tracking the planar markers
and solving for extrinsic parameters in the camera setup. The camera parameters are then
converted into CBCT geometry for TIGRE and the simultaneous iterative reconstruction
technique (SIRT) algorithm is applied for 20 iterations to reconstruct the volume.
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Figure 1. Overview of the calibration and reconstruction pipeline. The C-arm is calibrated using
multiple captures (top left) of the calibration checkerboard to obtain intrinsic parameters (top-center).
A planar marker board is attached to the subject before X-ray acquisition (bottom left). Markers in
the acquired multi-view images are tracked for pose estimation (bottom center), followed by the
reconstruction algorithm (bottom right).

2.1. C-Arm Calibration

A pinhole camera model was assumed for the image formation process in a C-arm
device. A point in the device coordinate was projected into the detector plane according to
Equation (1).

x = KR[ I | − t]X (1)

where K is the intrinsic matrix, R is the orientation of the X-ray camera and t is its translation
vector, as seen from the world coordinate. The intrinsic matrix K was modeled as follows.

K =

 fx 0 cx
0 fy cy
0 0 1

 (2)

where fx and fy are the focal lengths in respective pixel units, and cx and cy are the pixel
coordinates of the principal point (i.e., piercing point). We did not model distortions for
the sake of simplicity, but they can be factored in easily using the polynomial distortion
models. We adopted the calibration method from [24]. The design of the checkerboard
pattern is shown in Figure 2. It was a 4 by 5 squares checkerboard containing 12 identifiable
feature points. The feature points were localized and identified in the multi-view projection
images of the checkerboard. Zhang’s camera calibration algorithm was applied to obtain
the intrinsic parameters.

2.2. Pose Estimation

The planar markers were designed with five spherical markers that formed a parallel-
ogram, as shown in Figure 3 (left). The reason for adopting such a pattern was two-fold.
First, the 10 mm gap between the vertices P1 and P3 in the vertical axis ensured that the
markers remained visible at the areas where the plane normal was close to perpendicular to
the camera view direction. Second, the introduction of marker P5 helped to identify the line
P1-P5-P2 in the projection image by using the fact that perspectivity preserves collinearity.

Marker tracking required localizing the marker points by applying the circular Hough
transform to the edge image. Then, for each permutation of the markers, the collinearity
condition was checked to identify the P1-P5-P2 line segment. After the identification of the
line segment, the markers were assigned according to their y-position in the image, i.e., the
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marker with the lowest y-value was assigned as P1. The remaining two markers were also
assigned according to their y-value.
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We continued with decomposing the homography matrix H to obtain the camera pose
for every view. An estimate of camera rotation and translation could be derived as follows:

H = [h1 h2 h3] (3)

r1 = λK−1h1 (4)

r2 = λK−1h2 (5)

r3 = r1 × r2 (6)

t = λK−1h3 (7)

λ =
1

||K−1h||
The rotation matrix was obtained by approximating the best rotation defined by matrix[

r1 r2 r3
]
. Further refinement of the external parameters was achieved by minimizing

the reprojection error. The obtained rotation matrix and translation vectors were defined
for the coordinate system shown in Figure 3 (right).

2.3. Reconstruction

The parameters estimated in the camera system needed to be converted to those
used in TIGRE. The parameters involved are summarized in Table 1. The conversion was
derived from the geometry observed in Figure 4. During pose estimation, projection images
with mean reprojection errors larger than a given threshold (outliner data) were excluded
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because they degrade the reconstruction image quality. For reconstruction of the volume,
the simultaneous iterative reconstruction technique (SIRT) in TIGRE was used with 20
iterations for all experiments.

RT =
[
x y z

]
(8)

t = −RT∗t (9)

d = (t·z)z− t (10)

DSO = ||t− d || (11)

DSD = fx ∗ α (12)

Rsource =
[
−z x y

]
(13)

where R is the camera orientation matrix, t is the translation vector, d is the image offset
vector, α is the size of the detector per pixel and Rsource is the rotation matrix for computing
Euler angles. The detector rotation and offsets are assumed to be zero in this conversion
equations, even if is present in actual system. However, it does not not affect the recon-
struction algorithm because the parameters obtained from the above calculation encodes
such information (i.e., equivalent to redefining the coordinate system such that detector
rotation and offsets became zero in each view independently).

Table 1. List of parameter names used in TIGRE along with their descriptions.

Parameter Name Description

DSD Distance between the X-ray source and detector plane
DSO Distance between the X-ray source and world origin

offOrigin Offset applied to the volume in world origin
offDetector Offset applied to the detector

angles The angle of X-ray source from world origin in ZYZ convention
nVoxel Number of voxels in the volume
dVoxel Size of one voxel in the world coordinate
sVoxel Total size occupied by the volume in the world coordinate

nDetector Number of pixels in the detector panel
sDetector The total size of the detector panel in the world coordinate
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3. Experiments and Results
3.1. Simulation Setup

A simulation environment was set up to investigate the effect of different calibration
board thicknesses and spherical marker sizes on image feature points as well as image
quality. TIGRE for MATLAB was used for simulating the X-ray generation, as well as



Diagnostics 2023, 13, 330 6 of 12

reconstruction algorithms. We used the internal parameters of the SIEMENS CIOS Select
tool for simulating the C-arm. The common configurations used for simulated X-ray
generation are shown in Table 2.

Table 2. Values of some common parameters used in the simulation.

Parameter Name Value

DSD 780 mm
DSO 390 mm

offOrigin (0, 0, 0)
offDetector (0, 0)

Angles 180 samples between 0 and 180 degrees
nDetector (1024 px, 1024 px)
sDetector 210 mm

Calibration Board
nVoxel [vx] (500, 500, 500)

dVoxel [mm/vx] (0.25, 0.25, 0.25)
sVoxel [mm] (100, 100, 100)

CT Volume for Simulated X-ray
nVoxel [vx] (604, 604, 644)

dVoxel [mm/vx] (0.25, 0.25, 0.25)
sVoxel [mm] (151, 151, 161)

Reconstruction Volume
nVoxel [vx] (300, 300, 300)

dVoxel [mm/vx] (0.5, 0.5, 0.5)
sVoxel [mm] (150, 150, 150)

A 3D model of the checkerboard with a resolution of 0.25 mm/vx and a size of 100 mm
in all three dimensions was built with Blender and converted into voxel data with the
interior filled with a constant value. Figure 5 shows the 3D model along with an example
of an X-ray image in a particular pose. A CT scan of the wrist phantom with a resolution of
0.25 mm/vx in all three dimensions and a size of 151 mm for width and depth, measuring
161 mm in height, was used for simulating X-rays. Figure 6 shows the volume rendering
of the CT model along with an example X-ray image at a 0-degree rotation. The planar
markers were attached to the posterior region of the phantom by editing the voxel values.
During pose estimation, the threshold value for rejecting outliers (i.e., projection images
and geometries) based on the reprojection error was set to 50 pixels. This threshold was
selected manually by inspecting the distribution of the reprojection error so that at least
80% of the original images were retained, while preventing sparse view-related artifacts
from dominating the reconstruction error. Evaluation of the reconstructed volume was
performed using the result of the SIRT reconstructed volume with ground truth acquisition
geometry for calibration board and marker size. Figure 7 shows the volume rendering of
the SIRT reconstructed volume with ground truth geometry with a 1 mm board size and
2 mm marker size.
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3.2. Effect of Board Thicknesses and Marker Sizes on Reconstructed Image Quality

The proposed method for calibration uses a checkerboard pattern to identify feature
points. However, in practice, radio-opaque lead plates used for black squares are quite thick.
This will create ambiguities in the detected feature points. An example of such ambiguities
is shown in Figure 8. For checkerboard patterns, the world feature points were in the corner
of the square, halfway through the board’s thickness. For spherical planar markers, the
world feature points were considered to be the centers of each sphere. However, due to
perspectivity, its projection in the image plane deviated from the detected center of the
ellipse. Due to these ambiguities in the image points, the resulting reconstruction quality
may degrade depending on the chosen sizes of these materials. Therefore, we evaluated
the proposed method with four calibration board sizes ranging from 1 mm to 5 mm in
thickness and five spherical marker sizes ranging from 2 mm to 6 mm in diameter, which
are the commonly available sizes. A 1 mm spherical marker was eliminated due to the
resolution of the X-ray simulating volume.

Table 3 shows the structural similarity index measure (SSIM) compared to ground
truth reconstruction for each case. The best case of 0.9441 was achieved with 3 mm board
thickness and a marker size of 2 mm. The worst case of 0.8982 was obtained with 5 mm
board thickness and a marker size of 6 mm. Detection errors for planar markers and the
feature points in the calibration board are shown in Figure 9. Although a total of 180
projection images were captured around a 180 degrees angle of rotation, projection images
where the planar markers were projected in a lateral view were prone to pose estimation
errors, as well as wrong marker identification. These outlier images were rejected using
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simple filtering of the reprojection error. Figure 10 shows the number of projection images
that were used (i.e., after the filtering) for reconstruction for each marker size and board
thickness. An example of the volume rendering and volume slices of the reconstruction
with a 3 mm thickness calibration board and 2 mm planar marker (best case) is shown in
Figure 11. A similar example with a 5 mm thickness calibration board and 6 mm planar
marker (worst case) is shown in Figure 12.
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Figure 8. Close-up image of the projection of the calibration checkerboard (left). Close-up image of
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circle is the detected image point.

Table 3. SSIM of the reconstructed volume with ground truth reconstructed volume for each configuration
pair. For each marker size, the board thickness that resulted in the best SSIM are marked in bold.

Board Thickness/Marker Size 2 mm 3 mm 4 mm 5 mm 6 mm

1 mm 0.9435 0.9205 0.9235 0.9120 0.9114
2 mm 0.9437 0.9206 0.9236 0.9122 0.9111
3 mm 0.9441 0.9206 0.9237 0.9125 0.9107
4 mm 0.9426 0.9225 0.9236 0.9116 0.9043
5 mm 0.9352 0.9218 0.9221 0.9107 0.8982
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4. Discussion

From Table 3, we can observe that the reconstructed image quality decreased as the
marker size increased. Although the image quality degraded when comparing reconstruc-
tion results of a sample with 1 mm board thickness with one with a 5 mm board thickness,
the effect was not as significant as those obtained when changing the marker size. This
suggests that the geometrical calibration of internal parameters obtained with checkerboard
calibration can be used for image reconstruction. As opposed to the calibration phantom
in [23], the checkerboard pattern was easier to prepare, and off-the-shelf software is readily
available for this kind of planar calibration.

On the other hand, the steady drop in the number of used images shown in Figure 10
was due to the larger detection error in larger marker sizes amplifying the reprojection
error, as can be observed from Figure 11, to above the threshold of 50 pixels for outlier
images. The effect of this variation in the number of images used can be observed in
the reconstructed image in Figures 11 and 12. The slice images in both cases had streak
artifacts that were a result of insufficient projection angles. The slice image in Figure 12,
however, contained metal artifacts resulting from a larger marker size as well. This suggests
that the size of the spherical marker in our proposed method was crucial in obtaining a good
reconstruction quality. From Table 3, it can be seen that approximately a 2% increase in SSIM
could be confirmed when compared to using a 3 mm marker size. Thus, it can be concluded
that the proposed method leads to better results when a 2 mm marker size is selected.

Since the proposed method cannot process projection images in which the projections
of the markers are close to being co-linear, there is an inherent limitation to the image
quality which can be seen in Figure 11, which shows the reconstructed image with the
configuration that led to the best SSIM. Additionally, our method assumes constant intrinsic
parameters throughout the acquisition. This limits its applicability to structures that cannot
be rotated easily such as pelvis.

Due to the recent advances in preoperative 3D programs for various procedures in
orthopedic surgery [3,26,27], it is necessary to establish a method for comparing 3D models
of a preoperative plan to 3D models during surgery. The method developed here has
the potential to facilitate the comparison of intraoperative 3D models with 3D images of
preoperative planning. In previous studies, the reduction accuracy of 3D preoperative
planning was moderate. This is because it is difficult to visualize the 3D model of the
reduction shape during surgery. Thus, this method will be useful in the clinical field with
comparisons to a preoperative 3D model. The advantage of this method is that there is no
need to install a new system in the operating room. Furthermore, the proposed method
does not require the installation of external devices, which makes it easier to adapt to many
existing systems.

In conclusion, this paper proposed an image-based reconstruction framework using
checkerboard calibration and rotation of the target subject with attached plane markers.
It was found that the image quality of the reconstruction depended heavily on the size
of the planar markers used. Smaller markers could be detected with low image point
error, resulting in an increased number of reliable projection images and geometries that
were used for reconstruction. The effect of calibration board thickness is not as signif-
icant as that of the planar marker size, but it should be kept below 4 mm for optimal
results. Further improvements can be achieved by installing another set of planar markers
attached perpendicular to the current one and by solving the camera pose estimation
problem with Perspective-n-Point [28], so that lateral views can also be incorporated into
the reconstruction pipeline. This is possible due to the cylindrical nature of wrist bones.
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