
Citation: Bhachawat, S.; Shriram, E.;

Srinivasan, K.; Hu, Y.-C. Leveraging

Computational Intelligence

Techniques for Diagnosing

Degenerative Nerve Diseases: A

Comprehensive Review, Open

Challenges, and Future Research

Directions. Diagnostics 2023, 13, 288.

https://doi.org/10.3390/

diagnostics13020288

Academic Editor: Ahsan

Khandoker

Received: 4 November 2022

Revised: 28 December 2022

Accepted: 10 January 2023

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Review

Leveraging Computational Intelligence Techniques for
Diagnosing Degenerative Nerve Diseases: A Comprehensive
Review, Open Challenges, and Future Research Directions
Saransh Bhachawat 1,†, Eashwar Shriram 2,†, Kathiravan Srinivasan 1 and Yuh-Chung Hu 3,*

1 School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
2 School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India
3 Department of Mechanical and Electromechanical Engineering, National Ilan University, Yilan 26047, Taiwan
* Correspondence: ychu@niu.edu.tw
† These authors contributed equally to this work.

Abstract: Degenerative nerve diseases such as Alzheimer’s and Parkinson’s diseases have always
been a global issue of concern. Approximately 1/6th of the world’s population suffers from these
disorders, yet there are no definitive solutions to cure these diseases after the symptoms set in. The
best way to treat these disorders is to detect them at an earlier stage. Many of these diseases are
genetic; this enables machine learning algorithms to give inferences based on the patient’s medical
records and history. Machine learning algorithms such as deep neural networks are also critical for the
early identification of degenerative nerve diseases. The significant applications of machine learning
and deep learning in early diagnosis and establishing potential therapies for degenerative nerve
diseases have motivated us to work on this review paper. Through this review, we covered various
machine learning and deep learning algorithms and their application in the diagnosis of degenerative
nerve diseases, such as Alzheimer’s disease and Parkinson’s disease. Furthermore, we also included
the recent advancements in each of these models, which improved their capabilities for classifying
degenerative nerve diseases. The limitations of each of these methods are also discussed. In the
conclusion, we mention open research challenges and various alternative technologies, such as virtual
reality and Big data analytics, which can be useful for the diagnosis of degenerative nerve diseases.

Keywords: degenerative nerve diseases; neurodegenerative disorder; machine learning; deep learning;
progressive brain diseases; diagnosis

1. Introduction

Degenerative nerve diseases, or neurodegenerative disorders, are diseases caused
due to the gradual degeneration of neurons so that the connection between the cells and
the nervous system weakens. These disorders are considered incurable and are usually
observed in the elderly, i.e., at ages above 60. With the increase in population, the number
of patients suffering from degenerative nerve diseases is increasing exponentially. The
World Health Organization reported that, in 2022, more than 55 million people were
diagnosed with dementia and over 60% of these patients live in low- or middle-income
countries [1]. This means that a vast majority of these patients might be unaware of the early
symptoms and are unable to obtain early treatment. The number of patients with dementia
is increasing at a rate of 10 million per year. This rapid rate in cases of dementia as well as
other neurodegenerative disorders makes them a major concern for society. Therefore, there
has also been a significant increase in research aimed at diagnosing patients at an early
stage of the disease so that its progression can be slowed down [2–4]. Some of the most
common degenerative nerve diseases include Alzheimer’s disease, Parkinson’s disease,
dementia, Huntington’s disease, and amyotrophic lateral sclerosis, with Alzheimer’s being
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the most common. Their usual effects include loss of memory, irregular behavior, and
damage to the functioning of motor neurons.

Machine learning (ML) and deep learning (DL) show a lot of potential for the diagnosis
of degenerative nerve diseases [5,6]. In the last decade, new technologies such as ultra-
sonography and magnetic resonance imaging (MRI) were created, enabling large datasets
that can be studied by ML and DL algorithms [7,8]. Recently, datasets were enriched
with data obtained from advanced technologies such as electroencephalography (EEG)
and single-photon emission computerized tomography (SPECT), which have made model
predictions even more accurate [9]. This boosted the number of researchers studying and
creating new frameworks for the early diagnosis of degenerative nerve diseases. These
models have shown better scalability and accuracy than their predecessors. One such
model, VEPAD, uses a random forest classifier to identify the different harmful variants
of Alzheimer’s disease at a very high accuracy [10]. Another novel model, which uses a
convolutional recurrent neural network and cross dataset learning with an extreme learning
machine to classify patients of Parkinson’s disease using intrinsic emotions, has shown
great performance, giving better results than even state-of-the-art studies [11]. Thus, sur-
veying these recent developments in ML and DL can give great insights into the future
potential of using these models for the early diagnosis of degenerative nerve diseases.
Table A1 in Appendix A contains a list of glossary/nomenclature/abbreviations used in
this review, as well as their definitions.

1.1. Contributions of This Review

Our survey contributions can be summarized as follows:

• Through this paper, we present an extensive study of machine learning and deep learn-
ing models used for diagnosing degenerative nerve diseases and show that ML and
DL have a high potential for facilitating the diagnosis of degenerative nerve diseases.

• We give a detailed account of the recent developments made to improve the accuracy,
scalability, and sensitivity of various ML and DL algorithms mentioned in this paper.

• Key highlights and limitations of these newly developed models are also discussed
in detail.

• Along with this, alternate research directions for the diagnosis of degenerative nerve
diseases disorders using the fields of IoT (Internet of Things), quantum computing,
Big data analytics, etc., are also touched upon.

1.2. Shortcomings of the Existing Reviews

There are numerous reviews on the diagnosis of degenerative nerve diseases using
artificial intelligence. They cover the various ML and DL models and a variety of diseases,
but a major shortcoming in many such reviews is the lack of an exhaustive study of both
ML and DL models. A large number of reviews have also not explored other fields that
have the potential to contribute to the early diagnosis of degenerative nerve diseases. Our
article is a comprehensive review of the various new ML and DL models being developed,
how they have been implemented, what their limitations are, and what the future scope of
improvement is and other technology fields such as Internet of Things and digital twin,
which can be used to further aid in the diagnosis of degenerative nerve diseases.

2. Survey Methodology

For this survey, we utilized the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) procedure to identify and choose which articles were relevant to
this survey and filter those articles from the others. We sourced the articles from Google
Scholar, ScienceDirect, IEEE Xplore, Elsevier, Springer, and other databases for this review.
The referred articles include those written and published in English between January 2013
and February 2022 on various machine learning and deep learning algorithms and their
applications for diagnosing degenerative nerve diseases. Articles that were published in
languages other than English between January 2013 and February 2022, including case
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reports, opinions, commentaries, and dissertations, were excluded from this survey. After
shortlisting the 1865 papers, we applied the exclusion and inclusion criteria and shortlisted
122 papers. Figure 1 portrays the PRISMA flow diagram for the selection process of the
research articles used in this review. Figure 2 shows the distribution of the reviewed papers
by year. Figure 3 shows the general structure of this review article.
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3. Common Degenerative Nerve Diseases

Degenerative nerve diseases are neurological diseases that, with time, deteriorate
the nervous functioning in our body, which causes cognitive impairments. Most of these
diseases do not have a definitive cure, but detecting them at an early stage can help slow
down the disease progression at a significant rate.

3.1. Dementia

Dementia is a degenerative nerve disease generally observed in the elderly, in which
one person loses two or more cognitive abilities [12]. This is mainly due to some injury
to the brain or some brain-related damage. The symptoms of the disease are cognitive
impairment, hallucinations, both auditory and visual, and depression [13]. It is generally
observed in people above the age of 65. With early diagnosis of this disease, we can slow
down the process of this disease in our body to maintain the patient’s mental consciousness.
Dementia contributes to about 10% of the total number of diseases observed in patients
suffering from degenerative nerve diseases [14].

3.2. Parkinson’s Disease

Parkinson’s disease is the second most common degenerative nerve disease in the
world. It also affects the elderly, and it is most common in the age group above 60. Medical
help can help the patient a lot only if detected early in the patients [15]. Some of the
common symptoms of Parkinson’s disease are a change in posture and change in gait,
along with bradykinesia [16]. Until now, changes observed in the genes of SNCA, LRRK2,
VPS35, PRKN, PINK1, DJ-1, and GBA have been linked with the typical PD in humans [17].
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3.3. Huntington’s Disease

Huntington’s disease is related to a DNA strand called the CAG (cytosine, adenine,
guanine) trinucleotide repeat. It is caused when this is dominantly inherited by the hunting
gene on chromosome 4 of the human body [18]. This disease is characterized by behavioral
symptoms, cognitive decline, and movement disorder [19]. Recent studies have shown that
the mutated huntingtin protein in humans is not only found in the central nervous system
but also found in different organs and tissues of the body [20].

3.4. Alzheimer’s Disease

Alzheimer’s disease is the most common degenerative nerve disease in humans.
Currently, researchers are working on symptomatic therapy as a treatment for this disease,
but medical help can significantly improve the quality of the person’s life only if detected
in the early stages [21]. The symptoms are difficulties with problem-solving, language, and
the memory of a person [22]. Right now, there are two classes of approved drugs to treat
Alzheimer’s disease, which include inhibitors to the cholinesterase enzyme and antagonists
to N-methyl D-aspartate, but these cannot cure or prevent the disease in humans [23].

3.5. Amyotrophic Lateral Sclerosis

Known also as ALS, this is a degenerative nerve disease that also affects the motor
system of a human being. The person experiences weakness most commonly in the limb
and distal muscles [24]. Generally, it proves fatal within 2–5 years of its onset in an
individual. Its symptoms are upper and lower motor neuron degeneration [25]. A variety
of cellular-level processes might be the trigger for causing ALS pathomechanisms but a
single gene with direct metabolic disturbance has not been found or linked yet [26].

3.6. Friedreich Ataxia

This is the most widely observed hereditary ataxia in humans. It occurs in a person
due to homozygous or compound heterozygous transformations in the FXN gene of a
human being [27]. Some of the symptoms of this disease are dysarthria, areflexia, and gait
ataxia [28]. The leading cause of death in Friedrich ataxia is cardiomyopathy [29]. It is a
rare disease that occurs due to a deficiency of a mitochondrial matrix protein called frataxin.
This affects about 1 out of 50,000 individuals worldwide [30].

3.7. Spinal Muscular Atrophy

Spinal muscular atrophy (SMA) is the cause of the highest number of deaths in children
and is of genetic origin. It is a neuromuscular disorder that makes a person unable to
sit, stand, or walk [31]. The symptoms of this disease are a weakening of skeletal and
respiratory muscles over time and the degeneration of lower motor neurons in humans [32].
Some research showed that gene therapy was effective in children under the age of 6 months
for treating SMA [33]. The most common and dangerous type of SMA observed in humans
is type 1 SMA [34].

4. Computational Intelligence Techniques for Diagnosing Degenerative Nerve Diseases

4.1. Machine Learning Techniques

In this section, we describe several supervised, unsupervised, and semi-supervised
models and their potential applications in the diagnosis of degenerative nerve diseases in
humans. Data that were used and the methodology employed are described along with
the limitations of each model [35–75]. Figure 4 represents machine learning models for
degenerative nerve disease diagnosis used in this review through a tree illustration.
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4.1.1. Artificial Neural Network

Artificial neural networks are models that are used to simulate the human nervous
system. They have several layers of “neurons” or nodes, depending on the computations
required in the problem statement.

In the field of degenerative nerve disease diagnosis, artificial neural networks are
used to differentiate the dataset containing medical records of patients having Alzheimer’s
disease from those patients who have mild cognitive impairment, only using unprocessed
data from their electroencephalogram [35]. This aids medical practitioners in accelerating
the diagnosis for such patients. Recently, a study aiming to identify the use case of ANNs for
the diagnosis of degenerative disorders managed to obtain a sensitivity of 93.8% using the
ANN algorithm on the brain SPECT (single photon emission computerized tomography) of
the patients’ records. This successfully proved the use case of ANNs in clinical practice, but
after comparing it with discriminatory analysis, which also achieved a sensitivity of 86.1%,
there is no significant benefit of using an ANN algorithm over other algorithms [36]. This
limitation may be overcome by supplying the dataset with more data, which would aid in
increasing the accuracies of these neural network models. Additionally, by employing many
biomarker modalities, the accuracy may improve in identifying mild cognitive impairment
in the patients [37].

ANN is also making strides in the field of diagnosing dementia. A study conducted
recently using real world data of patients from a hospital in Brazil constructed an algorithm
using C++ in which a regression model subject to feedforward ANN was used to classify
different stages that the individuals went through in the spread of the disease in their body.
The algorithm was trained through 200,000 iterations and had three elements to its output
layers. One element showed individuals with dementia, one showed individuals with MCI,
and the last element showed non-symptomatic people [38].

4.1.2. Support Vector Machine

In SVMs, the object that we want to classify is represented as a point in the n-
dimensional space, and the coordinates of this point are known as features. SVMs perform
the classification test by drawing a hyperplane to differentiate the points [39].

SVMs can be of great importance to classify patients with AD. This was showcased by
a study on Alzheimer’s disease in Thailand, in which subjects were randomly assigned to
training and testing groups for the validation and construction of an SVM model. The study
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showed that clinical parameters, used with SVM classifiers, showed high accuracy when
diagnosing patients with Alzheimer’s [40]. However, this study was based on a small group
of subjects, including patients who were clinically diagnosed with dementia along with
those who came from a community survey. Therefore, due to the smaller scale and lack of
diversity, the generalization of the study might produce a different accuracy. Another recent
study used the dragonfly technique (DA), a meta-heuristic algorithm, to improve the input
data for a better performance of the SVM. Unlike particle swarm optimization, artificial
bee colony and ant colony optimization, and other popular meta-heuristic algorithms that
have only one target, DA is special in that it has both a target and an enemy, i.e., in DA,
flies will always be between the target (upper bound) and the enemy (lower bound) [41].
This helps in the selection of optimal parameters, thus aiding the SVM model and showing
a significant increase in accuracy.

A key limitation observed when using SVMs for the classification of dementia and
other diseases is that, in the datasets being used, if the classification and normalization of
the subject groups are not accurate, then this might sabotage the estimation of dementia in
elderly people. Additionally, a large amount of test subjects is needed to form an enriched
dataset to increase accuracies of the various models being used [42].

SVM also has applications in the diagnosis of Parkinson’s disease. In a recent study,
the authors used a dataset consisting of human voice patterns to find out if individuals
suffer from Parkinson’s or remain asymptomatic. A non-linear SVM was used to test all
22 voice patterns in the dataset by applying a ten-fold cross-validation in the training and
testing stages of the model. It achieved a good accuracy of 92.13% and was fruitful in
differentiating between the individuals based on their voice patterns [43].

4.1.3. K-Means Clustering

The goal of the k-means algorithm is to group similar data points together to form
predefined groups of clusters. Two data points that are closer together are more similar
compared to two data points that are farther apart [44].

One of the most noteworthy methods used to detect Parkinson’s in a patient is by
checking if he/she exhibits freezing of gait (FOG) in their motor behavior. FOG is the
behavior observed in a Parkinson’s patient wherein they have a lot of distress in demon-
strating their motor skills. In the process of detecting this, the dataset is clustered into
several mini batches so that the training time may reduce and increase efficiency. The value
for k is set equal to 2 and is given a set of entropy, the clusters thus formed are given to the
FOG detection system in a random order, and the results are observed [45]. However, this
system suffers from a lower sampling frequency, which reduces the amount of data that
could be updated and potentially affects the performance of the current model. Another
development in the application of k-means clustering in the field of neuro-biology was
deployed in the detection of Alzheimer’s disease. The MRI images are obtained from the
dataset, in which top-hat and bottom-hat filtering is used to increase the image quality.
The filtered images are then processed using k-means to obtain the results [46]. An early
diagnosis of the diseases might also be aided by studying the functional connectivity of
patients. A study for patients suffering from AD and dementia with Lewy bodies using
k-mean clustering and dynamic analyses showed the differences in the functional con-
nectivity of the patients and the healthy population, but it did not show any significant
difference in patients with a different severity of the diseases. Further enhancements to the
usage of k-means clustering are necessary to overcome issues such as the misdiagnosis of
diseases. For example, the models could not find the difference between patients suffering
from Lewy body dementia (LBD) who took dopaminergic medicines and patients who did
not [47].

K-means clustering also has potential applications in diagnosing Huntington’s disease.
Though this was only tested on mice, the algorithm successfully classified the subjects into
clusters and gave the differentiation between mice who might suffer from Huntington’s
and mice who did not show any symptoms. The model was trained using original data
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from 30 mice and was programmed on MATLAB software. They tested their k-means
algorithm in both an ROC supervised and unsupervised manner to find out the best yield
of results. The ROC supervised model came out as the better method and was correct in
classifying all the mice in their respective brackets of disease probability [48].

4.1.4. Decision Tree

A decision tree splits the dataset recursively using decision nodes. It is a type of
supervised learning algorithm and is mainly used for classification problems. A decision
tree has three aspects to it: internal nodes, branches and leaf nodes [49].

In a recent study, a heterogeneous model comprising decision tree, rule induction,
random forest, and a generalized linear model was used for Huntington’s disease diagnosis.
The model was trained using a cross-validation strategy [50]. It identified the genes that are
found in a person with Huntington’s disease. A limitation of the model is that the mutant
HTT gene may interfere with the promotion of Huntington’s disease pathogenesis.

Decision trees can also be used in the early detection of Alzheimer’s disease in people.
One study outlined the decision tree model in such a way that it was optimized using
entropy and information gain [51]. This is a novel approach and showed significant
results in diagnosing the diseases at an early stage. Another study used decision trees
in compliance with hyper parameter tuning (HPT) for the early diagnosis of AD. The
study compared various algorithms on different metrics. The decision tree showed a high
precision percentage but a low recall percentage. It also showed a much lower accuracy
percentage compared to SVM and random forest when the OASIS dataset was used [52].
In a hybrid model, decision trees along with Bayesian belief networks and Naïve Bayes
classification algorithms were used as a data mining transcript for the diagnosis of dementia
in humans. This transcript mined words from the handwriting dataset of 605 medical
records to tell whether the individual might potentially suffer from dementia in the near
future or is asymptomatic and safe [53].

4.1.5. Random Forest

This algorithm creates a ‘forest’ with several decision ‘trees’. In general, more trees in
the forest lead to more robust predictions, thus giving us a higher accuracy. This method is
the same as constructing a decision in a decision tree [54].

In the detection of Parkinson’s disease, the random forest algorithm was combined
with PCA (principal component analysis), in which the training set was utilized to make six
prediction models for Parkinson’s disease based on different handwritten exams that the
patients were asked to write [55]. This was followed by a plural voting of all decision trees,
thus giving us the final classification result. A limitation of the model is that no general
feature extraction method was given for different handwritings to improve the final voting
performance. In recent times, bootstrapping was performed, in which a random sample is
taken from the sample with replacement of data [56]. This allows the algorithm to choose
from a huge variety of trees of different sizes and shapes to obtain better results. However,
the replacement of data can cause overfitting. Another model that aims to provide the
early diagnosis of Parkinson’s disease uses explanatory variables that are randomly chosen
from the samples. The study showed that random forests show better prediction accuracy
than regression models or decision trees and also bagging models when there are many
input variables. However, the study failed to take into account the obsessive-compulsive
symptoms common in patients with PD and also did not include biomarkers such as CFS.
To fetch better results and higher accuracies, a weighted voting system can be utilized in
random forest algorithms [57]. Random forest also has applications in the diagnosis of
Alzheimer’s disease in humans. In one research article, the authors proposed a method
through which they identified specific proteins in the human body that are associated
with AD in humans. They used a hybrid method of random forest with logistic regression
that randomly extracted 40 features from the dataset, and then the AD-related proteins
were found [58].
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4.1.6. Naïve Bayes

Naïve Bayes is a machine learning algorithm based on the Bayes theorem of conditional
probability. It assumes that the presence of a feature in a class is unrelated to the presence
of any other feature, even if these features depend on each other [59].

Naïve Bayes has great potential in aiding disease diagnosis. Class imbalance, a major
problem observed in large datasets, can potentially be resolved using the Naïve Bayes
algorithm, as it multiplied the class prior probability with the likelihood of the disease in
the datasets of patients suffering from dementia and gave promising results [60]. However,
the model may show a selection bias that might cause the misdiagnosis of diseases if
implemented in a clinical setting. In another study for the detection of AD, processed MRI
features were taken in partition vectors and fed to the Naïve Bayes model [61]. This made
the training of the model much smoother and more efficient in execution time, but the
model failed to incorporate data from blood cell content, protein–protein and gene–gene
interactions, etc. A general limitation in Parkinson’s disease diagnosis when using Naïve
Bayes is that it may have some fluctuations that affect the result of the final output [62].

4.1.7. K-Nearest Neighbor (KNN)

This algorithm scans for all past experiences and finds the k closest experiences; these
data points or experiences are the k-nearest neighbors. It is based on supervised learning
that assumes similarity between the new case and the available cases [63].

KNN can also be used in Alzheimer’s diagnosis in humans. A combination of KNN
along with deep neural networks can be used with a probability combination to show the
representative accuracy when 3D MRI scans are fed as data to the model [64]. Additionally,
KNN can be used to detect dementia in subjects where EEG signals are fed to it as inputs [65].
However, the current research focus has shifted to incorporate linguistic features to feed the
model so that the results obtained are more accurate and faster for dementia detection [66].

4.1.8. Extreme Learning Machine

Extreme machine learning (ELM) models are used for classification, regression, clus-
tering, and compression with a single layer or multiple layers of hidden nodes [67].

It has large applications in the diagnosis of Alzheimer’s disease. One such application
classifies the gait pattern using ELM-based models [68]. They have also been used to
identify and separate those diagnosed with mild cognitive impairment from later stages of
Alzheimer’s disease. This was conducted to tackle the increasing number of Alzheimer’s
patients so that those suffering from severe Alzheimer’s can be given care separately [69].

ELM models are also used to diagnose and classify patients with Parkinson’s disorder.
New frameworks to improve accuracy and scalability are researched regularly. One such
method optimized the extreme learning model using the bat algorithm; this produced a
significant rise in accuracy [70]. Another method used local binary pattern descriptors to
classify patients with Parkinson’s disorder based on a spectrogram [71]. However, both
these models were not tested on databases with large-scale images; hence, their accuracy
might vary.

Huntington’s disease (HD), another degenerative nerve disease, is plagued by missing
data in its datasets due to the rarity of the disease. This causes issues with accuracy in the
diagnosis of the disease. To solve this problem, ELM models can be used. One way is by
using brute force, where the missing values are imputed using previous observations. This
gives better results than just ignoring the missing values [72]. However, the limitation lies
in that the assumptions might vary as the heterogeneity increases, which causes a decrease
in the quality of prediction as larger time intervals are considered. Another method
uses multiple imputations with ELM to fill the missing value. Through this method, the
prediction of Huntington’s disease is possible through MRI scans, as early as 10 years prior
to the onset of the disease [73].
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4.1.9. Co-Training Classification

Co-training classification is a type of proxy label method under SSL (semi-supervised
learning). These models take advantage of a model trained on a given labeled set to
create more training examples by labeling instances of an unlabeled set based on certain
heuristics [74]. In the detection of Alzheimer’s diseases in humans, this SSL method can be
used by employing MRI and PET (positron emission tomography) images as data, and MCI
(mild cognitive impairment) data were used as the unlabeled sample [75]. This method
is promising for the classification of AD but also needs to be used with other co-training
algorithms to improve the general performance of the framework.

4.2. Limitations: Machine Learning Techniques

The limitation of using machine learning for the diagnosis of degenerative nerve dis-
eases is mainly the unavailability of data. This in turn translates into many other hindrances
such as the exclusion of biomarkers in the datasets for diseases such as Alzheimer’s. In the
case of SVMs specifically, large kernel cases are a big hindrance to the data being processed,
which results in lower sensitivity.

4.3. Inferences-Machine Learning Techniques

In all the machine learning algorithms surveyed, we found out that ANN brags of a
consistent record of maintaining accuracy, sensitivity, and specificity of almost 98% and
above. This is observed in cases where the model is pre-trained and not. The reason for such
high metrics is a combination of how ANNs can learn and model non-linear relationships
between the input and the output along with the increase in availability of much more
complex and enriched datasets in this field. Table 1 presents a summary of works on
machine learning for degenerative nerve disease diagnosis.

4.4. Deep Learning Models

In this section, we describe several supervised, unsupervised, and semi-supervised
deep learning models and their potential applications in the diagnosis of degenerative
nerve diseases in humans. Data that were used and the methodology employed are
described along with the limitations of each model [76–106]. Figure 5 represents the deep
learning models for degenerative nerve disease diagnosis used in this review through a
tree illustration.
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Table 1. A summary of works on machine learning for degenerative nerve disease diagnosis.

Ref Degenerative
Nerve Diseases

Machine Learning
Approaches Used Learning Model Dataset Used Pre-Trained or

Not Key Contribution Limitations Metrics

[36] Alzheimer’s
disease

Artificial neural
network Supervised learning Collected their own

private dataset
Not
pre-trained

Uses brain SPECT
records of the patient to
get a much more
accurate result.

No significant
difference in the
sensitivity in
comparison with
discriminatory analysis.

Sensitivity: 93.8%
Specificity: 100%

[37] Alzheimer’s
disease Neural network Supervised learning

ADNI dataset
ADNI + Milan
dataset

Pre-trained

A single cross section of
a brain MRI scan is fed
to the model to predict
whether the subject has
Alzheimer’s or not.

The model was not
tested while considering
cognitive and genetic
biomarkers.

For ADNI dataset:
Accuracy: 99.2%
Sensitivity: 98.9%
Specificity: 99.5%
For ADNI + Milan
dataset:
Accuracy: 98.2%
Sensitivity: 98.1%
Specificity: 98.3%

[40] Alzheimer’s
disease

Support vector
machine Supervised learning Collected their own

private dataset
Not
pre-trained

This paper studied
patients of Alzheimer’s
in Thailand using SVMs
and concluded that the
hippocampus is a good
classifier, producing
high accuracy.

The subjects studied
were not critically
affected by Alzheimer’s.
Additionally, the
number of subjects used
for this study was low
and not sufficient
enough for proper
testing.

Accuracy: 62.64%
On using clinical
parameters: -
Accuracy: 83–90%

[41] Dementia Support vector
machine Supervised learning OASIS Not

pre-trained

By combining SVM
with DA, good accuracy
is obtained.

Large kernel scale
reduces sensitivity.

Only SVM:
Accuracy: 67.57%
SVM with DA:
Accuracy: 81.08%
SVM with PCA:
Accuracy: 70.27%
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Table 1. Cont.

Ref Degenerative
Nerve Diseases

Machine Learning
Approaches Used Learning Model Dataset Used Pre-Trained or

Not Key Contribution Limitations Metrics

[42] Dementia Support vector
machine Supervised learning OASIS Not

pre-trained

Low gamma values as
well as high regularized
values are exhibiting
better results.

The classification of the
subject groups is not
precise in some cases.

Accuracy: Nearly
70%
Sensitivity: 65–82%

[45] Parkinson’s
disease K-means clustering Unsupervised

learning
Collected their own
private dataset Pre-trained

Clusters formed are
given to the FOG
detection system in a
random order.

Sampling frequency
was not high so it
resulted in fewer data to
be updated.

Accuracy: 93.2%
Sensitivity: 92.4%
Specificity: 94.9%

[46] Alzheimer’s
disease K-means clustering Unsupervised

learning OASIS Not
pre-trained

Top- and bottom-hat
filtering is used to
increase MRI image
quality which was then
fed to the system.

The Watershed method
is not able to segment
more objects.

N/A

[47] Dementia K-means clustering Unsupervised
learning

Collected their own
private dataset N/A

A combination of the
sliding window
approach, k-means
clustering, and dynamic
network analyses was
used.

Patients on
dopaminergic
medication were not
detected by the model.

N/A

[50] Huntington’s
disease Decision tree Supervised learning NCBI GSE33000 Not

pre-trained

A heterogeneous model,
including random forest
and rule induction
models.

The mutant HTT gene
may interfere with the
promotion of
Huntington’s disease
pathogenesis.

Accuracy:
90.79 ± 4.57%
Precision:
87.26 ± 6.95%
Sensitivity/recall:
96.17 ± 3.30%

[51] Alzheimer’s
disease Decision tree Supervised learning OASIS Not

pre-trained

Optimized using
entropy and
information gain.

Identification of
symptoms to detect at
an early stage.

Accuracy: 99.1%
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Table 1. Cont.

Ref Degenerative
Nerve Diseases

Machine Learning
Approaches Used Learning Model Dataset Used Pre-Trained or

Not Key Contribution Limitations Metrics

[52] Alzheimer’s
disease Decision tree Supervised learning OASIS Not

pre-trained

The model proposed
was trained without fine
tuning and then utilized
the grid search to find
the best possible
parameters to fine tune.

Had a lower accuracy
rate in comparison with
other models.

Training accuracy:
100%
Testing accuracy:
72%
Test recall: 67%

[55] Parkinson’s
disease Random forest Supervised learning NewHandPD Not

pre-trained

Combined with PCA,
used to make a
prediction based on
handwritten data of the
patients.

No general feature
extraction method for
different handwritings
improved final voting
performance.

Accuracy: 89.4%
Specificity: 93.7%
Sensitivity: 84.5%
F1-Score: 87.7%

[56] Parkinson’s
disease Random forest Supervised learning PPMI Not

pre-trained

Bootstrapping is
performed where a
random sample is taken
from the available
samples with
replacement of data.

The decision trees might
be open to overfitting. Accuracy: 94.48%

[57] Parkinson’s
disease Random forest Supervised learning

Parkinson’s
Dementia Clinical
Epidemiology Data

Not
pre-trained

Used explanatory
variables that were
randomly chosen from
the samples.

A weighted voting
system needs to be used
to obtain a higher
accuracy.

Accuracy: 65.6%
Sensitivity: 70.6%
Specificity: 60.0%

[60] Dementia Naïve Bayes Supervised learning

Register based
database of the
Show Chwan health
system

Not
pre-trained

Multiplied the class
prior probability with
the likelihood of the
disease in the datasets
of the patients.

The study conducted
may show selection
bias.

Sensitivity: 92%
Specificity: 95%
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Table 1. Cont.

Ref Degenerative
Nerve Diseases

Machine Learning
Approaches Used Learning Model Dataset Used Pre-Trained or

Not Key Contribution Limitations Metrics

[61] Alzheimer’s
disease Naïve Bayes Supervised learning OASIS Not

pre-trained

Processed MRI features
are taken in partition
vectors to feed the
model.

Blood cell content,
protein–protein and
gene–gene interactions,
etc., data were not
incorporated.

Accuracy: 90%

[62] Parkinson’s
disease Naïve Bayes Supervised learning - Not

pre-trained
Used a multi-feature
evaluation approach.

May have some
fluctuations that affect
the final output.

Accuracy: 89.34%
Recall: 89.3%
Precision: 89.8%

[71] Parkinson’s
disease

Extreme learning
machine

Hybrid of both
supervised and
unsupervised
learning

Parkinson’s voice
database Pre-trained Uses local binary

pattern descriptors.

Not yet tested with
databases of large-scale
images.

Accuracy: 92.59%

[72] Huntington’s
disease

Extreme learning
machine Supervised learning The HD dataset Pre-trained

Imputes missing values
using previously
observed features.

The quality of
prediction decreases as
larger time intervals are
taken into
consideration.

F1 score:
91.9 ± 2.4%

[75] Alzheimer’s
disease

Co-training
classification

Semi-supervised
learning ADNI Not

pre-trained
Uses multimodal
neuroimaging data.

Various other
co-training algorithms
can be evaluated to
improve the
performance of the
proposed system.

Accuracy:
92.91 ± 1.48%
Sensitivity:
95.20 ± 1.63%
Specificity:
90.70 ± 2.20%

N/A—Not Available.
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4.4.1. Recurrent Neural Networks and Long Short-Term Memory

Recurrent neural networks or RNNs are connectionist models capable of process-
ing sequential data with varying lengths and representing time dependencies. Their
ability to capture sequences via cycles in nodes and long short-term memory (LSTM)
and bidirectional (BRNN) architectures have made RNNs useful for the diagnosis of
various degenerative nerve diseases, such as Alzheimer’s disease, dementia, and oth-
ers [76]. To conduct this, RNNs generally use classification, regression, and clustering
performed by extracting information from sequences of data [77]. Additionally, by apply-
ing LSTM to a model, the algorithm can learn time dependencies and control the exposure of
memory content [78].

One of the major applications of RNNs is to identify symptoms of Alzheimer’s disease
and dementia at an early stage and predict and track the progression of the disorders,
even with irregular time intervals by accounting for longitudinal temporal patterns [79].
However, this model is only useful for predicting disease progression at later stages and
cannot be applied for an early diagnosis of the disease. Another application of RNN is in
smart homes for the human activity recognition of people with degenerative nerve diseases,
thus reducing the need for very frequent hospital visits [80]. However, this method of
diagnosis is questionable due to a possible breach of the patient’s privacy.

Other challenges in the implementation of RNN models are a lack of available datasets
and missing information in the existing datasets that needs to be filled out before the
processing. A novel method to overcome these challenges is using a framework that can
adaptively impute missing values and predict the future progression of the disease from
a subject’s previously available data [81]. Another medium to overcome these challenges
while avoiding this pre-processing step is the use of an LSTM algorithm that, instead of
imputing the missing values, tackles the incomplete data using a generalized formulation of
backpropagation through time. This algorithm is also used to model temporal dependencies
among measurements in the ADNI data via sequence-to-sequence learning [82]. This
training method outperforms models that rely on the imputation of missing data before
standard LSTM network training.

4.4.2. Autoencoder

Autoencoders are unsupervised artificial neural networks that are used to reduce data
dimensions by ignoring the noise in data [83]. They have wide applications in healthcare
and are useful in diagnosing degenerative nerve diseases such as Parkinson’s disease,
Alzheimer’s disease, and amyotrophic lateral sclerosis.

Autoencoders, when applied with normative models for understanding the biology
fundamental to degenerative nerve diseases such as AD at the level of an individual, are
useful for quantifying deviations in regional brain volumes of patients with AD compared
to healthy patients. These deviations also reflect the severity of the disease and its progres-
sion [84]. A modeling approach, termed “NormVAE”, was successful in identifying and
analyzing the brain regions associated with the patient-level deviations and also produced
deviation maps more sensitive to disease staging within AD using variational autoencoders
to estimate patient-level deviations with uncertainty estimates [85]. One of the limitations
of this approach is that the dataset used for the model consists of patients only from a
single country, which cannot be generalized for the global population. Thus, using it on a
global scale might lead to false positives and inappropriate treatment. Variational autoen-
coders are also used for producing future brain F-Fluorodeoxyglucose PET images, which
are used to predict future brain topography and give insights into possible degenerative
nerve diseases [86].

In the early diagnosis of Parkinson’s disease, another application of autoencoders
was based on vocal impairments at an early stage. These vocal impairments can be
identified using sparse autoencoders or stacked autoencoders, which can then identify
the subjects who are patients of PD [87,88]. This is a novel approach compared to MRIs
and CT and has shown great results in identifying patients in the early stages of PD. It
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is however limited due to a shortage of rich data. Autoencoders can also be used for
the diagnosis of amyotrophic lateral sclerosis, for which the raw data are denoised using
stacked autoencoders, which are then used to predict the disease [89]. This approach has
shown high accuracy and promising results and may very well become a crucial method
for the early diagnosis of ASL in the future.

4.4.3. Deep Belief Network

A deep belief network or DBN is a generative graphical model containing multiple
layers of variables that are connected with each other. It can be used to solve unsupervised
as well as supervised learning tasks [90].

There has been rapid development in the utilization of DBN-based models, especially
in healthcare. DBN models are used to diagnose Alzheimer’s, Parkinson’s, etc. Using
the DBN model for the classification of MRI slices is an efficient method for the diagnosis
of Alzheimer’s disease. This has been performed using various other models such as
ANN, SVM, and LDA, but the DBN-based model showed much higher accuracy and more
promising results [91]. Recently, it was identified that protein expression data can also
be used as a risk marker for Alzheimer’s disease; however, traditional models based on
other algorithms are unable to make full use of these data. Here, DBN-based models
show much better results by identifying proteomic risk markers and reinforcing the link
between metabolic risk factors and Alzheimer’s disease. They also provide evidence that
adiponectin-linked pathways could be a therapeutic drug target. However, the limitation in
this model is that there is no general and intuitive way to visualize training weights, which
makes implementation difficult [92,93]. Hence, it is not yet implementable for clinical use.

DBN models can also be used for the diagnosis of Parkinson’s disease and can imple-
mented using the self-organizing map clustering approach with the aid of support vector
regression to improve the accuracy and scalability of prediction [94]. However, the current
literature is focused on using ELM as a supervised learning technique, which affects the
scalability of the model. Using alternatives such as ensemble learning techniques is more
beneficial to improve the use case of the model. Along with this, the dataset used for the
model had a limited number of features; hence, a change in accuracy can be expected with
different datasets.

4.4.4. Deep Convolutional Neural Network

In deep learning, a convolutional neural network (CNN) is a class of artificial neu-
ral networks commonly applied to analyze visual imagery. CNNs are regularized fully
connected networks that take advantage of the hierarchical pattern in data and assem-
ble patterns of increasing complexity using smaller and simpler patterns enchased in
their filters [95,96].

CNNs are very valuable in the diagnosis of Alzheimer’s disease using MRI, as they
can perform binary classifications to identify irregularities with high precision and aid in
the early diagnosis of patients; this has further been improved using the novel framework
of a 12-layered CNN [97]. However, this model does not support multiclass classification,
which is important for classifying the severity of the disorder. An alternative method
pre-processes structural MRls in a strict pipeline, and instead of parcellating regions of
interest, each volume is re-sliced and put into a DCNN directly [98]. Another way is to
use multi-class classifications for brain MRI data analysis to identify different stages of
Alzheimer’s disease and contribute to its early diagnosis [99].

CNNs are also useful in the diagnosis of Parkinson’s disease, which can be identified
by classifying speech signals with the help of a CNN architecture for one-dimensional
signal processing [100] and handwriting, which can be classified using various features that
are learned from one’s handwriting that are then extracted by CNNs [101]. The limitation
of this model is its slow speed of operations and large training time.

Recently, CNNs have also been utilized for the identification of amyotrophic lateral
sclerosis (ALS) risk variants in noncoding regions. This is a significant step as the identifi-
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cation of these risk variants has been difficult and a major issue in the diagnosis of ALS. To
achieve this, a one-dimensional convolution with a vector is performed that is compatible
with the linear DNA strands [102]. However, the model relies on the assumption that
the locus contains at least one casual variant; hence, the presence of false-positive GWAS
signals may lead to a significant loss in performance.

4.4.5. Deep Neural Network

Deep neural networks or DNNs are complex multilayered neural networks that are
used for convoluted calculations and classification. They have promising applications in
solving high complexity problems such as the diagnosis of degenerative disorders [103].
A recent study comparing the performance of DNNs with various ML models for the
diagnosis of Parkinson’s disease, using digital bio-markers and speech records as datasets,
favored the use of DNNs. It used an open-source tool, OpenSmile, to extract two feature sets
that were used as inputs for the three-layered DNN. The results showed an 85% accuracy,
outperforming the average clinical diagnosis accuracy of non-experts. The paper provided
a good look at the potential of DNNs for disease diagnosis; however, it only utilized a
single biomarker. An increase in biomarkers should increase the accuracy of DNNs, but
it might also propel some other algorithm above the DNN [104]. Obtaining large-scale
datasets is a difficult task, and smaller datasets limit the accuracy of a model. To overcome
this, a novel method used transfer learning with a deep neural network to produce a robust
model that can work well on smaller datasets. This model is highly suitable for the study
of less-known degenerative diseases, which usually have small datasets. However, this
method is not a replacement of the required data collection that is essential for the study of
these diseases [105].

DNNs are also well suited for identifying complex relations between the genotype
and phenotype of an individual. These complex relations might be the key to solving
degenerative diseases such as ALS, whose genetic basis is still not completely understood.
Recent research focusing on the use of DNNs for identifying the ALS-associated regions
using genome data as input showed promising results with an accuracy of 77%. The study
only considered the genomic information of four chromosomes and applied a two-step
approach using a CNN model followed by ALS-Net, whose architecture is based on the
structure of genome data. This article gave significant insights in the diagnosis of ALS and
the relations between ALS and genotypes. However, the article is limited by the lower
number of chromosomes included. Including other chromosomes might be a challenging
task; yet if it is overcome, it will significantly improve the model’s accuracy [106].

4.5. Limitations-Deep Learning Models

Various deep learning models mentioned above have shown promising results and
the potential for playing a role in degenerative nerve disease diagnosis; yet, these models
are plagued by a number of limitations that need to be overcome. The most prominent
limitation is a lack of suitable datasets. Similar to machine learning models, deep learning
models also suffer in accuracy and performance because of low-quality datasets with
missing values and a smaller amount of data. Another limitation faced by a number of deep
learning models is the slow speed of operations. The models also suffer from adversarial
noise, which could be a big issue for practical clinical use, since most models are not robust
enough to be scaled to a clinical level. Lastly, another major limitation common in both ML
and DL models is the privacy protection of patient data, which has received surprisingly
low attention from any research article.

4.6. Inferences-Deep Learning Models

While all the DL algorithms surveyed have shown promising results, deep neural net-
works, including deep CNN and deep belief networks, have shown tremendous potential.
The models based on these algorithms have shown much better results than even their
machine learning counterparts. These models have shown accuracies as high as 97%, and
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models based on them have also provided good imputation methods for missing values in
medical datasets. The capacity of these algorithms to solve high complexity problems is
greater than other algorithms discussed in the paper, which gives them an edge in real-life
application for degenerative nerve disease diagnosis. Table 2 presents a summary of works
on deep learning for degenerative nerve disease diagnosis.

4.7. Other Computational Intelligence Models

While the algorithms described in the above subsections of machine learning and
deep learning have been prevalent in recent research for the diagnosis of degenerative
nerve disorders, several other algorithms were also tried to create new robust models and
overcome the current limitations. Some of these are described in the following sections.

4.7.1. Probabilistic Neural Network

These are used for classification and pattern recognition and allow the compact de-
scription of complex relationships between random variables [107]. This makes it useful
for applications in disease diagnosis. A research article suggested a model where PNN
was optimized using particle swarm optimization (PSO) for disease prediction. This
method can have useful results for the diagnosis of disorders such as Alzheimer’s dis-
ease [108]. Another useful application of PNN could be in the diagnosis of Parkinson’s
disease. An enhanced PNN or EPNN, which was developed by modifying the Gaussian
kernel based on the diversity of the training dataset [109], showed significant potential
when used on the Parkinson’s Progression Markers Initiative dataset to classify patients of
Parkinson’s disease [110].

4.7.2. Deep Residual Network

These have useful applications in degenerative nerve disorder diagnosis, as they
enable the construction of very deep networks without degradation in performance. A
research article used a residual network-based model for classifying AD. The ResNet
model used in the article predicted AD in six stages with an accuracy of 97%, which is
comparable to state-of-the-art results. The study provided solid grounds to use ResNet for
AD progression as well as other applications such as drug discovery [111]. Another article
discussed the application of residual networks in the diagnosis of Parkinson’s disease. The
article used a 3D residual CNN model to extract invisible features and improve accuracy as
well as discover saliency features in critical regions of the brain. The results of the article
were promising, with great diagnosis accuracy; however, the dataset used was not enough
for identifying clinical use as of now [112].



Diagnostics 2023, 13, 288 19 of 31

Table 2. A summary of works on deep learning for degenerative nerve disease diagnosis.

Ref Degenerative
Nerve Diseases

Deep Learning
Approach Used Learning Model Dataset Used Pre-Trained

or Not Key Contribution Limitations Metrics

[79] Alzheimer’s
disease

Recurrent neural
network

Supervised
learning NACC Not

pre-trained

An enhanced “many-to-one”
RNN architecture is used to
support the shift of time steps.
This allows considering
irregular visits of the patient.

The model is not equipped
for early-stage predictions,
which are important for
beginning early treatment
of the disorder.

Accuracy:
99.06 ± 0.43%

[85] Alzheimer’s
disease

Deep
autoencoders

Unsupervised
learning ADNI Not

pre-trained

Generates accurate deviation
maps and overcomes
normative model variational
autoencoders to estimate
patient-level deviations with
uncertainty estimates and
also overcame the limitations
of other approaches where
subject-level deviations were
found, which were supposed
to be deterministic.

The generalizability of the
approach is not yet
validated.

N/A

[87] Parkinson’s
disease

Deep
autoencoders

Unsupervised
learning

PD dataset from
database

Not
pre-trained

Vocal impairments can be
identified using sparse
autoencoders.

Performance might not be
the same if availability of
data is not abundant.

Accuracy: 95%
Sensitivity: 96%
Specificity: 98%

[88] Amyotrophic
lateral sclerosis

Deep
autoencoders

Unsupervised
learning

PD dataset from
UCI database

Not
pre-trained

Uses deep autoencoders to
denoise raw data.

Lack of availability of
datasets decreases the
scalability of the method.

Accuracy: 91.53%
F1 score: 94.36%

[89] Amyotrophic
lateral sclerosis

Deep
autoencoders

Unsupervised
learning

PRO_ACT
database

Not
pre-trained

Uses stacked autoencoders to
denoise raw available data.

Availability of better data
must always be abundant
to improve accuracy.

Accuracy: 87%

[94] Parkinson’s
disease

Deep belief
network

Unsupervised
learning

PD dataset from
UCI database Pre-trained

Hybrid of clustering and
deep belief network was used
with the aid of support vector
regression. Self-organizing
maps were also used to
improve accuracy and
scalability.

The dataset used had a
limited number of features;
hence, other datasets might
show varied results. A
supervised learning
technique was used.

N/A
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Table 2. Cont.

Ref Degenerative
Nerve Diseases

Deep Learning
Approach Used Learning Model Dataset Used Pre-Trained

or Not Key Contribution Limitations Metrics

[97] Alzheimer’s
disease

Deep
convolutional
network

Supervised
learning OASIS Pre-trained

Used a 12-layer CNN on
brain MRI data to detect and
classify Alzheimer’s disease.

Does not support
multi-class classification.

Accuracy: 97.75%
Demented Recall:
92%
Non-demented
Recall: 100%
Demented
Precision: 100%
Non-demented
Precision: 93%
Demented F1
score: 97%
Non-demented F1
score: 98%

[100] Parkinson’s
disease

Deep
convolutional
network

Supervised
learning

Collected data on
their own

Not
pre-trained

Automating the process of
diagnosis from continuous
native speech with a
relatively small set of training
samples.

This model’s operation was
considerably slow as it took
longer training time.

Accuracy: 83.63%

[101] Parkinson’s
disease

Deep
convolutional
network

Supervised
learning HandPD Not

pre-trained
Extraction of features from
various handwritings.

Slow speed of operations
and large training time. Accuracy: 78.18%

[102] Amyotrophic
lateral sclerosis

Deep
convolutional
network

Supervised
learning GWAS Pre-trained

Use of CNN with vectors for
predicting the recurring
sequence of patterns in DNA
and RNA binding proteins.
The model also incorporated
external domain knowledge,
which aided in achieving
higher performance.

The model assumed that
the locus contains at least
one casual variant; hence,
the presence of
false-positive GWAS signals
may lead to significant loss
in performance.

N/A

N/A—Not Available.
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5. Open Challenges-Degenerative Nerve Diseases Diagnosis

As discussed above, although ML and DL algorithms have shown high potential for
application in degenerative nerve disease diagnosis, they are still plagued by a large number
of limitations. Some of these limitations are common to both ML and DL algorithms, while
others are more specific. Through these limitations, we can infer a set of open challenges
that need to be overcome to practically use the above-mentioned models on a larger
scale at a clinical level. Figure 6 represents the open challenges in degenerative nerve
diseases diagnosis.
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Current open challenges include those listed in the following sections.

5.1. Increasing Dataset Size and Imputing Missing Values

One of the biggest problems faced by almost every model is a small or partial dataset.
This problem is worse for rarer diseases, such as Huntington’s disease or ALS, that often
suffer from a lack of large and suitable datasets. This further leads to less robust models
since the models suffer from a lack of appropriate data for the different stages of the diseases.
Imputing missing values is another major challenge that is faced even while working with
datasets of more common diseases, such as Parkinson’s or AD. Imputing correct values
is tricky, as careless imputation can lead to incorrect conclusions. Thus, enhancing the
available datasets of less-common diseases and further developing the methods of data
imputation is critical to produce robust models that can be applied at the grassroots level.
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5.2. Designing a Bias Free Degenerative Nerve Diseases Dataset

Biases in degenerative nerve disorder datasets are a common issue. A biased dataset
can significantly affect the accuracy and general performance of a model. Any decrease in
model performance impacts its usability. A lower accuracy model can cause misdiagnosis,
which could be catastrophic for a patient. Creating bias-free datasets is a significant step to-
wards improving ML and DL models alike and can take us another step closer to the actual
implementation of these models for an early diagnosis of degenerative nerve disorders.

5.3. Privacy Preservation of Patients

As a major concern in all aspects of society, maintaining patient privacy is very crucial
for any computer assistant system. Patient privacy is often ignored when talking about a
new model or system for disease diagnosis, yet it is just as important as a model’s accuracy.
Not maintaining high privacy standards and data leakage can lead to unnecessary problems
in a patient’s life, leaving them vulnerable. Various suggested models that propose the
daily tracking of patient activities do not mention how they plan to preserve the privacy
of their users. The protection of these data is a critical requirement, and appropriate steps
need to be taken to overcome this challenge; otherwise, even the models with the highest
performance cannot be used in a real-world clinical settings.

5.4. Predicting Degenerative Nerve Diseases from Imaging Data in Real-Time

A major limitation of the discussed models is the slow speed of operations. This
reduces the applicability of the prediction models in real-life clinical use. Overcoming
this challenge will enable the real-time diagnosis of patients, which will allow doctors
to take necessary steps at an early stage, and this can significantly lower the disease
progression speed.

6. Future Research Directions: Degenerative Nerve Diseases Diagnosis

Similar to machine learning and deep learning algorithms, many other technologies
have potential for aiding degenerative nerve disorder diagnosis. These methods could also
be used to circumspect some of the open challenges we face while working with machine
learning models. Some of these are listed below. Figure 7 illustrates the future research
directions in degenerative nerve diseases diagnosis.

6.1. Internet of Everything

IoT consists of devices or “things” that are connected through various sensors. IoT
devices, through mobile phones, have become an inseparable part of our lives. This has
made them an alternative solution with huge potential in the early diagnosis of degenerative
nerve diseases. Wearable technologies, such as smartwatches, can monitor and record our
daily schedule in a systematic form, and this data can be used to identify irregularities in
the behavior of a person and identify if they have a degenerative nerve disease [113]. An
example of this is the diagnosis of Parkinson’s disease by monitoring various features of
the patient such as gait, sleep disorders, etc. This method is much cheaper when compared
to various others and has vast potential, as the collected data can be directly used to verify
the patient’s manually uploaded data and can also be used for identifying these disorders
and linking them with various degenerative nerve diseases, early and unsupervised [114].

6.2. Ubiquitous Computing

Ubiquitous computing, or pervasive computing, is the presence of computational
power all around us. This is a growing field and may very well be partially achieved by the
next decade. A person suffering from a degenerative nerve disease can be identified very
quickly in a ubiquitous computing environment, as all their habits and lifestyle routines
are recorded in the machine’s database, and subtle irregularities can also be identified
efficiently [115]. An example of this is a mobile app, STOP [116], which was made to detect
and monitor patients with Parkinson’s disease. The app uses a ball game to monitor the
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motor skills of a patient, a medication journal for users to log their daily medications,
and a daily survey to assess the severity of the disorder. This app, although tested on a
small number of patients, produced good results. It shows that, as processes are automated
further through ubiquitous computing, the diagnosis and monitoring of degenerative nerve
diseases are bound to become more convenient.
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6.3. Augmented Reality (AR) and Virtual Reality (VR)

Virtual reality (VR) is a computer-generated world that mimics real life. In the last
decade, we have seen a significant increase in research aimed at using virtual reality and
augmented reality for healthcare. One such example is an eye-tracked VR for the remote
diagnosis of degenerative nerve diseases, in which ocular irregularities can be identified
and evoked. This makes it possible for patients to be tested for degenerative nerve diseases
even at relatively smaller institutions and eliminates travel issues that might have caused
patients to postpone going for diagnosis [117]. Another use of AR could be in mapping
and visualizing the brains of patients suffering from degenerative nerve diseases such
as Alzheimer’s disease. This works by visualizing any abnormal clumps present in the
brain. Using AR this way allows a much better analysis of the brain and evaluation
of the diseases [118]. Apart from the diagnosis, another application of VR could be in
improving the cognitive functions of a patient with a degenerative nerve disease such as
dementia [119]; however, there is no substantial proof of this, and hence, this application is
still debatable and is subject to change as further research continues.
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6.4. Robots and Machine Co-Creativity

Machine co-creativity is the use of machines and AI to create original artistic content
such as music and paintings. It is a very futuristic technology and has not been properly de-
veloped yet. Machine co-creativity has applications for the diagnosis of degenerative nerve
diseases such as dementia to assess and understand the stage in which the patient tracks
the progress of the disorder and can also be used as a leisure activity by the patients [120].
An example of this is music. Research has shown that musical memory is usually retained
by dementia patients. Here, machine co-creativity can be used to help the patient generate
music, which can be used to understand the stage of the patient’s dementia and also allows
the patient to enjoy a leisure activity [121].

6.5. Big Data Analytics

Data analytics are the new way to deal with the ever-growing amount of data available
to us. Traditional methods are not able to compute and handle the terabytes of data out
there. Moving to Big data can greatly aid in the diagnosis of degenerative nerve diseases as
the amount of data available for research will increase by a significant amount, overcoming
the difficulty of the lack of data faced by several machine learning and deep learning
models [122]. Additionally, in the field of neurobiology where a lot of data from previous
patients and the data of current subjects are available, the method to handle such heavy
datasets becomes a lot more efficient when Big data is employed. This can even handle
image data such as brain MRI scans [123].

Apart from diagnosis, data analytics are also useful for managing patients. Data
mining, a subset of data analytics, can also be a great tool for identifying patterns and
relations between degenerative nerve diseases and other factors. This can be helpful in the
early diagnosis of these disorders and in managing the existing patients suffering from
them. An example could be a study to determine the relations between dementia and other
kinds of illnesses [124], which can help in managing the patients accordingly by identifying
their risk of other diseases based on their age, gender, etc.

6.6. Quantum Computing

As one of the most up and coming fields, quantum computing is used to solve complex
problems and has vast applications in AI. The technology has vast potential and can play a
significant role in the diagnosis of degenerative nerve diseases in the future. An example
of this would be using quantum computing with Naïve Bayes, KNN, decision trees and
artificial neural networks to predict Parkinson’s disease [125]. However, there is still a
lack of work using quantum computing for the diagnosis of degenerative nerve diseases.
Hopefully, this can be overcome in the future as more attention is given to research on
quantum computing.

6.7. Digital Twin

Digital twin is the virtual model of a physical product or process that is identical to its
physical counterpart. The technology is being developed for use in various industries to aid
in the manufacturing of different products. Recently, it was suggested that digital twinning
can also be used for creating human virtual twins, and if successful, this can help diagnose
various health problems much earlier in life. These problems include degenerative nerve
diseases such as multiple sclerosis and Alzheimer’s disease.

Using a conditional restricted Boltzmann machine, ‘digital subjects’ can be created,
and these subjects are statistically identical to the patients and can play a major role in
mapping the progression of multiple sclerosis. However, it is difficult to do so because
the disease progression varies and depends on many components. This limitation can
be overcome by including additional data that can help to create a more accurate digital
subject and reduce the complexity of endpoint measures and multidimensional courses of
the disease [126].
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6.8. Privacy Enhancing Computation

One of the biggest challenges in implementing ML and DL in the diagnosis of degen-
erative nerve diseases is the lack of available datasets. Privacy concerns are a major reason
behind this, as it is difficult and risky to obtain data from individuals if the privacy of
their data cannot be guaranteed. Recent developments in privacy-enhancing computation,
although in the early stages, look very promising. Two popular techniques that are being
developed to enhance user privacy are homomorphic encryption and secure multiparty
computation. Homomorphic encryption allows direct computation on encrypted data, and
this means that the data can be freely shared in an encrypted state and the organization
requesting the data can perform the computation without needing to decrypt it. However,
this method is expensive and still under development. Secure multiparty computation
protocols are made to protect the privacy of data shared between multiple parties working
together so that the data being shared by each of them are protected from the outside as well
as the other parties working with whom the data need to be shared. However, the adoption
of these protocols can be difficult and might also affect the flexibility of work [127].

Multiparty homomorphic encryption is a combination of homomorphic encryption
and secure multiparty computation, which was designed to bring down the overhead costs
and make privacy enhancement more practical. It is used to perform the most efficient
approach in a given workflow [128]. Although it is still being developed to be more
effective, multiparty homomorphic encryption can be useful for privacy enhancement,
which allows the sharing of data while protecting privacy, increasing the amount of data
available for further research on various medical conditions, including the diagnosis of
degenerative nerve diseases.

7. Conclusions

Degenerative nerve diseases have been a popular topic of interest for a very long
time. These disorders are untreatable and worsen the patient’s condition with time. The
only measure we can currently take is to slow down the progression of these diseases.
The early diagnosis of these diseases can enable patients to practice preventive measures
before the disease progresses to an uncontrollable stage; hence, the early diagnosis and
progression tracking of these disorders are crucial. Through this paper, we assessed the role
of machine learning and deep learning in the diagnosis of these disorders and identified
various algorithms that have shown promising results when used for the diagnosis of
degenerative nerve diseases. Recent developments in each of these algorithms, such as the
use of a hybrid clustering and DBN to improve the scalability and accuracy of classification
of patients with Parkinson’s disease or a combination of sliding window approach and
k-means clustering and dynamic network analyses for diagnosing dementia patients, show
the immense potential that the various ML and DL algorithms have in the early diagnosis
and tracking of these diseases. In the models we surveyed, we found that artificial neural
networks and deep neural networks, including deep CNNs and deep belief networks, are
the most promising algorithms for detecting degenerative nerve diseases. However, we
found out that the use of ML and DL is still plagued by major challenges such as a lack of
available data and lower scalability and accuracy. Hence, the future direction of research
on using ML and DL to diagnose degenerative nerve diseases should be to overcome
these challenges. Apart from machine learning and deep learning, there are a few other
promising technologies such as the Internet of Things, digital twin, quantum computing,
and Big data analytics, among others, that can potentially be helpful in the diagnosis of
degenerative nerve diseases in the future.
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Appendix A

Table A1. List of Glossary/Nomenclature/Abbreviations used in the manuscript and their expansion.

Acronym Full Form

MRI Magnetic resonance imaging
EEG Electroencephalography
SPECT Single photon emission computerized tomography
IoT Internet of Things
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
DNA Deoxyribonucleic acid
CAG Cytosine, adenine, guanine
ALS Amyotrophic lateral sclerosis
FXN Frataxin
SMA Spinal muscular atrophy
ANN Artificial neural network
SVM Support vector machine
DA Dragonfly algorithm
FOG Freezing of gait
LBD Lewy body dementia
HPT Hyper parameter tuning
OASIS Outcome and assessment information set
CART Classification and regression trees
PCA Principal component analysis
KNN K-nearest neighbor
LSTM Long short-term memory
BRNN Bidirectional recurrent neural networks
RNN Recurrent neural networks
ADNI Alzheimer’s Disease Neuroimaging Initiative
AD Alzheimer’s disease
PET Positron emission tomography
CT Computed tomography
PD Parkinson’s disease
DBN Deep belief network
LDA Linear discriminant analysis
ELM Extreme learning machine
CNN Convolutional neural network
DCNN Deep convolutional neural network
HD Huntington’s disease
ML Machine learning
DL Deep learning
AR Augmented reality
VR Virtual reality
AI Artificial intelligence
DNN Deep neural network
PNN Probabilistic neural network
ROC Receiver operating characteristic
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