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Abstract: In recent years, there has been an increasing recognition of coronary computed tomographic
angiography (CCTA) and gated non-contrast cardiac CT in the workup of coronary artery disease
in patients with low and intermediate pretest probability, through the readjustment guidelines by
medical societies. However, in routine clinical practice, these CT data sets are usually evaluated
dominantly regarding relevant coronary artery stenosis and calcification. The implementation of
radiomics analysis, which provides visually elusive quantitative information from digital images, has
the potential to open a new era for cardiac CT that goes far beyond mere stenosis or calcification grade
estimation. This review offers an overview of the results obtained from radiomics analyses in cardiac
CT, including the evaluation of coronary plaques, pericoronary adipose tissue, and the myocardium
itself. It also highlights the advantages and disadvantages of use in routine clinical practice.

Keywords: cardiac computed tomography; cardiac computed tomography angiography; radiomics;
texture analysis; cardiovascular disease

1. Introduction

Due to the improvement in computed tomography technology, the importance of
additional diagnostic tools in the field of cardiovascular imaging has been recognized by
medical societies, leading to a readjustment of guidelines and recommendations for cardiac
CT angiography (CCTA) [1]. In the sense of a so-called rule-out strategy, patients with
low to intermediate pretest probability should receive an initially noninvasive workup [1].
CCTA provides high diagnostic accuracy for detecting significant coronary artery stenosis
of more than 50% but also offers an optimal exclusion of obstructive coronary artery disease
with a negative predictive value of 99% [2,3]. In recent years, plaque characterization made
the additional identification of high-risk plaques in dedicated CCTA possible [4]. Recently
published, the DISCHARGE trial revealed a lower procedure-related complication rate in
patients receiving prior CCTA to invasive coronary angiography [5].

Nevertheless, the main focus in daily routine lies in the determination of coronary artery
stenosis. However, the introduction of radiomics to the medical society, as an opportunity
to analyze quantitative data by extracting numerous features from images—invisible to the
human eye, offers new potential for cardiac CT imaging [6]. These numerous features of the
region of interest (ROI) provide additional information and new possibilities in the rising
big data trend in healthcare. The first promising results could be seen in oncologic imaging,
allowing for example the prediction of disease-free survival in non-small cell lung cancer [7] or
the prediction of patients’ survival with metastatic colorectal cancer by a CT-based analysis
of whole liver tumor burden [8]. Apart from oncologic research, radiomics analysis shows
likewise promising results for example in providing a tool for the quantification of idiopathic
pulmonary fibrosis in high-resolution CT [9] and as a potential imaging biomarker in periaortic
adipose tissue in arteriosclerosis [10].
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In the last years, radiomics analysis showed incremental value in the cardiovascular
imaging field [11,12]. This review article summarizes the application of radiomics analysis
in the cardiac field and outlines challenges and future opportunities.

2. Basic Principles of Radiomics

Radiomics analysis uses methods from the field of artificial intelligence to quantify
textural information by extracting the spatial distribution of Hounsfield or signal intensities
and relationships. In contrast to previously known computer-aided diagnosis and detection
systems (CAD), radiomics analysis is not a standalone system to deliver a single answer
but a process for extracting numerous quantitative data from digital images and mining
the data for hypothesis generating [6]. It starts by defining a region or a volume of
interest (ROI/VOI) in image data [6]. However, the underlying image data may influence
radiomics analysis. Hence, image acquisition should be standardized and recorded. High
image quality minimizes feature variability as one of the main quality requirements for
successful radiomics analysis is the combination of optimal spatial resolution and signal-
to-noise ratio [13–15]. The segmentation of ROI/VOI can be carried out manually, semi-
automatically, or fully automatically. Through dedicated software [16], features can be
extracted from the ROI/VOI and can be analyzed further statistically (Figure 1).
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Figure 1. Example of radiomics workflow. A high-quality CCTA image (A) is the foundation for
radiomics application. After segmentation of the region of interest (plaques marked in yellow and
orange (B), features can be extracted using dedicated software (parameters of various radiomics
features (C). Features are selected in dependence on i.e., clinical parameters and models can be
created further, for example by creating a heatmap (D).

Radiomics features can be divided into different subgroups. First-order features
describe the distribution of voxel intensities independently of their spatial relationship.
Texture features on the other hand take the spatial relationship into account and characterize
the heterogeneity of the underlying lesion. Mainly five different types of texture features
are used in the routine, defined by gray-level cooccurrence matrix (GLCM), gray-level
run-length matrix (GLRLM), gray-level size zone matrix (GLSZM), gray-level dependence
matrix (GLDM), and neighboring gray-tone difference matrix (NGTDM). Additionally,
shaped-based features further quantify the spatial complexity, and finally, transform-
based features convert spatial information into specific new information or filter specific
information [17–20]. These features can be correlated with clinical parameters and may offer
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a more precise analysis of the image data, possibly influencing therapies and estimating
outcome prediction.

3. Radiomics Analysis in Cardiac Imaging
3.1. Radiomics Analysis of Coronary Artery Plaques

Beyond purely estimating the degree of coronary artery stenosis, CCTA can detect
different plaque characteristics. Four different plaque characteristics have been linked to
the development of major adverse cardiovascular events, namely low-density plaques,
positive remodeling, spot calcification, and napkin ring sign (NRS) [4]. One study revealed
low-attenuation plaque burden as the strongest predictor of fatal or nonfatal myocardial in-
farction [21]. Even in nonobstructive lesions, these distinct parameters correlated positively
with adverse outcomes [22–24]. However, in clinical settings, these parameters are not
always easy to determine due to time-consuming calculations. Therefore, Kolossvary et al.
investigated in 2017 the possibility of radiomics analysis to distinguish plaque with and
without NRS. They included 30 patients with NRS plaques, who were referred to CCTA due
to stable chest pain. Additionally, they matched 30 plaques without napkin ring signs with
similar luminal obstruction, localization, degree of calcification, and imaging parameters.
They defined eight different conventional quantitative metrics (namely lesion length and
volume, mean plaque burden, lumen area stenosis, vessel wall remodeling index as well as
mean, minimal, and maximal plaque attenuation), but none of these parameters showed a
significant difference between NRS and non-NRS plaques. On the contrary, 4440 radiomics
parameters were calculated for each manually segmented atherosclerotic lesion. Out of
these parameters, 20.6% (916 parameters) showed a significant difference between both
plaque types (all p < 0.0012). The five most differentiating parameters were short-run
low-gray-level emphasis, long-run low-gray-level emphasis, surface ratio of component 2
to total surface, long-run emphasis, and surface ratio of component 7 to total surface (AUC
values: 0.918; 0.894; 0.890; 0.888 and 0.888, respectively). Hence, radiomics analysis of
coronary artery plaque outperformed conventional parameters in identifying NRS plaques
in cardiac CT [25].

Following this study, Kolossvary et al. went one step further in 2019 by investigating
the possibility of radiomics analysis to outperform conventional assessment of CCTA to
identify invasive and radionuclide imaging markers of plaque vulnerability. The 25 patients,
who underwent CCTA, sodium-fluoride positron emission tomography (PET), intravascular
ultrasound (IVUS) and optical coherence tomography (OCT), were prospectively included
in their study, leading to the identification of 44 plaques. For each invasive and radionuclide
imaging marker the best conventional and the best radiomics parameter for identification
was identified: IVUS-attenuated plaques could be identified by non-calcified plaque volume
on CCTA as well as with fractional box-counting dimension of high attenuation voxels
in radiomics analysis (AUC 0.59 and 0.72, respectively, p-value < 0.001). OCT identified
thin-cap fibroatheroma correlated with the presence of low attenuation in CCTA and the
fractal box-counting dimension of high attenuation voxels in radiomics analysis (AUC
0.66 and 0.80, respectively, p-value < 0.001), [18F]NAF-PET positivity with the presence
of two out of four high-risk features in CCTA and surface of high attenuation voxels in
radiomics analysis (0.65 and 0.87, respectively, p-value < 0.001). Summarizing these results,
radiomics analysis outperformed conventional parameters for the identification of plaque
vulnerability significantly [11].

Both studies demonstrate the possibility of radiomics analysis to increase the diagnos-
tic accuracy of CCTA in the identification of vulnerable plaque characteristics.

In 2021, another study investigated the performance of the radiomics analysis of CCTA
in identifying hemodynamically significant coronary artery stenosis. Li et al. compared
conventional parameters as well as radiomics parameters, both derived from CCTA, in
149 patients (174 plaques with a stenosis degree between 30% and 90%) with the gold stan-
dard of invasive fractional flow reserve (FFR), building a randomly selected training and
validation model. Non-calcified plaque (NCP) volume, lesion length, spotty calcification,
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remodeling index (RI), NRS, and stenosis degree were recorded as conventional parameters.
In all, 58 out of 523 radiomics features correlated with hemodynamically significant stenosis
(p < 0.05), whereas 56 yielded an AUC above 0.6. Out of these parameters, 14 parameters
were used to build a radiomics model: NCP volume, NRS, RI, and spotty calcification for
the conventional model. In the training and validation set, AUC showed an improvement
(0.71 and 0.82 for training, 0.70 and 0.77 for validation; conventional and radiomics model,
respectively) but not a statistical significance (p = 0.58) [26].

3.2. Radiomics Analysis of Pericoronary Adipose Tissue

Vascular inflammation has been linked to the structural changes and remodeling of
perivascular adipose tissue (PVAT) [27]. The recently described Perivascular Fat Attenua-
tion Index (FAI) outlines the inflammation-induced increase in CT attenuation values and
counts as a strong predictor of major adverse cardiovascular events (MACE) [28,29]. The
texture analysis of perivascular adipose tissue is meant to look beyond the FAI and possibly
define imaging biomarkers. In line with this hope, Oikonomou et al. investigated 2019 the
radiomics profile of PVAT remodeling for the improvement of cardiac risk prediction. Their
first study obtained adipose tissue biopsies from 167 patients and correlated radiomics
features to gene expression representing inflammation, fibrosis and vascularity. Tissue
inflammation, outlined by tumor necrosis factor-alpha (TNFA) expression, was correlated
best with adipose tissue wavelet-transformed mean attenuation. However, fibrosis and
vascularity could be comparable or better reflected by higher-order texture features than
mean attenuation. Additionally, they analyzed radiomics features in 101 patients who
experienced MACE within 5 years after CCTA and 101 matched controls. The fat radiomics
profile (FRP) was able to improve MACE prediction significantly compared to traditional
risk factors such as coronary calcium score, coronary stenosis, and high-risk plaque features
(p < 0.001). In line with these results, FRP was significantly higher in patients with acute
myocardial infarction in comparison to matched controls (p < 0.001), outlining adverse
PVAT remodeling [12]. Concordant with these findings, Lin et al. demonstrated that
texture- and geometry-based radiomics parameters were able to distinguish patients with
myocardial infarction and with stable or no coronary artery disease. Radiomics analysis
hence provides information that was not captured by the attenuation-based model [30].

Another study compared the power of prediction of the future acute coronary syn-
drome within 3 years after CCTA of radiomics analysis of pericoronary adipose tissue to
conventional plaque characteristics. Shang et al. identified 90 patients with acute coro-
nary syndrome (ACS) within 3 years after CCTA and segmented pericoronary adipose
tissue surrounding the culprit lesion, as well as notated 14 different conventional plaque
characteristics. In 90 matched controls, the most severe stenotic lesion was evaluated in
the same manner. Out of both parameter groups, a radiomics score (14 features) and a
plaque score (minimal lumen diameter and high-risk plaque) were built. The radiomics
score outperformed the plaque score significantly in identifying patients with future ACS
within 3 years (AUC = 0.826, 0.811 radiomics score; AUC = 0.699, 0.640 plaque score, in
training and test set, respectively) [31].

3.3. Radiomics Analysis of Left-Ventricular Myocardium

Magnetic resonance imaging (MRI) is commonly used for myocardial analysis [32–34].
However, research has also focused on the detection of myocardial scar and perfusion
defects in cardiac CT [35]. In comparison to MRI, cardiac CT analysis offers the potential
advantage of combined analysis of coronary artery stenosis and correlating myocardial
scar. Nevertheless, CT suffers from insufficient contrast to the noise ratio of delayed iodine-
enhanced scans [36]. Additionally, the delayed iodine-enhanced scan is an additional scan
to CCTA leading to higher radiation exposure. Hence, several studies investigated in the
recent past the potential of radiomics analysis to overcome these limitations. Antunes et al.
already demonstrated in 2016 on a small patient collective of seven patients the potential of
radiomics parameters to differ between patients with normal and scarred myocardial tissue
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post myocarditis. They investigated first-order radiomics parameters of left ventricular
myocardium on normal and scarred myocardial tissue on the basal scan, angiographic scan
and delayed iodine-enhanced scan, as well as on an ECV map calculated from myocardial
and blood pool Hounsfield units (HU). The first-order parameter energy was the best
parameter for differentiation between normal and scarred tissue in all scans (p < 0.001).
Entropy, kurtosis, mean, and root mean square error were also able to distinguish between
both tissues significantly on angiographic scans [37].

Following these results, Hinzpeter et al. illustrated in 2017 the feasibility of radiomics
texture analysis for the differentiation of healthy from acutely infarcted myocardium in
cardiac CT on 20 patients diagnosed with acute myocardial infarction (MI) and 20 matched
controls. They were able to define different radiomics features for distinguishing both
groups: Kurtosis was the most accurate first-level feature (AUC: 0.78, p = 0.002); correlation
the most accurate second-level feature (AUC: 0.81, p = 0.002); and SRHGE the most accurate
third-level feature (AUC: 0.82, p = 0.001) on 5 mm slice thickness short axis reconstruction
CT images. In addition, they investigated the influence of different slice thicknesses of
CT reconstruction on texture analysis, demonstrating a 5 mm slice thickness as the most
accurate [38].

Going one step further, Mannil et al. revealed the potential of texture analysis in
detecting myocardial fibrosis on non-contrast low radiation dose cardiac CT images being
visually invisible. They included 27 patients with acute myocardial infarction, 30 patients
with chronic myocardial infarction, and 20 patients with no cardiac abnormalities in their
study. A visible differentiation between the groups was not possible. Texture analysis
revealed moderate accuracy for differentiation between the three groups. However, im-
proved accuracy was achieved when comparing patients with acute or chronic myocardial
infarction and no cardiac abnormalities, indicating a possible overlap between texture
features in infarcts of different ages (AUC 0.78, sensitivity 86%, specificity 81%) [33].

In all, 154 patients receiving CCTA and SPECT myocardial perfusion imaging were in-
cluded in a study by Shu et al. for the development and validation of a CT-based radiomics
machine learning model for the prediction of chronic myocardial ischemia. These patients
were divided into a training set (n = 107) and into a test set (n = 47). Radiomics features
were extracted from the left ventricular myocardium and feature reduction identified eight
relevant features. For these eight features, multivariable logistic regression was used to
create a radiomics signature. In addition, a radiomics nomogram was created based on a
predictive model, derived from machine learning in combination with clinically related
factors. This nomogram was then validated on the test set and an additional validation set,
consisting of 49 patients (18 with chronic myocardial ischemia) from another medical center.
Using a decision curve analysis, the clinical feasibility of the nomogram was demonstrated,
and a significant difference could be detected between patients in a high or low-risk group.
This study allowed the combination of radiomics with machine learning algorithms to
differentiate between chronic myocardial ischemia and healthy myocardium in CCTA
images and was even able to identify the higher risk population of chronic myocardial
ischemia [39].

Going beyond the visualization of focal scarred myocardium, Esposito et al. aimed to
correlate radiomics features generated from late iodine enhancement cardiac CT images
of non-scarred remote myocardium from patients with recurrent ventricular tachycardia
(rVT) with left ventricular (LV)- function (ejection fraction, end-diastolic diameter, and
diastolic function of LV determined by transthoracic echocardiography), LV-remodeling,
and underlying cardiac disease. In all, 48 patients with rVT were included in their study
consisting of five patients with idiopathic ventricular tachycardia, 23 with post-ischemic di-
lated cardiomyopathy, nine with idiopathic dilated cardiomyopathy, and 11 with scars from
previous myocarditis. LV systolic and diastolic function was assessed using echocardiog-
raphy. A cardiac CT scan with non-contrast, angiographic and late iodine-enhanced scan
was used to determine the end-diastolic volume (EDV) and extracellular volume (ECV).
Scars were identified as areas of wall thinning or areas of late iodine enhancement and
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segmented for radiomics analysis. Different features (energy, HU mean, and HU median)
correlated with ECV (p < 0.05). ECV and various radiomics features correlated with EDV.
Additionally, two features (standard deviation (SD) and mean absolute deviation (MAD))
correlated with diastolic function. Both features presented significantly lower values in
patients with idiopathic ventricular tachycardia and in patients with scars from healed
myocarditis in comparison to dilated cardiomyopathy. Hence, they proved that myocardial
heterogeneity was associated with systolic and diastolic function as well as LV dilatation
and has the ability to distinguish different patterns of structural remodeling [40].

In line with these results, Kay et al. created an end-to-end pipeline, consisting of
automated segmentation, radiomic feature extraction, and machine learning, to predict
MRI-proven high-risk left ventricular hypertrophy (LVH) phenotypes on non-contrast
cardiac CT. Out of a group of 1982 participants they identified 224 participants with
high-risk LVH in cardiac MRI. All patients underwent additional non-contrast cardiac CT.
Using an automated algorithm for segmentation of the left ventricle in cardiac CT, they
extracted 107 radiomics features. Different feature selection models were used to access
the probability of high-risk LVH as defined in cardiac MRI not only using the non-contrast
cardiac CT scan but also gender, height, and body surface area. Additionally, they evaluated
the pipeline in an internal validation set and concluded, that there is underutilized data
embedded in non-contrast cardiac CT which could lead to the identification of high-risk
individuals without the need for additional radiation exposure or imaging [41].

Recently, the unique possibility of CCTA to allow the estimation of coronary artery
sclerosis and the potential detection of myocardial fibrosis was investigated in our institu-
tion. Radiomics parameters of left ventricular myocardium of patients with and without
coronary artery calcifications measured by Agatston Score were compared in three different
groups: as a training set, patients with an Agatston Score of 0 were compared to patients
with an Agatston Score of ≥100. As a validation set, patients with an Agatston Score
between 1–99 were chosen. Random forest selection allowed differentiation between the
training groups by four different parameters (namely GLDM Small Dependence High Gray
Level Emphasis, GLCM Cluster Shade, GLRLM Long Run Low Gray Level Emphasis, and
NGTDM Complexity). For internal validation purposes, these four features were addi-
tionally investigated in the Agatston Score group of 1–99. Boxplots were used to visualize
the distribution of the mean value of each feature in dependence on the Agatston Score.
The Agatston Score group of 1–99 was settled between the training set group, indicating a
change of texture parameters associated with the severity of coronary artery calcification.
The differentiating feature complexity is a parameter for the heterogeneity of the underlying
tissue. In this study, the value increased with increasing Agatston Score. In line with these
findings, the feature cluster shade also increased depending on the Agatston Score and is
known to be a measurement of skewness and uniformity. This increase indicates a greater
asymmetry around the mean. Both features seem to indicate a more heterogenous structure
of the left ventricular myocardium in patients with coronary artery calcification due to a
potential remodeling effect. In total, these preliminary findings on a small patient popula-
tion outline the potential severity-associated effect of coronary artery calcifications on the
left ventricular myocardium as a possible correlate for a structural change (Figure 2) [42].

In addition, Cavallo et al. outlined a successful CCTA-based radiomics approach to
identify left ventricular remodeling in patients with arterial hypertension. They included 83
patients with arterial hypertension and 75 control patients who underwent cardiac CT and
segmented the left ventricular myocardium. In total, 377 radiomics features were extracted.
The dataset was divided into two parts using a 7:3 ratio for training the classification model
and afterward for testing and evaluating the model performance. Models with an accuracy
higher of 60% were selected and finally, an Ensemble Machine Learning (EML) score was
calculated. The EML score correlated to LV septum width (0.53, p-value < 0.0001). As the
authors defined LV septum width as a surrogate of myocardial remodeling, they considered
the EML score as a potential tool for evaluating myocardial remodeling [43].
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Figure 2. Radiomics analysis of left ventricular myocardium. Segmentation of left ventricular
myocardium in dedicated software (A). Feature extraction and connection of clinical parameter (Agat-
ston Score), visualized in a Heatmap (B). Random Forest feature selection to identify differentiating
features between different Agatston Scores (C). Selected differentiating feature visualized in boxplot
in dependence of Agatston Score (D). Data derived from Ayx et al. [41].

3.4. Radiomics Analysis of Cardiac Mass

First attempts have also been made in mass characterization on cardiac CT images. In
2019, Nam et al. investigated 39 periprosthetic masses in 34 patients suspected of peripros-
thetic valve obstruction clinically. All patients underwent cardiac computed tomography
and were clinically suspected of prosthetic valve obstruction (PVO). The final cause of
PVO was then identified using redo-surgery and follow-up imaging as a standard refer-
ence. In 20 cases pannus could be finally diagnosed, in 11 cases thrombi, and in eight
cases vegetations. Visual analysis of differentiating pannus from other abnormalities was
compared to a radiomics score. Radiomics analysis was able to differentiate between
pannus and other tissue (AUC = 0.876), leading to the combination of visual and radiomics
assessment to outperform the visual assessment alone [44]. In line with these results, Qian
et al. proved in 2021, that radiomics analysis is better than conventional assessment for
differentiation of cardiac myxomas and cardiac thrombi on cardiac CT (AUC = 0.926 and
0.878, respectively). They included 109 patients who had cardiac myxoma (n = 59) and
cardiac thrombi (n = 50) in their retrospective study. Two radiologists documented and
compared the lesion characteristics in cardiac CT. Afterwards, all patients were allotted to
a primary group or a validation group using a ratio of 7:3. Robust features were selected
using univariate analyses and least absolute shrinkage and selection operator, leading to an
identification of eight selected radiomic features consisting of five first-order features and
three higher order features. This was compared to visual assessment using an independent
clinical model with parameters such as calcification, location, enhanced CT value, and uni-
formity of density, as well as pathologies in the adjacent structures. This clinical model was
outperformed in distinguishing cardiac myxoma and cardiac thrombi through a radiomics
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signature [45]. In addition, Chun et al. identified 95 patients with valvular heart disease
and filling defects in the left atrial appendage on cardiac CT. The filling defects were classi-
fied as thrombus (n = 25) or as stasis (n = 70) using transesophageal echocardiography or
cardiac surgery. Additional to radiomics analysis using a three-dimensional segmentation
of filling defects on early-phase CT, the ratio of Hounsfield units within the filling defects
was measured and compared to those in the ascending aorta in early and in late phases. In
radiomics analysis, eight wavelet-transformed radiomics features were lower in thrombus
than in stasis (p < 0.001). Comparing these findings with conventionally measured HU
values, radiomics analysis (namely wavelet_LHL and wavelet_LLH) could differentiate
better between thrombi and circulatory stasis in patients with left atrial appendage filling
defects [46].

3.5. Radiomics Analysis of Periaortic Adipose Tissue

However, cardiac imaging goes beyond purely investigating the heart itself. As already
mentioned above, perivascular adipose tissue, surrounding blood vessels immediately, is
known to be metabolically active [27]. Various studies in the last years have focused on the
effect of the volume and density of periaortic adipose tissue; Lehman et al. could identify a
possible connection between periaortic adipose tissue, metabolic risk factors, and vascular
calcification. They included all patients with an interpretable scan for periaortic adipose tis-
sue who were free of established cardiovascular disease from the Framingham Heart Study
Offspring cohort and quantified adipose tissue semi-automatically to calculate the adipose
volume surrounding the thoracic aorta over a 6.75 cm column. The volume of the periaor-
tic adipose tissue correlated with the body mass index (BMI), waist circumference (WC),
hypertension, lower HDL, serum triglycerides, impaired fasting glucose, and diabetes even
after adjustment for BMI and WC. Additionally, thoracic periaortic adipose tissue was
associated with abdominal aortic calcification and coronary artery calcification [47]. In line
with these results, Zhu et al. demonstrated in a volume-based approach an association of
periaortic adipose tissue and visceral adipose tissue with coronary artery atherosclerosis in
2021 [48]. However, studies regarding the radiomics texture analysis of periaortic adipose
tissue are still very limited. One preliminary study recently analyzed texture features of
periaortic adipose abdominal tissue in dependence of local aortic calcifications. In total, 30
patients were selected, building two groups of with and without abdominal aortic calcifi-
cation. Adipose tissue was segmented within a ring of 5 mm surrounding the abdominal
aorta ranging from below the junction of the renal arteries to the aortoiliac bifurcation.
Random forest feature selection identified seven radiomics features, that showed a signifi-
cant difference between both groups: GLCM Contrast, GLCM Difference Variance, GLCM
Difference Average, GLCM Difference Entropy, GLCM Joint Entropy, GLSZM Gray Level
Variance, and GLCM Maximum Probability. These findings revealed a prediction of the
presence of aortic calcifications using radiomics texture analysis of periaortic adipose tissue,
possibly indicating a potential imaging biomarker for atherosclerosis [10]. Further studies
in this field must follow to investigate periaortic adipose tissue in the thoracic aorta with a
potential local and down streaming effect.

Summarizing literature, Table 1 offers an overview of important studies related to
cardiovascular radiomics analysis.
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Table 1. Overview of radiomics analysis in cardiac imaging.

Radiomics analysis of
coronary artery
plaques

Kolossvary et al. Circ: Cardiovascular Imaging 2017 [25] Ability of radiomics features to differentiate between
plaques with and without napkin ring signs

Kolossvary et al. European Heart Journal–Cardiovascular
Imaging 2019 [11]

Radiomics analysis outperformed conventional
assessment in terms of plaque vulnerability

Li et al. European Journal of Radiology 2021 [26]
Radiomics analysis is better at identifying
hemodynamically significant coronary artery stenosis
than conventional parameters

Radiomics analysis of
pericoronary adipose
tissue

Oikonomou et al. European Heart Journal 2019 [12] Radiomics profile of PVAT remodeling for
improvement of cardiac risk prediction

Lin et al. JACC: Cardiovascular Imaging 2020 [30]
Differentiation of patients with myocardial infarction
and with stable or no coronary artery disease by
radiomics features

Shang et al. Eur Radiol 2022 [31] Power of prediction of future acute coronary syndrome
within 3 years by radiomics analysis

Radiomics analysis of
left-ventricular
myocardium

Antunes et al. Annu Int Conf IEEE Eng Med Biol Soc. 2016 [37] Radiomics features could differ between patients with
normal and scarred myocardial tissue post myocarditis

Hinzpeter et al. PLoS ONE 2017 [38] Feasability for differentiation of healthy from acutely
infarcted myocardium by radiomics analysis

Mannil et al. Investigative Radiology 2018 [33] Radiomics features detecting myocardial fibrosis on
non-contrast low radiation dose CT

Shu et al. J. Nucl. Cardiol. 2022 [39] Radiomics machine learning model for prediction of
chronic myocardial ischemia

Esposito et al. Mol Imaging Biol 2018 [40] Radiomics analysis could distinguish different patterns
of structural remodeling in patients with rVT

Kay et al. Circ: Cardiovascular Imaging 2020 [41]
Prediction of MRI-proven high-risk left ventricular
hypertrophy phenotypes on non-contrast cardiac CT
through radiomic analysis

Ayx et al. Diagnostics 2022 [42] Potential detection of myocardial fibrosis by radiomics
features in dependence on coronary artery sclerosis

Cavallo et al. Diagnostics 2022 [43]
CCTA-based radiomics approach to identify left
ventricular remodeling in patients with arterial
hypertension

Radiomics analysis of
cardiac mass

Nam et al. Circ: Cardiovascular Imaging 2019 [44]
Radiomics analysis was able to differentiate between
pannus and other abnormalities in periprosthetic
masses

Qian et al. BMC Cardiovasc Disord 2021 [45] Radiomics features could differentiate between cardiac
thrombi and cardiac myxomas

Chun et al. Eur Radiol 2021 [46] Radiomics features differentiated between thrombus
and statis in filling defects in the left atrial appendage

Radiomics analysis of
periaortic adipose
tissue

Tharmaseelan et al. Int J Cardiovasc Imaging 2022 [10]
7 radiomics features of periaortic adipose tissue
revealed a prediction of the presence of local aortic
calcification

4. Challenges and Limitations of Radiomics Analysis

Even though radiomics analysis shows promising results in cardiac CT imaging, the
implementation of radiomics analysis in clinical routine has not been fulfilled yet. Ra-
diomics analysis is susceptible to many technical factors and hence lacks reproducibility.
Different studies describe the influence of different manufacturers as well as various image
acquisition parameter settings on feature stability [49]. Not only the choice of contrast
agent and media phases but also underlying parameters such as tube voltage, reconstruc-
tion kernel, and slice thickness influence the reproducibility of feature analysis [19,50].
Even post-processing tools such as segmentation methods [51] and feature extraction soft-
ware [52] impede feature stability. As long as these factors significantly influence radiomics
analysis, a sufficient approach to implement this tool in decision-making in clinical prac-
tice is limited. In cardiac imaging, various parameters can be influenced from the very
beginning and may lead to a more stable radiomics analysis between different centers, if
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widely recognized and adapted in clinical routine. Additionally, segmentation methods
and feature extraction software could be standardized to reduce these challenges. Recently,
promising results are shown by the implementation of photon-counting detector CT (PCCT)
leading to better signal-to-noise ratio, high spatial resolution, and lower beam-hardening
artifacts [53]. A preliminary study revealed a comparability of first-order radiomics features
between PCCT and conventional energy-integrating CT but differences in higher-order
features of the left ventricular myocardium. These differences might be due to the impact of
the new technology and may push cardiac radiomics analysis in the future [54]. However,
whether PCCT will revolutionize radiomics analysis and finally lead to implementation in
clinical practice must be proven first. In total, further work will be needed to find a way for
stabile radiomics analysis and the potential of reproducibility between different centers,
before radiomics analysis can be widely and reliably used in clinical routine.

5. Potential Outlook in the Future

Despite the challenges of radiomics analysis, the radiomics of cardiac CT will find
its way into the clinical routine in one way or another. The strength of feature analysis in
cardiac CT is to go beyond the pure visual assessment of image data and to add quantitative
information. This quantitative information will be needed for future clinical decision-
making as well as for exploring biomarkers in prevention and personalized cardiovascular
medicine. Even though this is an ambitious goal, the foundation is already laid, and future
work must and will overcome the limitations to implement radiomics of cardiac CT in
clinical routine.
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