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Abstract: Over the last few years, brain tumor-related clinical cases have increased substantially,
particularly in adults, due to environmental and genetic factors. If they are unidentified in the early
stages, there is a risk of severe medical complications, including death. So, early diagnosis of brain
tumors plays a vital role in treatment planning and improving a patient’s condition. There are
different forms, properties, and treatments of brain tumors. Among them, manual identification and
classification of brain tumors are complex, time-demanding, and sensitive to error. Based on these
observations, we developed an automated methodology for detecting and classifying brain tumors
using the magnetic resonance (MR) imaging modality. The proposed work includes three phases:
pre-processing, classification, and segmentation. In the pre-processing, we started with the skull-
stripping process through morphological and thresholding operations to eliminate non-brain matters
such as skin, muscle, fat, and eyeballs. Then we employed image data augmentation to improve
the model accuracy by minimizing the overfitting. Later in the classification phase, we developed a
novel lightweight convolutional neural network (lightweight CNN) model to extract features from
skull-free augmented brain MR images and then classify them as normal and abnormal. Finally,
we obtained infected tumor regions from the brain MR images in the segmentation phase using a
fast-linking modified spiking cortical model (FL-MSCM). Based on this sequence of operations, our
framework achieved 99.58% classification accuracy and 95.7% of dice similarity coefficient (DSC).
The experimental results illustrate the efficiency of the proposed framework and its appreciable
performance compared to the existing techniques.

Keywords: brain tumors; convolutional neural networks; fast-linking; magnetic resonance imaging;
skull-stripping; spiking cortical model

1. Introduction

The brain plays a crucial role in every aspect of human activity but studying its
clinical elements is very challenging due to the complexity associated with its structure
and functionality. Behind many medical complications in the brain, tumors are observed to
be the main reason. Usually, it is created in or around the brain due to the unconstrained
development of irregular cells, which may spread to other parts [1]. Typically, brain tumors
are classified into primary and secondary (metastatic). Primary tumors begin in the brain,
while secondary brain tumors arise from other body regions such as lungs, breasts, kidneys,
skin, etc., and migrate to brain tissues through the bloodstream [2].

Further, primary brain tumors can be categorized as either cancerous (malignant) or
non-cancerous (benign). Non-cancerous tumors do not have any active cells; hence, they
can be wholly restrained and treated by a surgical process. On the other hand, cancerous
tumors have active cells proliferating and attacking other brain areas. These tumors cannot
be cured under regular medication but may be controlled by radiotherapy/chemotherapy.
The survival rate of victims of cancerous tumors is low compared to non-cancerous tumors,
so early brain tumor detection is crucial. In this process, imaging modalities such as
magnetic resonance (MR) imaging and computed tomography (CT) [3] play an essential
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role. MR imaging modality is preferred since it generates high-contrast images without
ionizing X-rays [4].

Researchers have recently focused on automated detection methodologies to detect
brain tumors from MR images. Among them, segmentation-based approaches are more
popular. The primary task of segmentation is to separate the affected and non-affected
regions of the tumor. In many scenarios, the tumor area is visually distinguishable. How-
ever, it is challenging to attain accurate segmentation due to tumor intensity, texture, size,
shape, and location variations. Many authors introduced automated methodologies to
identify tumors from MR images [5]. Artificial neural networks (ANN) and deep learning
approaches are used widely since they efficiently characterize complex tasks [6]. Motivated
by this, various methodologies have been developed in the recent past to detect and classify
brain MR images [7]. Among them, we discuss a few noted studies.

Kale et al. [8] suggested a diagnosis approach for brain diseases using local binary
patterns (LBP), steerable pyramid (SP), and back-propagation neural network (BPNN).
Singh et al. [9] proposed a hybrid technique based on discrete wavelet transform (DWT),
independent component analysis (ICA), and kernel support vector machine (k-SVM). Ba-
hadureet al. [10] introduced a computer-aided diagnosis system with the help of watershed,
fuzzy C-means (FCM), and Berkeley wavelet transform (BWT). Gokulalakshmi et al. [11]
implemented an enhanced classification technique using K-means clustering, DWT, and
support vector machine (SVM). Toğaçar et al. [12] designed a BrainMRNet architecture
based on hyper-column approaches and attention modules.

Neffati et al. [13] proposed a compulsive brain tumor identification system with the
help of DWT, kernel principal component analysis (KPCA), and SVM. Wang et al. [14]
introduced an automatic diagnosis approach for classifying brain tumors using stationary
wavelet entropy and energy features along with SVM. Arunkumar et al. [15] developed an
enhanced automated brain tumor detection system using K-means clustering and ANN.
Toğaçar et al. [16] presented a novel deep-learning approach with the help of recursive
feature elimination (RFE) and SVM. Chanu et al. [17] suggested a two-dimensional convo-
lutional neural network (2D-CNN) system based on data augmentation.

Lu et al. [18] utilized AlexNet with transfer learning to develop an automatic brain
tumor classification system. Vishnuvarthanan et al. [19] implemented an unsupervised
methodology for the segmentation of brain tumors using a self-organizing map (SOM)
and fuzzy K-means (FKM). Hasan et al. [20] proposed a computer-aided methodology
based on a modified gray-level co-occurrence matrix (MGLCM) and multi-layer perceptron
(MLP) neural network. Nagarathinam et al. [21] introduced an automated computer-aided
approach using genetic algorithm (GA) and adaptive neuro-fuzzy inference system (ANFIS)
methods. Ahmadi et al. [22] suggested a deep learning approach based on brain tumor
segmentation using a convolutional neural network (CNN) and robust principal component
analysis (RPCA). Toufiq et al. [23] suggested a hybrid feature extraction approach for
identifying brain tumors from MR images.

Ginni Garg et al. [24] proposed a hybrid ensemble model for classifying brain tumors
from MR images using stationary wavelet transform (SWT), GLCM, and a hybrid classifier.
Pitchai et al. [25] developed an MR-based brain tumor segmentation model using FKM and
ANN. Siyuan et al. [26] suggested an improved AlexNet and extreme learning machine
(ELM) followed by a chaotic bat optimization (CBM) framework for identifying abnormal
brain tumors from MR images. Mantripragada et al. [27] introduce a novel brain tumor
segmentation, and classification framework based on deep neural networks (DNN) and
adaptive fuzzy deformable fusion (AFDM) approaches. Amin et al. [28] employed a CNN
framework to detect and classify brain tumors. Arpit Kumar Sharma et al. [29] a modified
ResNet50 architecture along with an enhanced watershed (EWS) algorithm was presented to
differentiate abnormal from normal brain MR images. Sarang Sharma et al. [30] designed a
deep-learning framework for predicting MR-based brain tumors. Alsaif et al. [31] suggested
a novel brain tumor classification model based on CNN.

From Table 1, we summarize the issues encountered in the existing approaches.
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1. Traditional automatic detection approaches utilized conventional machine learning
algorithms, whose performance depends on the choice of appropriate features and
learning approaches.

2. Some classification methods employed wavelets for image analysis. However, they
fail to acquire directional information; the selection of subbands and mother wavelets
is also critical.

3. Some approaches use handcrafted features but are not robust to noise and exhibit
poor discrimination.

4. The authors implemented some traditional CNN frameworks such as pre-trained
CNN models with transfer learning to classify brain MR images in a few works.
However, they demand a large number of parameters and high computational time.

Table 1. Summary of the state-of-the-art-approaches.

Reference Methods to Be
Used Accuracy Pros Cons

Kale et al. [8] LBP and SP Accuracy = 96.17%
Significantly extract the

directional details of
abnormal tissues.

Performance of the
model depends upon

the selection of
orientation bands.

Singh et al. [9] DWT and ICA Accuracy = 98.87%

Relatively obtain the
spatial information that

is useful in the
classification of brain MR

images.

The selection of an
appropriate mother
wavelet is a major

challenge.

Bahadure et al. [10] FCM and BWT DSC = 82% In expensive to compute
and manipulate.

Relatively required
large number of
coefficients for

approximating the
smooth functions.

Gokulalakshmi et al.
[11] DWT and GLCM Accuracy = 92.76% Low-processing time and

easy to implement.
Selection of

displacement vector.

Toğaçar et al. [12] BrainMRNet Accuracy = 96.05% Substantially abstract the
features.

Working on
low-resolution images.

Neffati et al. [13] DWT and PCA Accuracy = 97.02% Reduce overfitting and
improve visualization.

Loose the some
significant information.

Wang et al. [14] SWT and Entropy Accuracy = 96.6% Significantly highlighting
the image edge features.

Irrelevant features
might be extracted due

to wavelet aliasing.

Arunkumar et al. [15] K-means clustering
and ANN Accuracy = 94.07% Woks very well on

limited data.
Selection of K-value is

difficult.

Toğaçar et al. [16]
CNN and

hyper-column
feature selection

Accuracy = 96.77% Relatively retain the local
discriminative features.

High computational
time.

Chanu et al. [17] CNN Accuracy = 97.14 % Less computational time.
Low performance on

normal brain MR
images

Lu et al. [18] AlexNet Accuracy = 95.71 %
Perform well on

abnormal brain MR
images.

Large number of
parameters to be need

for training.

Vishnuvarthanan et al.
[19] SOM-FKM DSC = 47% Faster convergence with

significant accuracy.

Requires necessary and
sufficient information

for developing
significant clusters.

Hasan et al. [20] Modified GLCM Accuracy = 97.8 %

Achieved remarkable
accuracy and also

independent on atlas
registration.

Large memory
requirements and
computationally

expensive.
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Table 1. Cont.

Reference Methods to Be
Used Accuracy Pros Cons

Nagarathinam et al.
[21]

GLCM and
Morphological

operations
DSC = 92%

Does not required any
seed points for

identification of brain
MR tumor Images.

Low classification
accuracy on abnormal

brain MR images.

Ahmadi et al. [22] CNN DSC = 91% Faster segmentation.
Heavily depends upon

the network design
parameters.

Toufiq et al. [23] DWT, PCA, GLCM Accuracy = 98 % Minimizing the
overfitting problems.

Loss of essential details
due to the feature
reduction process.

Ginni Garg et al. [24]
SWT, PCA, and

Hybrid Ensemble
classifier

Accuracy = 97.305%
Relatively improve the
robustness of derived

texture features.
High time complexity.

Pitchai et al. [25] GLCM, FKM and
ANN Accuracy = 94% Does not effect by over

segmentation.

The accuracy of the
ANN classifier entirely
depends on the number

of hidden neurons
(HN).

Siyuan et al. [26] Improved AlexNet,
ELM and CBM Accuracy = 98 % Minimizing the

overfitting problems
High computational

complexity.
Mantripragada et al.

[27] AFDM and DNN Accuracy = 96.22% High convergence rate. Low training speed and
high complexity.

Amin et al. [28]

CNN and
Nonlinear Lévy
Chaotic Moth

Flame Optimizer
(NLCMFO)

Accuracy = 97.4% Effective
hyper-parameter tuning.

Difficulty in
deterinming the ideal
control parameters in

NLCMFO.

Sharma et al. [29] ResNet 50, EWS Accuracy = 92 %
Significantly locate the
boundary pixels of the

tumor.

High computational
time and heavily
depends on batch

normalization layers.

Sharma et al. [30] VGG 19 Accuracy = 98.04% Relatively working on a
more extensive database.

Only the axial dataset
of brain tumors was

considered.

Haitham et al. [31] Cascaded CNN DSC = 85.3%

Relatively achieved good
performance in a limited

brain MR image
database.

Required more time to
train the parameters.

To address the abovementioned problems, we suggested a new approach for identify-
ing and classifying brain MR images using a fast-linking modified spiking cortical model
(FL-MSCM) and lightweight CNN.

Significant Contributions

The significant contributions of this work are summarized as follows:

1. Skull-stripping is performed to enhance the robustness of the segmentation process
by eliminating extra-meningeal mater (or dura mater) based on thresholding and
morphological operations.

2. Image data augmentation is implemented to enhance the sufficiency and diversity of
the training database by geometric transformation operators. By this, we significantly
reduce the overfitting issues encountered during training progress.

3. We proposed a novel lightweight CNN architecture to detect high-level features from
brain MR images. We can effectively minimize the parameters, including trainable
and non-trainable, compared to the existing CNN models and automatically extract
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the significant features. Due to this, we limit the influence of human beings in the
analysis of brain MR tumor images, which is the considerable benefit of the suggested
CNN model.

4. Analyze the impact of various optimization algorithms (Stochastic gradient descent
with moment (SGDM), Adam, Adagrad, AdaMax, Adadelta, Nadam, and RMSProp)
during training of the CNN model with the help of K-fold cross-validation (KFC). It is
the fundamental difference between the existing and proposed models.

5. The FL-MSCM is employed to separate the foreground (affected regions) and back-
ground (non-affected areas) from brain MR images, which can minimize issues of
other traditional segmentation algorithms, such as the impact of noise, spurious blobs,
and other imaging artifacts, by making each region as uniform as possible. Due to
this, we improve the segmentation accuracy, which is a significant advantage of the
presented FL-SCM technique.

The remaining part of the work is organized as follows: Section 2 represents the
background of the CNN model. Section 3 illustrates the proposed technique and metrics to
evaluate the performance of the models. Section 4 analyzes the outcomes and reasons be-
hind the proposed method’s success and compares it with other state-of-the-art approaches.
Section 5 discusses the conclusion of the present work.

2. Preliminaries

In this section, we discuss the background of deep learning and describe various
layers used in the implementation of the proposed model in detail. Deep learning (DL)
architectures can learn complex tasks by hierarchically constructing feature maps. CNN-
based methods are more popular among the available DL models and have the following
layers: convolutional, pooling, activation, batch normalization, fully connected (FC), and
softmax, respectively.

2.1. Convolutional Layer

The convolutional layer plays a crucial role in classification. Typically, it produces
many feature maps, F by convolving the input image with a set of filters in a sliding
window manner as follows:

F(u, v) = (B ~ C)(u, v) = ∑
m

∑
n

B(u, v)C(u−m, v− n), (1)

where ~ represents the convolution operator, B is the segmented image, C denotes the filter
kernel, u and v are the indices of the generated feature map.

2.2. Batch Normalization Layer

It is also termed the batch norm and is mainly used to enhance the stability of a
network by normalizing the features obtained from a convolutional layer, or FC layer.
Typically, it lies between the convolutional and activation layer. The main advantages of
this layer are:

1. Improving the training speed of the network.
2. Minimizing the internal covariance shift [32].
3. Reducing overfitting since it has slight regularization.

The entire process of the batch norm is described in Algorithm 1.
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Algorithm 1. Batch normalization

Input: Values of F over a mini-batch: b = {F1, F2, . . . , FK}.
Parameters to be learned: γ, ξ.

µb = 1
K

K
∑

j=1
Fj, (2)

σ2
b = 1

K

K
∑

j=1

(
Fj − µb

)2
, (3)

F̂j =
Fj−µb√

σ2
b +ε

, (4)

bn(Fj) = γF̂j + ξ, (5)
where γ represents scale; ξ illustrates shift; K is the number of feature inputs; µ and σ2 are the
mean and variance across the batch, b; ε is a constant, which is used to enhance the stability when
σ2

b is too small.

Output: bn

(
Fj

)
2.3. Activation Functions

Usually, activation functions are incorporated after the convolutional layer, establish-
ing non-linearity in each neuron’s output. Due to this, the network will be able to learn
many complex tasks. In this work, we utilized the softplus activation function, which is a
smoothed version of rectified linear unit (ReLU) as shown in Figure 1. Mathematically the
softplus function is defined as

y = log(1 + ex). (6)

Diagnostics 2023, 13, x FOR PEER REVIEW 6 of 22 
 

 

Typically, it lies between the convolutional and activation layer. The main advantages of 
this layer are: 
1. Improving the training speed of the network. 
2. Minimizing the internal covariance shift [32]. 
3. Reducing overfitting since it has slight regularization. 

The entire process of the batch norm is described in Algorithm 1. 

Algorithm 1. Batch normalization 
Input: Values of F over a mini-batch: { }1 2, , , Kb F F F= … . 
 Parameters to be learned: ,γ ξ . 

1

1 ,
K

b j
j

F
K

μ
=

= 
        (2) 

( )22

1

1 ,
K

b j b
j

F
K

σ μ
=

= −
      (3) 


2

,j b
j

b

F
F

μ

σ

−
=

+         (4) 
( ) ,n j jb F Fγ ξ= +        (5) 

where γ  represents scale; ξ  illustrates shift; K  is the number of feature inputs; μ  

and 2σ  are the mean and variance across the batch, b ;  is a constant, which is used 
to enhance the stability when 2

bσ  is too small. 

Output: ( )n jb F  

2.3. Activation Functions 
Usually, activation functions are incorporated after the convolutional layer, estab-

lishing non-linearity in each neuron’s output. Due to this, the network will be able to learn 
many complex tasks. In this work, we utilized the softplus activation function, which is a 
smoothed version of rectified linear unit (ReLU) as shown in Figure 1. Mathematically the 
softplus function is defined as 

 
Figure 1. Softplus activation function. Figure 1. Softplus activation function.

2.4. Pooling Layer

The main goal of this layer is to scale down the spatial size of feature maps obtained
from the preceding layers, minimizing the number of parameters to be learned and reducing
computational time. Average pooling and max-pooling are the most frequently used
approaches [33]. In our work, we utilized average and global average pooling (GAP), which
is achieved by estimating the average value from each/entire region of the feature map, as
shown in Figures 2 and 3. Here, the main objective of the GAP is to yield one feature map
for each corresponding classification task category, which avoids the overfitting problem.
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2.5. Softmax

Typically, the softmax is employed at the end of the neural network to transform the
features into class probabilities. The softmax yields a value for each class based on the
computation of probabilities given by

P(y)i =
e f Twi

M
∑

j=1
e f Twj

, i = 1, 2, 3, . . . , F (7)

where f is the feature vector; T indicates the transpose operator; w illustrates the weight
vector; P is the predicted probability of i-th class and finally, M represents the number of
classes. Here, we have chosen M as 2 since we perform binary classification.

3. Materials and Methods

The proposed system for identifying and classifying brain MR images is represented
in Figure 4, and it includes the collection of the database, skull-stripping, image data
augmentation, feature extraction and classification by CNN model, and tumor detection
using FL-MSCM.
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3.1. Database

To measure the effectiveness of the presented framework, we collected 60 normal
and 125 abnormal T2-weighted brain MR images (glioma, metastatic adenocarcinoma,
meningioma, sarcoma, and Alzheimer’s diseases) from a publicly available data source
such as Harvard Medical School [34]. However, we cannot develop an effective diagnosis
model based on this small sample size. Therefore, further, we generated augmented
images with the help of rotation, translation, reflection, shearing, and scaling geometric
transformation operations. Before implementing this step, we performed a skull-stripping
process to improve the detection accuracy of the model.

3.2. Skull-Stripping

Skull-stripping is a significant preliminary stage in the analysis of biomedical images,
which helps improve the effectiveness of brain tumor segmentation during the diagnosis of
patients [35]. The main objective of this approach is to extract brain tissues by eliminating
non-brain matters such as fat, skin, skull, etc. There have been numerous approaches [36];
thresholding and morphology-based procedures are more popular among them. Inspired
by this, we proposed a combination of thresholding and morphological operations to
achieve better skull-stripping.

1. Initially, we separate the image, I into two regions R1 and R2 over an intensity-level
of [0, 1, 2, . . . , t− 1], and [t, . . . , L]. Here, L is the number of intensity levels, usually
an integer power of 2.

2. Obtain the binary image, B by setting the optimal thresholding value, Topt which is
estimated by the following equations

H =

(
(m1 −m2)

2

s2
1 + s2

2

)
, (8)

T =
H + min(I)

2
, (9)

Topt =
T

255
, (10)

where m1, m2 and s2
1, s2

2 represents the mean and variance of the regions over R1, and
R2; T define the thresholding.

3. Construct a disk-shaped structuring element, Sd with a required radius.
4. Eliminate the small peak objects from B using a simple area opening operation and

then fill the regions with an image filling operation.
5. Employ the erosion operation on the outcome of step 3 with the defined Sd. Using

this, we can eliminate small objects which appear in the binary image B.
6. Finally, the binary image obtained in step 5 is superimposed on the original image, I

and replaces the non-binary region with zeros. With this process, the skull-free brain
MR image is obtained, which improves the segmentation accuracy.

3.3. Image Data Augmentation

Deep learning heavily depends upon the massive amount of data to prevent overfitting.
Overfitting is the phenomenon that occurs when a model learns a function with huge
variance, which results in high performance on the training database, but fails to obtain
high accuracy on the testing database. Hence, to mitigate this problem, we need to increase
the number of samples in the given database. To meet this criterion, in this work, we
employed data augmentation on skull-stripped images using geometric transformation
techniques such as rotation, scaling, translation, and shearing along x- and y-directions,
and reflection. Table 2 illustrates the configurations of the suggested augmented operators.
We finally attained 540 normal and 1125 abnormal brain MR images with these operators.
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After that, we deployed the lightweight CNN model onto augmented images to predict the
abnormality of brain MR images.

Table 2. Parameter settings of the proposed augmentation operators.

Augmentation Operator Value

Rotation Randomly from −30◦ to 30◦

Translation Translate along X (horizontal) and Y (vertical) directions with a
range of [−10,10]

Reflection Reflect randomly along X and Y-direction
Scale Uniform scaling with a range of [0.5 to 4]
Shear Shearing along vertical and horizontal with a range of [0◦ to 30◦]

3.4. The Suggested Lightweight CNN Architecture

In the literature, various conventional CNN frameworks [18,26,29,30] were discussed
to identify the abnormality of brain MR images. However, they demand a large number
of parameters to yield better accuracy, as results increase the computational complexity.
Hence, we proposed a lightweight CNN architecture. With the help of our model, we
can minimize the number of learning parameters and reduce the training speed without
compromising the classification performance. It is the significant difference between the
conventional and lightweight CNN models. The architecture of the presented CNN model
is illustrated in Figure 5. The fundamental building block of our model is ConvNet, and it
includes a convolutional layer, softplus activation function, and batch norm. The structure
of the ConvNet is illustrated on the left side of Figure 5.

The proposed CNN model has four blocks, denoted by Blocks 1, 2, 3, and 4. The
first block has only one ConvNet module. But the rest of the blocks have three ConvNet
modules followed by a 2 × 2 average pooling with the stride of 2 and an adder operator to
add the feature map values by point-to-point except the first block. The configurations of
ConvNet in each block are as follows:

1. In the first block, the ConvNet module has 32 filters with a 5 × 5 kernel size, and the
stride is 2. Here, the stride of 2 for the convolutional filter minimizes the input’s size to
half, resulting in reduced computational complexity. Usually, the initial convolutional
layers extract edge features; therefore, the stride of 2 will not significantly impact the
model’s accuracy at initial convolutional layers.

2. Block 2 has three ConvNets, and they have 48 filters with a kernel size of 3 × 3, 3 × 3,
and 1 × 1, and the strides of 2, 1, and 1, respectively. Similarly, blocks 3 and 4 contain
three ConvNets with 64 and 128 filters. Each filter has a size of 3 × 3, 3 × 3, and 1 × 1,
with a stride of 1. Here, the 1 × 1 convolutional filter is mainly used to minimize the
computational requirements, i.e., reduce the dimensionality of the feature map. Due
to that, the proposed CNN model required significantly fewer learnable parameters
to train the model, as illustrated in Table 3. From this table, we observed that the
total number of parameters is nearly 0.35 million. This number is much less than
the other traditional CNN models discussed in the literature such as AlexNet [18,26],
ResNet-50 [29], VGG-19 [30], etc. Hence, we called as a lightweight CNN.

3. In each ConvNet, we used a batch norm layer to improve the training speed and
minimize overfitting.

At the end of block 4, we incorporated one GAP layer, a dense layer, and a softmax
layer having two classes in sequence. Here, the GAP is used to compress the feature map by
taking an average of each incoming feature map. After implementing the proposed CNN
model, the resultant outcomes fed to the segmentation phase for identifying the infected
area of abnormal brain MR images.
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Table 3. Configurations of the suggested CNN model.

Block Layers and Specifications Size of the
Activations Parameters

- Input image 224 × 224 × 3 0

- 5 × 5 Convolution with 32 filters 110 × 110 × 32 2432
Batch norm 110 × 110 × 32 128
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Table 3. Cont.

Block Layers and Specifications Size of the
Activations Parameters

1

3 × 3 Convolution with 48 filters 54 × 54 × 48 13,872
Batch norm 54 × 54 × 48 192

3 × 3 Convolution with 48 filters 52 × 52 × 48 20,784
Batch Norm 52 × 52 × 48 192

1 × 1 Convolution with 48 filters 52 × 52 × 48 2352
Batch Norm 52 × 52 × 48 192

2 × 2 Average pooling with stride 2 26 × 26 × 48 0

2

3 × 3 Convolution with 64 filters 24 × 24 × 64 27,712
Batch Norm 24 × 24 × 64 256

3 × 3 Convolution with 64 filters 22 × 22 × 64 36,928
Batch Norm 22 × 22 × 64 256

1 × 1 Convolution with 64 filters 22 × 22 × 64 4160
Batch Norm 22 × 22 × 64 256

2 × 2 Average pooling with stride 2 11 × 11 × 64 0

3

3 × 3 Convolution with 128 filters 9 × 9 × 128 73,856
Batch Norm 9 × 9 × 128 512

3 × 3 Convolution with 128 filters 7 × 7 × 128 147,584
Batch Norm 7 × 7 × 128 512

1 × 1 Convolution with 128 filters 7 × 7 × 128 16,512
Batch Norm 7 × 7 × 128 512

2 × 2 Average pooling with stride 2 3 × 3 × 128 0
Global average pooling - 0
Fully connected layer - 258
Trainable parameters 347,954

Non- trainable parameters 1504
Total parameters 349,458

3.5. Segmentation

The main objective of segmentation is to improve diagnosis by automatically iden-
tifying suspicious patterns. However, it is a challenging task due to the artifacts, soft
tissue boundaries, irregular shapes of brain tissues, etc. To address this, we developed a
new brain tumor segmentation methodology termed fast-linking modified spiking cortical
model (FL-MSCM), motivated by the work in [37].

3.5.1. Modified Spiking Cortical Model (MSCM)

The spiking cortical model (SCM) [38] is derived from Eckhorn’s visual cortex model [39]
and is developed especially for image processing applications such as segmentation, fusion,
texture retrieval, etc. The functional flow graph of the SCM is illustrated in Figure 6, and it
consists of a receptive field, a modulation field, and a pulse generator. In the receptive field,
each (i, j)-th neuron has a feeding input Si,j and linking input Li,j. In the modulation area,
the membrane potential (internal activity), Ui,j of the neuron is obtained by multiplying Si,j
with Li,j. Finally, the neuron fires and provides a pulse output, Yi,j when Ui,j greater than
threshold Ei,j. The equivalent mathematical expressions for this procedure are given below:

Li,j(n) = mL∑
k,l

Wi,j,k,lYk,l(n− 1), (11)

Ui,j(n) = f Ui,j(n− 1) + Si,j
(
1 + βLi,j(n)

)
, (12)

Yi,j(n) =

{
1 Ui,j(n) > Ei,j(n)
0 else

, (13)

Ei,j(n) = gEi,j(n− 1) + h×Yi,j(n), (14)
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where (k, l) denotes the positions of neighboring neurons, n is the number of iterations,
Wi,j,k,l , and mL represent the weight matrix and magnitude scaling factor of linking field,
respectively, β is the linking strength, f is decay constant which always lies between 0 and
1. In our work, S is the input image and Si,j is the intensity value at (i, j) pixel location.
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In the conventional SCM model [38], to estimate E, an exponential decay function g
is used, which results in slow computation. To speed up the process, we employed the
MSCM approach with a linear decay mechanism to obtain the E value as follows

Ei,j(n) = Ei,j(n− 1)− ∆ + h×Yi,j(n), (15)

where h is the threshold magnitude component and ∆ ensures that the entire neuron
threshold decays linearly.

From Equations (11)–(14), we note that the proposed approach has only one con-
volution term and two leaky integrators. It is the significant advantage of MSCM over
pulse-coupled neural networks [40].

3.5.2. Parameter Settings of MSCM

In the implementation of MSCM, the parameters are initialized as follows:

1. Firstly, the output, Y and internal activity, U are initialized as ‘zero’.
2. Threshold, Ei,j(n) = 1.
3. Decay constant, f = 0.2.
4. Magnitude scaling factor, mL = 1.
5. Threshold decay, ∆ = 0.02.
6. Due to the position invariant nature W can be determined by a 7 × 7 Gaussian filter

with standard deviation ‘1′, which is utilized to estimate the precision level of the
image pixel.

7. The threshold magnitude component, h is employed to ensure that each neuron will
not fire more than once and is estimated using Equation (16).

h =
max(S)−min(S)

1− f
+ max(S)

(
1 + β∑

k,l
Wk,l

)
, (16)

where the linking strength, β is obtained by the following expression:

β =
1

1 + e−G , (17)
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where G =
√

G2
x + G2

y and Gx, Gy are the central difference gradient of S along x-
direction and y- direction.

8. The maximum number of iterations N can be determined as follows:

N =

(
max(S)− TS

∆
+ 1
)

, (18)

TS =
TG

1− f
, (19)

where TG is the gray-level thresholding of S, estimated from Otsu’s approach [41].
Here, the primary objective of thresholding is to calculate the number of iterations.
For better segmentation, we apply the fast-linking algorithm to MSCM.

3.5.3. Fast-Linking

Here, compared to normal linking [42], the neurons with similar stimuli respond
quickly and synchronously. It mainly includes two loops:

1. Internal loop: Here, U and Y are repeated until Y does not vary.
2. External loop: Here, the function E is iterated.

The above process is depicted in Algorithm 2, and the corresponding outputs of
FL-MSCM are shown in Figure 7i–l. This figure shows that the proposed segmentation
approach significantly separated the tumor and non-tumor regions from skull-free brain
MR images.

Algorithm 2. The fast-linking approach.

n = 0
while n ≤ N do

n = n + 1
Update E by Equation (14)
repeat

Ŷ = Y,
Update L, U and Y by Equations (11)–(13),

until Ŷ == Y
end while

3.6. Performance Metrics

The performance of the proposed model is evaluated using various well-known
metrics such as true positive rate (TPR), true negative rate (TNR), positive predictive value
(PPV), F-score, accuracy, and the area under the curve (AUC) [43]. TPR estimates the
percentage of accurately identified abnormal brain MR images, while TNR measures the
percentage of precisely recognized normal brain MR images. PPV calculates the fraction of
correctly identified brain MR images flagged as abnormal. F-score is the weighted average
or harmonic mean of PPV and TPR. AUC is an effective way of quantifying the overall
performance of the test. Accuracy represents the percentage of correctly classified brain
MR images, including both normal and abnormal, over the total number of images. The
mathematical interpretations of all these parameters are described as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (20)

TPR =
TP

TP + FN
, (21)

TNR =
TN

TN + FP
, (22)
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PPV =
TP

TP + FP
, (23)

F− Score = 2
(

PPV× TPR
PPV + TPR

)
, (24)

DSC =
2× |S∩ SG|
|S|+ |SG|

, (25)

AUC =
TPR + TNP

2
, (26)

where S = segmented image; SG = ground truth; TP = true positive; FN = false negative;
FP = false positive and TN = true negative.
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4. Results and Discussion

In this section, we present experimental outcomes to demonstrate the performance
of the proposed methodology. To assess the efficiency of our model, we conduct a wide
range of experiments using K-FCV. Typically, it is a simple and effective method compared
to other cross-validation approaches [44] and is mainly used to reduce overfitting. The
selection of the K-value is a significant aspect of the classification problems. A small value
of K will result in high bias, low variance, and an underfitting model. Similarly, a high
value of K yields low bias, high variance, and an overfitting model. Therefore, we have
chosen a moderate value for K as five to avoid this ambiguity.
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4.1. Experimental Outcomes

This study implemented an efficient framework to identify and classify brain MR
images using lightweight CNN and FL-MSCM. Primarily, we extracted brain cells from
MR images to improve the accuracy of diagnosis by removing the non-brain matter us-
ing mathematical morphology and thresholding operations. Then, we employed data
augmentation to enhance the model’s generalization ability. Afterward, we employed
CNN model to differentiate the brain MR images as normal and abnormal. Finally, we
separated the infected and non-infected tumor regions from abnormal samples using the
FL-MSCM-based image segmentation framework. All these experiments were carried out
on Intel (R) Core (TM) i3-5005U CPU @ 2 GHz using MATLAB 2020 and Google Colab. For
a better understanding, the outcomes of the proposed methodology are separated into two
phases. The first phase engages the classification results; the second phase describes the
segmentation results.

4.1.1. Classification Analysis

To classify brain MR images, we applied a CNN model to the skull-free augmented
images. Typically, our architecture automatically tries to attain the relevant features using
a series of hidden layers and learns using the back-propagation approach. During the
training process, we used the cross-entropy loss function. Here, to train the model, we
consider the batch size of 64 and the number of epochs of 30. In addition to that, stochastic
gradient descent with momentum (SGDM) [45], Adam [46], AdaMax [46], Adagrad [47],
Adadelta [48], RMSProp [49], and Nadam [50] optimizers were taken into account for
minimizing the loss. Table 4 represents the parameters to be considered for optimization.

Table 4. Parameter settings of optimizer.

Optimizer Parameters

SGDM α = 0.001, momentum = 0.9
Adam α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 10×10−7

Adamax α = 0.001, β1 = 0.9, β2 =0.999, and ε = 10×10−7

Adagrad α = 0.001 and ε = 10×10−7

Adadelta α = 0.001, ε = 10 × 10−7 and rho = 0.95
RMSprop α = 0.001, ε = 10×10−7 and rho = 0.9
Nadam α = 0.001, β1 = 0.9, β2 =0.999, and ε = 10×10−7

Note: α represents learning rate; β1, β2 and ‘rho’ are the decay factors; ε is the constant for numerical stability and
usually taken smaller value.

The performance of the proposed approach on various optimization techniques using
5-FCV is presented in Tables 5–11. From the representations, we identified that Adadelta
yields poor results among all other optimizers (see Table 9), especially in predicting normal
brain MR images because the learning rate will become very low in the late training period.
Similarly, we noted that Adam, AdaMax, and Nadam optimizers performed significantly
better than others, with more than 99% accuracy on average. However, Adam optimization
effectively minimizes the loss function since it slows down when converging to the local
minima and minimizes the high variance. Hence, it provides better results on the suggested
lightweight CNN model with 99.45% TPR, 99.80% TNR, 99.91% PPV, 99.68% F-score, 99.66%
AUC, and 99.58% accuracy (see Table 6).

The suggested methodology is compared with other well-received techniques, as
illustrated in Table 12. From this, we note that the proposed diagnosis approach pro-
vides better results on the given benchmark dataset than the traditional CNN-based
approaches [12,16–18,25,27–30]) and other machine learning frameworks. The significant
advantages of the proposed method are:

1. Fewer parameters to train the model, approximately 0.35 million.
2. Minimize the overfitting problems due to the initialization of weights in the layer.
3. Significantly achieved high performance due to image data augmentation.
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4. Low computational time.
5. Extraction of complex features without human intervention.

Table 5. Classification performance of the proposed model on SGDM optimizer.

5-FCV
Performance Metrics (%)

TPR TNR PPV F-Score AUC Accuracy

1st Fold 100 99.13 99.54 99.77 99.56 99.7
2nd Fold 99.11 98.15 99.11 99.11 98.63 98.8
3rd Fold 100 95.57 97.78 98.87 97.78 98.5
4th Fold 97.85 99 99.56 98.67 98.42 98.2
5th Fold 99.56 96.15 98.27 98.91 97.85 98.5

Mean ± SD 99.3 ± 0.4 97.6 ± 0.73 98.85 ± 0.35 99.06 ± 0.19 98.45 ± 0.32 98.74 ± 0.52
Note: SD = for standard deviation.

Table 6. Classification performance of the proposed model on Adam optimizer.

5-FCV
Performance Metrics (%)

TPR TNR PPV F-Score AUC Accuracy

1st Fold 100 100 100 100 100 100
2nd Fold 100 100 100 100 100 100
3rd Fold 97.7 100 100 98.84 98.9 98.5
4th Fold 100 100 100 100 100 100
5th Fold 99.57 98.98 99.57 99.57 99.4 99.4

Mean ± SD 99.45 ± 0.44 99.80 ± 0.2 99.91 ± 0.08 99.68 ± 0.36 99.66 ± 0.22 99.58 ± 0.29
Note: SD = for standard deviation.

Table 7. Classification performance of the proposed model on Adamax optimizer.

5-FCV
Performance Metrics (%)

TPR TNR PPV F-Score AUC Accuracy

1st Fold 98.68 100 100 99.33 99.34 99.1
2nd Fold 98.58 100 100 99.28 99.3 99.1
3rd Fold 97.4 100 100 98.68 98.7 98.2
4th Fold 99.56 99.04 99.56 99.56 99.3 99.4
5th Fold 100 100 100 100 100 100

Mean ± SD 98.84 ± 0.45 99.80 ± 0.19 99.91 ± 0.08 99.37 ± 0.29 99.33 ± 0.21 99.16 ± 0.29
Note: SD = for standard deviation.

Table 8. Classification performance of the proposed model on Nadam optimizer.

5-FCV
Performance Metrics (%)

TPR TNR PPV F-Score AUC Accuracy

1st Fold 100 100 100 100 100 100
2nd Fold 99.56 100 100 99.78 99.8 99.7
3rd Fold 100 89.52 95.4 97.64 97.7 96.7
4th Fold 100 100 100 100 100 100
5th Fold 99.56 100 100 99.78 99.8 99.7

Mean ± SD 99.82 ± 0.11 97.90 ± 2.1 99.08 ± 0.92 99.44 ± 0.45 99.46 ± 0.44 99.22 ± 0.63
Note: SD = for standard deviation.

Table 9. Classification performance of the proposed model on Adadelta optimizer.

5-FCV
Performance Metrics (%)

TPR TNR PPV F-Score AUC Accuracy

1st Fold 89.57 83.60 90.43 89.99 86.6 87.38
2nd Fold 96.44 79.63 90.79 93.53 88.04 90.99
3rd Fold 99.54 80.35 90.90 95.02 89.94 93.01
4th Fold 96.10 81.37 92.12 94.07 88.74 91.6
5th Fold 99.58 58.33 85.51 92.01 78.95 87.68

Mean ± SD 96.25 ± 1.82 76.66 ± 4.63 89.95 ± 1.14 92.92 ± 0.88 86.45 ± 1.95 90.13 ± 1.1
Note: SD = for standard deviation.
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Table 10. Classification performance of the proposed model on RMSProp optimizer.

5-FCV
Performance Metrics (%)

TPR TNR PPV F-Score AUC Accuracy

1st Fold 100 100 100 100 100 100
2nd Fold 98.68 100 100 99.33 99.34 99.01
3rd Fold 87.66 99.06 99.5 93.20 93.36 91.3
4th Fold 100 80.33 89.78 94.61 90.2 92.8
5th Fold 100 100 100 100 100 100

Mean ± SD 97.268 ± 2.41 95.88 ± 3.89 97.85 ± 2.02 97.43 ± 1.46 96.58 ± 2.02 96.62 ± 1.89
Note: SD = for standard deviation.

Table 11. Classification performance of the proposed model on Adagrad optimizer.

5-FCV
Performance Metrics (%)

TPR TNR PPV F-Score AUC Accuracy

1st Fold 98.16 100 100 99.07 99.08 98.8
2nd Fold 97.8 95.24 97.8 97.8 96.52 96.99
3rd Fold 99.54 97.34 98.65 99.09 98.44 98.8
4th Fold 100 75.96 90.16 94.82 87.98 92.5
5th Fold 97.83 95.14 97.83 97.83 96.48 96.99

Mean ± SD 98.67 ± 0.46 92.74 ± 4.28 96.88 ± 1.73 96.82 ± 0.77 97.72 ± 1.99 96.82 ± 1.15
Note: SD = for standard deviation.

Table 12. Classification performance of the suggested method and existing works.

Methodology
Number of

Images
Data Augmentation

(Yes/No)
Parameters
(Millions)

Metrics (%)

TPR TNR Accuracy

MGLCM + MLP [20] 165 No - 98.1 97.6 97.8
SW Entropy + RBF-SVM [14] 255 No - 98.97 85 96.6

ANN [15] 230 No - 90.9 96.78 94.07
DWT + KPCA + SVM [13] 255 No - 100 85 97.02

AlexNet [18] 291 No 56.8 100 75 95.71
LBPSPEnerg + BPNN [8] 612 No - 98.97 87.5 96.17

DWT + ICA + RBF-SVM [9] 240 No - 98.97 97.68 98.87
DWT + GLCM + SVM [11] 750 No - 99.48 60 92.76

BrainMRNet [12] 253 Yes 0.605 96 96.08 96.05
AlexNet + VGG-16 + RFE [16] 310 Yes 27.82 97.83 95.74 96.77

2D CNN [17] 309 Yes - 100 94.11 97.14
DWT + PCA + RF [23] 181 No - 99.2 97.8 98

SWT-GLCM-Hybrid Classifier [24] 2556 No - 97.04 97.60 97.31
FKM-ANN [25] - - - 98 99 94

AlexNet-ELM-CBM [26] 359 No 62.3 97.14 95.71 96.43
AFDF-DNN [27] - - - 98.35 50 96.44

CNN [28] 694 No - 96 98.6 97.4
Modified ResNet50 [29] 278 Yes 23.68 83 80 92

VGG-19 [30] 257 No 143 100 94.73 98.04
The Proposed (lightweight CNN) 185 Yes 0.349 99.45 99.8 99.58

4.1.2. Segmentation Analysis

The assessment of the proposed segmentation methodology is presented in Table 13,
while an evaluation of the suggested approach with existing techniques is illustrated in
Table 14. The outcomes of our framework are 0.96 DSC, 99.83% PPV, 99.8% TPR, 96.5%
TNR, 99.82% F-score, 98.15% AUC, and 99.65 % accuracy. Based on the analysis of segmen-
tation results (Table 14), we conclude that the proposed framework achieved remarkable
performance compared to the existing techniques in terms of DSC. It must be noted that in
evaluating the segmentation, higher values of DSC represent good performance. Even a
small increment in this metric is remarkable and essential for clinical decisions. The reasons
behind the success of the proposed segmentation methodology are:
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1. Using the proposed skull-stripping process, we significantly isolate the brain tissues
from non-brain matters. Due to this, the implemented approach accurately identifies
brain-related diseases.

2. The proposed FL-MSCM makes each region as homogeneous as possible, with high
computational efficiency, simple parameter tuning, low reduction in contrast, and
image details. It is a significant advantage of the FL-MSCM.

3. The implemented approach access adequately visible edges or boundaries.

Table 13. Performance of the suggested MR based brain tumor segmentation approach.

Sample Image DSC PPV TPR TNR F-Score AUC Accuracy

1 96.46 99.76 99.94 94.41 99.85 97.17 99.71
2 94.8 99.96 99.97 94.58 99.96 97.27 99.93
3 96.05 99.85 99.85 96.03 99.85 97.94 99.71
4 99.4 99.94 99.96 99.29 99.95 99.63 99.91
5 89.04 99.8 99.77 89.81 99.78 94.75 99.57
6 88 99.86 99.73 91.53 99.79 95.63 99.59
7 99.53 99.99 99.95 99.8 99.97 99.8 99.94
8 93.16 99.37 99.53 92.23 99.45 95.88 98.98
9 87.98 99.4 99.86 81.91 99.62 90.88 99.28

10 98.58 99.82 99.98 97.51 99.89 98.74 99.81
11 99.94 100 100 99.97 99.99 99.98 99.99
12 98.82 99.9 99.99 97.87 99.94 98.93 99.89
13 97.68 99.94 99.96 97.16 99.95 98.56 99.91
14 89.43 99.95 99.15 98.76 99.55 98.96 99.14
15 95.3 99.99 99.62 99.84 99.8 99.73 99.62
16 95.61 99.82 99.9 94.44 99.86 97.17 99.73
17 91.77 100 99.74 100 99.86 99.87 99.74
18 95.6 99.21 99.46 94.78 99.33 97.12 98.84
19 97.15 99.94 99.44 99.44 99.68 99.44 99.44
20 95.6 99.37 99.83 93.26 99.6 96.55 99.27
21 97.12 99.68 99.95 95.12 99.81 97.54 99.65
22 98.49 100 99.94 100 99.97 99.97 99.94
23 96.29 99.99 99.82 99.57 99.9 99.69 99.81
24 97.22 99.98 99.64 99.75 99.81 99.7 99.65
25 88.74 99.51 99.46 89.3 99.78 94.75 99.01
26 99.56 99.98 99.98 99.56 99.98 99.77 99.96
27 96.36 100 99.79 100 99.89 99.9 99.8
28 98.28 99.99 99.9 99.69 99.95 99.8 99.9
29 99.76 100 100 99.93 99.99 99.96 99.99
30 98.88 99.97 99.97 98.85 99.97 99.41 99.94

Average 95.7 99.83 99.8 96.5 99.82 98.15 99.65

Table 14. Segmentation performance of the proposed and existing approaches.

Method DSC (%)

Entropy based fuzzy clustering [19] 62
SOM [19] 37
FKM [19] 36

SOM-FKM [19] 47
BWT-SVM [20] 82

Watershed-FCM [10] 93.79
Morphological operations [21] 92

CNN [22] 91
Cascaded Net [31] 85.3

The proposed (FL-MSCM) 95.7

Due to the above three reasons, the segmentation method obtained a high DSC value
compared to state-of-the-art approaches mentioned in Table 14.
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5. Conclusions and Future Scope

Considering the spread of brain tumor-related cases and their impact on human life,
we proposed an efficient methodology to differentiate between normal/abnormal brain
MR images based on CNN and FL-MSCM. This study initially utilized the skull-stripping
process to isolate extra-cranial tissues from MR images. Further, we generated augmented
images using geometric transformation operators. After that, each augmented slice is fed
to our lightweight CNN model to classify brain MR slices as normal and abnormal. Finally,
the FL-MSCM-based automatic segmentation approach is applied to abnormal brain MR
slices for identifying the region of interest (or pixels of infected organs). Based on a detailed
analysis of experimental outcomes, we observed that our framework has low-computational
time and achieved high performance with an accuracy of 99.58% compared to the well-
received approaches due to the automatic feature learning, appropriate selection of the
number of training/testing samples, effective hyper-parameter tuning, and adequately
access the visible edges or boundaries from an image. Hence, anatomists can use the
recommended method as a decision-making tool during clinical therapy. This paper mainly
focused on binary classification (normal vs. abnormal). In the future, our work would
extend to the multiclass classification of brain MR images (normal vs. sarcoma vs. glioma
vs. meningioma vs. Alzheimer’s) and other medical diseases such as breast, skin, and lung
cancers, etc. In addition, we would like to extend our work on real-time experimental data.
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