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Abstract: Background: Nasopharyngeal carcinoma (NPC) is a common tumor in China. Accurate
stages of NPC are crucial for treatment. We therefore aim to develop radiomics models for discrimi-
nating early-stage (I–II) and advanced-stage (III–IVa) NPC based on MR images. Methods: 329 NPC
patients were enrolled and randomly divided into a training cohort (n = 229) and a validation cohort
(n = 100). Features were extracted based on axial contrast-enhanced T1-weighted images (CE-T1WI),
T1WI, and T2-weighted images (T2WI). Least absolute shrinkage and selection operator (LASSO) was
used to build radiomics signatures. Seven radiomics models were constructed with logistic regression.
The AUC value was used to assess classification performance. The DeLong test was used to compare
the AUCs of different radiomics models and visual assessment. Results: Models A, B, C, D, E, F, and
G were constructed with 13, 9, 7, 9, 10, 7, and 6 features, respectively. All radiomics models showed
better classification performance than that of visual assessment. Model A (CE-T1WI + T1WI + T2WI)
showed the best classification performance (AUC: 0.847) in the training cohort. CE-T1WI showed
the greatest significance for staging NPC. Conclusion: Radiomics models can effectively distinguish
early-stage from advanced-stage NPC patients, and Model A (CE-T1WI + T1WI + T2WI) showed the
best classification performance.

Keywords: nasopharyngeal carcinoma; cancer staging; magnetic resonance imaging

1. Introduction

Nasopharyngeal carcinoma (NPC) is a common cancer of the head and neck with an
endemic distribution, especially in southeastern China [1]. When its people emigrated
to other countries, although the incidence of NPC decreased, it was also higher than that
of the natives. Thus, although the pathogenesis remains unknown, it may be related to a
combination of genetic, ethnic, and environmental factors [2].

Fortunately, NPC is highly sensitive to radiotherapy [3]. With the application of
treatment paradigms involving intensity-modulated radiotherapy, the incidence of five
years’ local recurrence and distant metastasis has significantly decreased [2,4,5]. Treat-
ment options are closely related to the clinical stages of NPC [2,3]. Therefore, accurate
clinical stages of NPC are crucial for treatment. At present, the staging of NPC mainly
depends on the Union for International Cancer Control/American Joint Committee on
Cancer (UICC/AJCC) tumor-node metastasis (TNM) staging system [2]. Magnetic reso-
nance imaging (MRI) is widely used in diagnosing diseases in various body organs [6].
With better visibility than other existing imaging methods, it is considered the optimal
approach for staging [7–11]. Clinical stages of NPC were assessed by radiologists based
on MR images and clinical data according to the TNM staging system. However, for the
patients at the same TNM stages, local recurrence and distant metastasis still occur in
some of them under current staging methods, even when they are treated with the same
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strategies [12]. For these patients, current staging methods may not accomplish accurate
clinical stages. This may be due to a loss of much information obtained in MR images
through visual assessment, as well as the fact that differing experience of radiologists
may influence staging accuracy. Thus, a new technique for accurately staging NPC is
urgently needed.

With the development of biomedical imaging, MRI is also highly sophisticated,
and there is no denying that MR images contain much information not visible for
visual assessment [13]. By using high-throughput extraction of data-characterization
algorithms, radiomics provides the opportunity to demonstrate the characteristics
of tumors that are difficult for visual assessment and characterize intratumoral het-
erogeneity [14,15]. Artificial intelligence based on these characteristics has been
employed to solve many medical problems, like biomedical image analysis and health-
care [13]. Therefore, many studies have investigated the potential of radiomics in
predicting the preoperative stage, prognosis, response to treatment, and recurrence
of tumors, with good performance found in lung cancer, breast cancer, and some
abdominal cancers [16–22]. Radiomics has also achieved good performance in pre-
dicting distant metastasis, local recurrence, and progression-free survival (PFS) of
NPC [23–28].

However, only the performance of radiomics to predict T stages or distinguish ad-
vanced clinical stages (stage III vs. IV) of NPC patients has been investigated; its ability
to predict the clinical stages of NPC patients remains unknown [29,30]. Therefore, seven
models were constructed to explore the capability of radiomics in staging NPC patients
(clinical stage I–II vs. III–IVa) based on MR images.

2. Materials and Methods
2.1. Patients

Patients with pathologically confirmed NPC from January 2013 to December 2016
were enrolled in our study. The inclusion criteria were as follows: (1) primary NPC
(stage I~IVa); (2) complete clinical data; (3) received MRI scans in our hospital within
2 weeks before treatment; (4) no history of chemotherapy or radiotherapy before the
MRI scan; and (5) maximum lesion diameter larger than 10 mm. The exclusion crite-
ria were as follows: (1) meanwhile combined with other cancers; (2) suffering from
severe chronic wasting diseases; and (3) MR images with artifacts, faults, blurs, and
disordered slices.

A total of 329 patients were recruited (mean age 49.80 ± 10.67 years, ranging from
15 to 76 years), made up of 234 males and 95 females. They were randomly divided into
training and validation cohorts at a ratio of 7:3. Therefore, 229 patients were allocated to
the training cohort and the other 100 were allocated to the validation cohort. Demographic
and clinical data (age, gender, smoking, and drinking) were collected. The workflow of this
study is presented in Figure 1.
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Figure 1. Flow chart of this study.

2.2. Image Acquisition

All patients were scanned with the Siemens Magnetom Essenza 1.5-T MR scan-
ner from the middle temporal lobe to the superior aperture of the thorax. Axial T1-
weighted images (T1WI), T2-weighted images (T2WI), fast spin-echo T2-weighted images,
and contrast-enhanced T1-weighted images (CE-T1WI) were performed on all patients.
The MR imaging protocols were as follows: (1) axial T1WI (repetition time [TR]/echo
time [TE] = 769/10 ms, number of excitation (NEX) = 1, and slice thickness = 5 mm);
(2) axial T2WI (TR/TE = 6920/81 ms, NEX = 1, and slice thickness = 5 mm); (3) axial
FSE T2WI (TR/TE = 4260/86 ms, NEX = 1, and slice thickness = 5 mm); and (4) axial
CE-T1WI (TR/TE = 7.93/2.38 ms, NEX = 1, and slice thickness = 5 mm) were obtained after
injecting 0.01 mmol/kg of gadopentetate dimeglumine through the median cubital vein at
a speed of 2 mL/s. The slice thickness of all protocols was 5 mm.

2.3. Patient Restaging and Human Visual Assessment

All MR images and clinical data were separately reviewed by 2 experienced radiol-
ogists (with 20 years and 30 years of head and neck radiology experience, respectively).
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They re-evaluated the clinical stages into early-stage (I~II) and advanced-stage (III~IVa)
according to the eighth edition of the UICC/AJCC TNM staging system [2]. Any differences
were resolved through consensus.

In addition, another 2 radiologists (reader 1 and reader 2 with 5 years and 6 years of
experience in head and neck MRI, respectively) were recruited to separately stage NPC
based on MR images, and were all blinded to the patients’ clinical data. They then worked
together to resolve differences by consensus.

2.4. Image Segmentation and Feature Extraction

MR images were all anonymously retrieved from the picture archiving and com-
munication system (PACS). Image segmentation was performed by reader 1. The three-
dimensional volume of interest that contained the whole primary tumor was obtained by
stacking up the region of interest (ROI). This was manually delineated slice by slice around
the outermost boundary of the tumor on axial sequences (T1WI, T2WI, and CE-T1WI
separately) using 3D Slicer (version 4.10.2; http://www.slicer.org, accessed on 17 May
2019). To ensure the segmentation only contained tumor tissue, 3 mm inside the ROI was
decreased with automated dilation and shrinkage.

Feature extraction was performed with the open-source Pyradiomics package (version
3.0.1; https://pyradiomics.readthedocs.io/en/latest/changes.html#pyradiomics-3-0-1, ac-
cessed on 3 June 2021). To standardize the voxel spacing, images were resampled to a voxel
size of 1 × 1 × 1 mm3. After that, seven classes of radiomics features were extracted from
the original images, including shape, first-order, gray-level co-occurrence matrix (GLCM),
gray-level dependence matrix (GLDM), gray-level run length matrix (GLRLM), gray-level
size zone matrix (GLSZM), and neighboring gray tone difference matrix (NGTDM) features.
The same first-order and textural features were then extracted after applying wavelet (with
3 directions of wavelet decomposition: x, y, z) and Laplacian of Gaussian (LoG) (with sigma
values of 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm) to the original images, respectively. Ultimately,
3669 features were extracted (1223 from each sequence). The detailed radiomics features
are listed in Supplementary Materials File A.

2.5. Interobserver and Intraobserver Agreement

Forty patients (20 early-stage and 20 advanced-stage) were randomly chosen for
repetitive tumor ROI segmentations, which were performed by reader 1 and reader
2 to explore interobserver stability. The same procedure was repeated by reader 1 in
a 2-week period to evaluate intraobserver reproducibility. The intraclass correlation
coefficient (ICC) was used to evaluate intraobserver and interobserver agreement, and
ICC > 0.75 indicated satisfactory agreement. Therefore, only features with both intra-
and interobserver ICC > 0.75 were chosen for further analysis and were standardized
with z score normalization.

2.6. Dimensionality Reduction and Radiomics Feature Selection

To reduce potential overfitting of the radiomics features and avoid the curse of dimen-
sionality when modeling, two steps were applied to select radiomics features in the training
cohort. First, the independent samples t test or the Mann–Whitney U test was used to
select potentially important features. Second, features with p < 0.05 from the first step were
kept and input to the least absolute shrinkage and selection operator (LASSO) classifier,
with penalty parameter tuning conducted by 10-fold cross-validation, and features with
non-zero coefficients were selected to build radiomics signatures [31,32]. The radiomics
score (Rad-score) for each patient was calculated using a linear combination of selected
features that were weighted by their respective LASSO coefficients.

2.7. Construction of the Radiomics Model

Logistic regression, a classical machine learning method, was used to construct seven
radiomics models (named A, B, C, D, E, F, and G) for staging NPC patients. Models A, B, C,

http://www.slicer.org
https://pyradiomics.readthedocs.io/en/latest/changes.html#pyradiomics-3-0-1
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and D were built with radiomics signatures selected from combined sequences (CE-T1WI
+ T1WI + T2WI, CE-T1WI + T1WI, T1WI + T2WI, and CE-T1WI + T2WI, respectively).
Models E, F, and G were built with radiomics signatures selected from single sequences
(CE-T1WI, T1WI, and T2WI, respectively).

Accuracy, sensitivity, specificity, and the area under the receiver operating charac-
teristic curve (AUC) values were used to evaluate models’ performance. ROC curves
were drawn to display and compare the performance of different models. The DeLong
test was used to analyze significant differences between models. The workflow of model
construction and evaluation is shown in Figure 2.
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Figure 2. The workflow of model construction and evaluation. Note: MRI, Magnetic resonance image.
CE-T1WI, Contrast-enhanced T1-weighted image. T1WI, T1-weighted image. T2WI, T2-weighted
image. GLCM, Gray-level co-occurrence matrix. GLDM, Gray-level dependence matrix. GLRLM,
Gray-level run length matrix. GLSZM, Gray-level size zone matrix. LoG, Laplacian of Gaussian.
NGTDM, Neighboring gray tone difference matrix. LASSO, Least absolute shrinkage and selection
operator. ROC, Receiver operator characteristic.
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2.8. Statistics Analysis

All statistical analyses of radiomics features were performed by R software (Version
3.6.0, https://www.r-project.org/, accessed date 29 March 2019). The following R packages
were utilized: psych package (version 2.1.9) for the calculation of ICCs, glmnet package
(version 4.1-1) for LASSO, pROC package (version 1.17.0.1) for ROC curves, and e1071
package (version 1.7-6) for the DeLong test.

The statistical analysis of demographic features was performed by IBM SPSS software
(version 21.0). Continuous variables were compared using Mann–Whitney U tests and
categorical variables were compared using chi-square tests. For all tests, a two-sided p
value less than 0.05 was considered statistically significant.

3. Results
3.1. Patient Characteristics

Patients’ demographic information is recorded in Table 1. No significant differences
were observed between the training and validation cohorts in terms of age, gender, smoking,
drinking, T stage, N stage, or clinical stage.

Table 1. Clinical characteristics of the training cohort and validation cohort.

Training Cohort Validation Cohort p
n = 229 n = 100

Age(years) 50.341 ± 10.274 48.570 ± 11.488 0.241
Gender 0.817

Male 162 (70.742%) 72 (72.000%)
Female 67 (29.258%) 28 (28.000%)

Smoking 0.367
Yes 120 (52.402%) 47 (47.000%)
No 109 (47.598%) 53 (53.000%)

Drinking 0.186
Yes 105 (45.852%) 38 (38.000%)
No 124 (54.148%) 62 (62.000%)

T stage 0.528
T1 36 (15.721%) 17 (17.000%)
T2 90 (39.301%) 42 (42.000%)
T3 63 (27.511%) 20 (20.000%)
T4 40 (17.467%) 21 (21.000%)

N stage 0.624
N0 49 (21.397%) 24 (24.000%)
N1 99 (43.231%) 44 (44.000%)
N2 55 (24.017%) 18 (18.000%)
N3 26 (11.354%) 14 (14.000%)

Clinical stage 0.701
I 13 (5.677%) 6 (6.000%)
II 71 (31.004%) 31 (31.000%)
III 82 (35.808%) 30 (30.000%)
IV 63 (27.511%) 33 (33.000%)

Note: Continuous variables were compared using Mann–Whitney U tests and categorical variables were compared
using chi-square tests. p < 0.05 indicated significant differences.

3.2. Interobserver and Intraobserver Agreement

Only 407 features from CE-T1WI, 390 features from T1WI, and 338 features from T2WI,
whose ICC scores were all greater than 0.75, were selected. In total, 1135 radiomics features
were selected for the following analysis, listed in Supplementary Materials File B.

3.3. Dimensionality Reduction and Radiomics Feature Selection

All 1135 radiomics features showed significant differences (p < 0.05) when tested
by independent samples t tests or Mann–Whitney U tests and were used for LASSO
regression. This was followed by the selection of 13, 9, 7, and 9 features derived from

https://www.r-project.org/
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combined sequences (CE-T1WI + T1WI + T2WI, CE-T1WI + T1WI, T1WI + T2WI, and
CE-T1WI + T2WI) to construct Models A, B, C, and D respectively. Ten, seven, and six
features derived from single sequences (CE-T1WI, T1WI, and T2WI) were selected to
construct Models E, F, and G respectively. The selected features for each model and
calculation formulas for Rad-scores are shown in Table 2.

Table 2. The selected features for each model and calculation formulas for radiomics scores.

Sequence Numbers of Selected
Features Selected Features Coefficients

A (CE-T1WI +
T1WI + T2WI)

13 Intercept −2.29674179
CE-T1WI_Shape_LeastAxisLength 0.74147306

CE-T1WI_Shape_Maximum2DDiameterSlice 0.85277531
CE-T1WI_LoG.sigma.2.0.mm.3D_GLSZM_ZoneEntropy 3.20584709

T1WI_Wavelet.HLH_GLCM_InverseVariance 0.13071358
T2WI_Wavelet.LLL_firstorder_10Percentile −0.10023274
CE-T1WI_Wavelet.HLL_firstorder_Mean 0.01520543

CE-T1WI_Wavelet.HHL_GLCM_Imc1 0.43246473
CE-T1WI_Wavelet.LLL_GLCM_ClusterShade 0.01804038

CE-T1WI_NGTDM_Busyness 0.08374613
T1WI_LoG.sigma.0.5.mm.3D_GLSZM_GrayLevelNonUniformity 0.20730698

T1WI_Wavelet.LLH_GLCM_MaximumProbability −0.57803318
T2WI_LoG.sigma.2.0.mm.3D_firstorder_Median 0.30651800

T2WI_Wavelet.LLL_firstorder_Median −0.81238312

B (CE-T1
WI + T1WI)

9 Intercept −3.55286386
CE-T1WI_Shape_LeastAxisLength 1.19584018

CE-T1WI_Shape_Maximum2DDiameterSlice 0.63791229
CE-T1WI_LoG.sigma.2.0.mm.3D_GLSZM_ZoneEntropy 3.25384123

CE-T1WI_Wavelet.HLL_firstorder_Mean 0.08296501
CE-T1WI_Wavelet.HHL_GLCM_Imc1 0.30143138

CE-T1WI_Wavelet.LLL_GLCM_ClusterShade 0.02020103
CE-T1WI_NGTDM_Busyness 0.12360246

T1WI_LoG.sigma.0.5.mm.3D_GLSZM_GrayLevelNonUniformity 0.23228234
T1WI_Wavelet.LLH_GLCM_MaximumProbability −0.67821075

C (T2WI + T1WI)
7 Intercept −0.45953586

T2WI_LoG.sigma.2.0.mm.3D_firstorder_Median 0.66448895
T2WI_Wavelet.LLL_firstorder_Median −0.11340379

T1WI_Shape_LeastAxisLength 0.07440248
T1WI_Shape_Maximum2DDiameterSlice 1.30038478

T1WI_Shape_MinorAxisLength 0.04818318
T1WI_LoG.sigma.0.5.mm.3D_GLSZM_GrayLevelNonUniformity 0.48611908

T1WI_Wavelet.LLH_GLCM_MaximumProbability −0.03052694

D (CE-T1
WI + T2WI)

9 Intercept −3.66635179
CE-T1WI_Shape_LeastAxisLength 0.64460654

CE-T1WI_Shape_Maximum2DDiameterSlice 0.96018848
CE-T1WI_LoG.sigma.2.0.mm.3D_GLSZM_ZoneEntropy 3.95808134

T2WI_Wavelet.LLL_firstorder_10Percentile −0.21538833
CE-T1WI_Wavelet.HHL_GLCM_Imc1 0.30330139

CE-T1WI_Wavelet.LLL_GLCM_ClusterShade 0.00170924
CE-T1WI_NGTDM_Busyness 0.14266115

T2WI_LoG.sigma.2.0.mm.3D_firstorder_Median 0.36736992
T2WI_Wavelet.LLL_firstorder_Median −0.49868865
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Table 2. Cont.

Sequence Numbers of Selected
Features Selected Features Coefficients

E (CE-T1WI) 10 Intercept −4.66905571
Shape_LeastAxisLength 1.33242867

Shape_Maximum2DDiameterSlice 0.84780188
LoG.sigma.2.0.mm.3D_GLSZM_ZoneEntropy 3.51313223

Wavelet.LHL_GLCM_InverseVariance −0.16837098
LoG.sigma.2.0.mm.3D_GLCM_InverseVariance −0.03184454

Wavelet.HLL_firstorder_Mean 0.08653895
Wavelet.LHL_GLDM_DependenceNonUniformityNormalized 0.27658583

Wavelet.HHL_GLCM_Imc1 0.42044564
Wavelet.LLL_GLCM_ClusterShade 0.06160728

NGTDM_Busyness 0.29172003

F (T1WI) 7 Intercept −2.53872918
Shape_LeastAxisLength 1.30506559

Shape_Maximum2DDiameterSlice 1.07343910
Wavelet.HLH_GLCM_InverseVariance 1.31055892

LoG.sigma.0.5.mm.3D_GLSZM_GrayLevelNonUniformity 0.55947887
Wavelet.LLH_GLCM_MaximumProbability −0.76719457

Wavelet.HLH_GLCM_Imc1 0.07350668
Wavelet.HHL_GLSZM_GrayLevelNonUniformity 0.06013319

G (T2WI) 6 Intercept −0.70475300
Shape_LeastAxisLength 0.32835260

Shape_Maximum2DDiameterSlice 1.44163325
Shape_MinorAxisLength 0.34220331

LoG.sigma.2.0.mm.3D_firstorder_Median 0.79732259
Wavelet.LHL_GLSZM_GrayLevelNonUniformity 0.04805125

Wavelet.LLL_firstorder_Median −0.08102625

Note: Eight different combinations of low-pass (L) and high-pass (H) filters wavelet transformations were used
(i.e. LLH, LHL, LHH, HLL, HLH, HHL, HHH, LLL). GLCM, Gray-level co-occurrence matrix. GLDM, Gray-level
dependence matrix. GLRLM, Gray-level run length matrix. GLSZM, Gray-level size zone matrix. LoG, Laplacian
of Gaussian. NGTDM, Neighboring gray tone difference matrix.

3.4. Performance of Different Models and Radiologists

Median values and interquartile ranges of the Rad-scores in the training and validation
cohorts are listed in Table 3. All showed potential abilities in differentiating stage I–II from
stage III–IVa both in training (all p < 0.001) and validation (all p < 0.001) cohorts, with the
Rad-scores of the latter being much higher. The Rad-scores of seven models for each patient
in the training and validation cohorts regarding the classification of stage I–II and stage
III–IVa NPC are depicted in Figure 3.

The classification performance of readers and seven radiomics models are listed
in Table 4. The ROC curves of different radiomics models and readers are shown
in Figure 4. When comparing the performance of human visual assessment with all
radiomics models using the DeLong test, readers (with an AUC, accuracy, specificity, and
sensitivity of 0.721, 0.716, 0.738, and 0.703, respectively) showed the worst performance.
When comparing the performance of Model A with that of the other radiomics models
using the DeLong test, Model A (with an AUC, accuracy, specificity, and sensitivity of
0.847, 0.729, 0.571, and 0.820, respectively) showed the best performance in the training
cohort. However, there were no significant differences for any of the validation cohorts.
Furthermore, there were no significant differences when comparing the performance of
other models in pairs.
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Table 3. The median of Rad-scores based on different sequences.

Training Cohort Validation Cohort

Stage I–II Stage III–IV p Stage
I–II Stage III–IV p

A (CE-T1WI + T1WI + T2WI) −0.044
(−0.334–0.414)

1.122
(0.342–1.719) <0.001 −0.080

(−0.701–0.376)
1.052

(0.421–1.555) <0.001

B (CE-T1WI + T1WI) 0.044
(−0.371–0.438)

1.059
(0.319–1.742) <0.001 −0.089

(−0.541–0.390)
1.046

(0.505–1.559) <0.001

C (T1WI + T2WI) 0.027
(−0.200–0.413)

1.006
(0.305–1.555) <0.001 0.059

(−0.335–0.351)
0.824

(0.305–1.512) <0.001

D (CE-T1WI + T2WI) −0.019
(−0.245–0.463)

1.072
(0.352–1.697) <0.001 −0.125

(−0.582–0.463)
1.011

(0.514–1.518) <0.001

E (CE-T1WI) 0.034
(−0.336–0.471)

1.062
(0.267–1.791) <0.001 −0.108

(−0.483–0.315)
1.100

(0.454–1.564) <0.001

F (T1WI) 0.012
(−0.277–0.442)

0.990
(0.256–1.682) <0.001 −0.066

(−0.429–0.233)
0.882

(0.384–1.720) <0.001

G (T2WI) 0.047
(−0.218–0.420)

0.962
(0.276–1.577) <0.001 0.106

(−0.293–0.375)
0.924

(0.428–1.529) <0.001

Note: Data are expressed as the median (interquartile range); p < 0.05 indicates significant differences.

In the models constructed with features derived from combined sequences, although
Model A showed the best classification performance, there were no significant differences
between Models A and D (CE-T1WI + T2WI, the AUC, accuracy, specificity, and sensitivity
in the training cohort were 0.826, 0.751, 0.679, and 0.793, respectively) in the training cohorts.
Model C (T1WI + T2WI) showed the worst classification performance, with the lowest
AUC value of 0.812 in the training cohort (the accuracy, specificity, and sensitivity were
0.703, 0.595, and 0.766, respectively).
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Table 4. The performance of 7 radiomics models in staging NPC.

95%CI AUC Specificity SensitivityAccuracy PPV NPV Z1 P1 Z2 P2

Reader training — 0.721 0.738 0.703 0.716 0.823 0.590 — — — —
validation — 0.790 0.865 0.714 0.770 0.900 0.640 — — — —

A training [0.799–0.895] 0.847 0.571 0.820 0.729 0.768 0.649 3.725 0.000 * — —
validation [0.741–0.906] 0.824 0.676 0.794 0.750 0.806 0.658 0.704 0.481 — —

B training [0.777–0.879] 0.820 0.560 0.814 0.721 0.761 0.635 2.775 0.006 * 1.992 0.046 *
validation [0.757–0.914] 0.803 0.568 0.810 0.720 0.761 0.636 0.258 0.797 0.796 0.426

C training [0.768–0.873] 0.812 0.595 0.766 0.703 0.766 0.595 2.610 0.009 * 2.560 0.010 *
validation [0.718–0.887] 0.804 0.514 0.809 0.700 0.739 0.613 0.308 0.758 0.658 0.511

D training [0.774–0.878] 0.826 0.679 0.793 0.751 0.810 0.655 3.050 0.002 * 1.814 0.070
validation [0.757–0.914] 0.836 0.703 0.762 0.740 0.814 0.634 0.953 0.341 −0.674 0.500

E training [0.790–0.891] 0.839 0.667 0.821 0.764 0.810 0.683 3.271 0.001 * 0.433 0.665
validation [0.656–0.853] 0.760 0.622 0.794 0.730 0.781 0.639 0.953 0.341 1.523 0.128

F training [0.747–0.858] 0.803 0.583 0.841 0.747 0.777 0.681 2.299 0.022 * 2.644 0.008 *
validation [0.759–0.915] 0.837 0.568 0.825 0.730 0.765 0.656 0.963 0.336 −0.533 0.594

G training [0.734–0.848] 0.791 0.631 0.766 0.716 0.782 0.609 2.015 0.044 * 3.363 0.001 *
validation [0.749–0.907] 0.828 0.595 0.794 0.720 0.769 0.629 0.799 0.425 −0.138 0.891

Note: Z1 and P1, the performance of readers compared with that of radiomics models using the DeLong test. Z2
and P2, the performance of Model A compared with that of the other radiomics models using the DeLong test.
* p < 0.05. AUC, area under the curve. CI, confidence interval. PPV, positive predictive value. NPV, negative
predictive value. A, CE-T1WI + T1WI + T2WI. B, CE-T1WI + T1WI. C, T2WI + T1WI. D, CE-T1WI + T2WI. E,
CE-T1WI. F, T1WI. G, T2WI.
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Figure 4. ROC curves of different models and readers. Note: (A) shows the ROC curves of different
radiomics models and readers in the training cohort; Model A showed the highest AUC value.
(B) shows the ROC curves of different radiomics models and readers in the validation cohort. A,
CE-T1WI + T1WI + T2WI. B, CE-T1WI + T1WI. C, T2WI + T1WI. D, CE-T1WI + T2WI. E, CE-T1WI. F,
T1WI. G, T2WI. Re, readers.

In the models constructed with features derived from a single sequence, Model E
(CE-T1WI) showed the best classification performance in the training cohort (the AUC,
accuracy, specificity, and sensitivity were 0.839, 0.764, 0.667, and 0.821, respectively), which
ranked second to that of Model A. However, there were no significant differences between
Models A and E in either the training cohort or the validation cohort. Model G (T2WI)
showed the worst classification performance in the training cohort (with an AUC, accuracy,
specificity, and sensitivity of 0.791, 0.716, 0.631, and 0.766, respectively).

4. Discussion

In this retrospective study, the median Rad-scores in advanced-stage NPC were all
higher than those in early-stage NPC, which indicated great potential of radiomics features
in differentiating early-stage NPC from advanced-stage NPC. However, the reason was
unknown, maybe due to the fact that every model’s features consisted of two or more
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features related to the shape of lesions, and most of the advanced-stage tumor lesions were
bigger than that of early-stage. Thus, median Rad-scores in advanced-stage NPC were all
higher than those in early-stage NPC.

As expected, all radiomics models showed better classification performance than
that of visual assessment by a set of radiologists with less experience, with Model A
(CE-T1WI + T1WI + T2WI) the best (AUC: 0.847 in the training cohort and 0.824 in the
validation cohort). This may be due to the complicated anatomy of the head and neck,
undefined involvement of surrounding tissues, and ambiguous metastasis of lymph
nodes, which make it difficult for young radiologists to accurately identify clinical stages.
However, there were no significant differences in validation cohorts when comparing
classification performance of visual assessment with that of radiomics models. As we
all know, adjacent invasion tissues and metastatic neck LNs were highly relevant to
TNM stage of NPC patients, thus MR images of invasion tissue and metastatic neck
LNs contained much information related to clinical stages. However, in our study, ROIs
did not cover the adjacent invasion tissues and metastatic neck LNs. The ignorance
of these images may have resulted in no significant differences in validation cohorts
when comparing classification performance of radiomics models with that of visual
assessment. However, given that most AUC values for radiomics models were higher
than that of visual assessment, it cannot be denied that radiomics models showed better
classification performance.

By extracting quantitative parameters from MR images, machine learning classifiers
can minimize the influence of radiologists’ differing experience and accurately characterize
intratumoral heterogeneity [13]. However, for the validation cohort, no significant differ-
ences were observed between any of the models, which may be due to its small sample size
and the imbalanced sample size for each stage of NPC patients (the number of advanced-
stage patients was almost twice that of early-stage). As shown in Table 2, there were many
identical features selected for each model, especially for models A, B, D and E. This was
considered the reason for no significant differences between the validation cohorts of each
model and training cohorts of model A, D, and E. Features related to the shape of tumors
were selected in all models, the reason being that most tumor lesions in advanced-stage
were bigger than that in early-stage, and were considered the most significant features for
clinical staging.

Furthermore, CE-T1WI was considered the most significant sequence for staging
NPC. As we can see, Model E (CE-T1WI) showed the best classification performance in
the models constructed from a single sequence, which ranked second only to Model A
(with no significant differences between them). This may be due to the concentration of
contrast material in CE-T1WI, which revealed the blood supply of the tumor, so CE-T1WI
can provide more information for clinical staging of NPC. However, features derived
from T1WI and T2WI should not be ignored, since they helped Model A to achieve the
best classification performance. We thought this was due to different sequences of MR
images reflecting different characteristics of the tumor tissue, meaning that radiomics can
extract totally different features from different sequences, which played an important role
in accurately identifying stages [6].

One study showed similar conclusions to ours; its CE-T1WI showed better classifica-
tion performance than that of T2WI, and signatures from CE-T1WI + T2WI showed the best
performance (AUC: 0.850 in training cohorts and 0.849 in validation cohorts) [33]. How-
ever, in our study, the classification performance of CE-T1WI+T2WI showed no significant
difference from that of CE-T1WI, which may be owing to the different subjects and smaller
sample size (127 head and neck squamous cell carcinoma patients) in that study.

To our knowledge, our study is the first to differentiate early-stage NPC patients from
advanced-stage NPC patients. A previous study established a weakly supervised deep
learning network, with 1138 cases of images (T1WI, T2WI, and CE-T1WI) inputted to train
this model which achieved good performance in automated T staging of NPC (the average
AUC value of different T stages was 0.943) and showed no significant differences in PFS
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and overall survival with those of the TNM stage system [30]. Although deep learning
showed great potential in automatic T staging, an accurate clinical stage of NPC was still
not achieved due to the unknown N stage in that study. Moreover, large numbers of MR
images are usually needed to train deep learning models, which makes it difficult to be
replicated and verified.

Another previous study established five Convolutional Neural Network models
combined with transfer learning to differentiate advanced stages (III and IV) of NPC.
Patches of CE-T1WI and T2WI images containing tumors, metastatic lymph nodes, and
their adjacent tissues were inputted for training. The predicted stages were finally
obtained by software voting, with the combined model showing better classification
performance (accuracy: 0.81) than that of the TNM stage system and the traditional
radiomics model under the same experimental conditions [29]. However, approximately
only 200 patients were enrolled in that study, the accuracy of the model may have been
compromised, and early-stage patients were not included. In addition, deep learning is
still considered a black-box technique and should be interpretable for crucial application.
In our study, features were directly extracted from primary tumors to predict the overall
clinical stage, which decreased the influences of different radiologists and unknown
N stage in accurate staging. The model was a classical machine learning method with
specific algorithms and achieved good performance (AUC: 0.847) in differentiating early-
stage NPC from advanced-stage NPC, which highlighted the great potential of radiomics
in predicting the clinical stage of NPC.

Although good performance was achieved in our study, there were still inaccurate
staging cases. The reasons for these may be as follows: (1) Sample sizes were imbalanced
for the two groups in this study. (2) The involvement of the parapharyngeal space was
proven to be related to T stage and prognosis of NPC [34], thus only tumor tissues were
obtained; removing the related tissues and metastatic lymph nodes may decrease accuracy.
(3) This study directly predicted clinical stages instead of T and N stages, which may ignore
the specific sites of invasion and lead to inaccuracy. (4) Images in the coronal plane and
sagittal plane were not included in the model construction, which may lead to the loss of
some imaging information.

There are some limitations in this study: (1) There was no external cohort to verify
these radiomics models. (2) Only a two-stage classification framework was performed; the
effect of radiomics in differentiating more detailed clinical stages was lacking. (3) A slice
thickness of 5 mm may miss the minor invasion and lead to inaccurate stages. (4) Only
patients admitted from 2013–2016 were enrolled in this study, because it was the first part
of our research; a 5-year follow-up was needed for the rest. We plan to enlarge and balance
the sample sizes of each stage to further investigate the ability of radiomics to predict the
prognosis and differentiate more detailed clinical stages of NPC.

5. Conclusions

In conclusion, radiomics models showed great potential in distinguishing early-stage
(I–II) from advanced-stage (III–IVa) NPC patients, and Model A (CE-T1WI + T1WI + T2WI)
performed the best. Furthermore, CE-T1WI showed the highest significance in staging NPC.
However, imbalanced sample sizes, ignorance of adjacent tissue and LNs, and a single
machine learning classifier may all lead to inaccurate staging cases, and also resulted in no
significant differences for validation cohorts between models and visual assessment. Thus,
we plan to enlarge and balance our sample size, extend the ROI to contain adjacent tissue and
LNs, and compare the classification performance of different machine learning classifiers and
deep learning, to find an accurate staging method for NPC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics13020300/s1, Supplement A: All detailed original
radiomics features. Supplement B: All radiomics features with ICC > 0.75 for both intra- and
interobserver agreement.
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