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Abstract: Recent advancements in artificial intelligence (AI) have led to numerous medical discoveries.
The field of computer vision (CV) for medical diagnosis has received particular attention. Using
images of peripheral blood (PB) smears, CV has been utilized in hematology to detect acute leukemia
(AL). Significant research has been undertaken in the area of AL diagnosis automation in order to
deliver an accurate diagnosis. This study addresses the morphological classification of atypical white
blood cells (WBCs), including immature WBCs and atypical lymphocytes, in acute myeloid leukemia
(AML), as observed in peripheral blood (PB) smear images. The purpose of this work is to build
a classification model for atypical AML WBCs based on their distinctive features. Using a hybrid
model based on geometric transformation (GT) and a deep convolutional autoencoder (DCAE), this
work provides a novel technique in the field of AI for resolving the issue of imbalanced distribution
of WBCs in blood samples, nicknamed the “GT-DCAE WBC augmentation model”. In addition,
to extract context-free atypical WBC features, this study develops a stable learning paradigm by
incorporating WBC segmentation into deep learning. In order to classify atypical WBCs into eight
distinct subgroups, a hybrid multiclassification model termed the “two-stage DCAE-CNN atypical
WBC classification model” (DCAE-CNN) was developed. The model achieved an average accuracy
of 97%, a sensitivity of 97%, and a precision of 98%. Overall and by class, the model’s discriminating
abilities were exceptional, with an AUC of 99.7% and a class-wise range of 80% to 100%.

Keywords: acute myeloid leukemia; atypical white blood cells; autoencoder; CNN; augmentation

1. Introduction

AML is a fast-growing malignancy characterized by a rapid increase in the number of
immature blood cells. These immature cells then proliferate, replace regular blood cells,
and inhibit bone marrow from creating healthy cells [1]. Identifying immature WBCs is the
first step in diagnosing AML. This technique is mostly predicated on classifying WBCs as
immature or normal cells, and then classifying immature cells into subgroups. Due to the
complexity and similarity of immature cells, their classification is a formidable challenge.
Nevertheless, according to long-term clinical experience in this field, some intermediate
stages of myelopoiesis are susceptible to misclassification, particularly for WBCs in sub-
sequent maturation stages, such as myelocytes and metamyelocytes [2,3]. This is due to
the complexity of the maturation phases and the minimal variation between classes of
continuous stages. Consequently, no strict standards can be developed to distinguish WBCs
at various developmental phases [4,5]. Furthermore, the low frequency of specific forms
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of WBCs in AML blood samples makes it challenging for ML models to learn significant
features for distinguishing between different types of WBCs [6,7]. Manual identification of
immature cells is laborious, time-consuming, and susceptible to inter- and intra-class varia-
tion. Furthermore, certain advanced microscopes use quantitative approaches rather than
qualitative methods based on pattern recognition and computer vision, which results in
reduced sensitivity to blast cells. Previous studies found that the agreement between Cellav-
ision DM96 (an advanced type of microscope) and pathologists in diagnosing leukemia
was just 76.6% [1,8]. Automated solutions based on computer vision were developed to
address this issue. These systems employed both conventional ML and DL techniques. Tra-
ditional ML employs hand-crafted features, whereas DL employs more abstract, automated
features. However, unlike automated features, hand-crafted features are manual, low-level,
and have restrictions, such as the necessity for human-defined criteria that necessitate
subject-matter expertise. Therefore, the goal of this study is to develop a new DL classifi-
cation model for classifying atypical WBC into subtypes, including atypical lymphocytes,
monoblasts, myelocytes, myeloblasts, promyelocytes, promyelocytes (bilobed), monoblasts,
and erythroblasts. This study focuses on the classification of atypical white blood cells into
different types. This research contributes the following to current knowledge:

• A new WBC augmentation model called “the GT-DCAE WBC augmentation model”
is developed by combining a geometric transformation model and a generative model
by using deep convolutional autoencoder.

• A new model for classifying atypical white blood cells (WBCs) that includes immature
WBCs and atypical lymphocytes is created. This model is called “the Two-stage
DCAE-CNN atypical WBC classification model”, and it uses a combination of a deep
convolutional autoencoder and a convolutional neural network.

• The newly proposed model is a context-free generalized model that incorporates only
features associated with WBCs and excludes other blood components.

The rest of this article has the following structure: In Section 2, related work is
discussed. Section 3 discusses the dataset and study methods, which include algorithms
for WBC augmentation and unusual WBC categorization. The experiment’s results are
discussed in Section 4. Section 5 concludes the article.

2. Related Work

Researchers are becoming increasingly interested in incorporating artificial intelligence
into medical imaging [9,10]. In peripheral blood and bone marrow smears, the differential
count of white blood cells (WBCs), especially immature and atypical cells, is a crucial
clinical hematology assessment [11]. Several researchers sought to categorize various forms
of WBCs, such as immature and atypical lymphocytes, into several subtypes by using
ML and DL. Traditional ML methods rely on manually produced features, whereas DL
methods use high-level abstract and automated representations of the image data [12].
Several researchers have employed ML with custom-designed features to classify abnor-
mal WBCs. Suryani et al. [13] developed a system for differentiating between ALL and
AML M3 by using WBCs’ morphological features, such as the WBC area, nucleus ratio,
and granule ratio. Their system achieved an accuracy of 83.65%. Furthermore, they used a
backpropagation momentum method to differentiate between the AML M2 and AML M3
subtypes. They achieved 94.29% accuracy for cell-based classification and 75% accuracy
for image-based classification. Wiharto et al. [14] utilized a sample of AML M0 and AML
M1 to classify WBCs into myeloblasts, promyelocytes, and myelocytes with the K-nearest
Neighbor (K-NN) by utilizing the WBC diameter and nuclear roundness features. They
obtained a maximum accuracy of 67.28%. Later, Wiharto et al. [15] used a newly pro-
posed classification system to improve the classification accuracy of blast cells—specifically,
myeloblasts, promyelocytes, and myelocytes. The proposed system was divided into two
stages; the first stage involved pre-processing, image segmentation, and feature extraction.
The second stage involved using the synthetic minority oversampling technique (SMOTE)
to solve the problem of imbalanced data. Their proposed systems had an overall accuracy
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of 89.6%. Harjoko et al. [16] classified WBCs into the M1, M2, and M3 AML subtypes using
the Active Contour without Edge (ACWE) method and a backpropagation momentum
artificial neural network (ANN). Six features were used to train the model: the cell area,
perimeter, circularity, nucleus ratio, mean, and standard deviation. The proposed system
achieved a segmentation accuracy of 83.789% and a classification accuracy of 93.569%.
Roy et al. [17] used an ANN and an adaptive neuro-fuzzy inference system to develop a
classification system for AML M0, M1, M2, M3, and M4. They trained their model on a
dataset of 600 AML cases to predict these five types of AML based on four CBC parame-
ters: leukocytes, hemoglobin, platelets, and blasts. The average MSEs for the ANN and
the neuro-fuzzy inference system were 0.0433 and 0.2089, respectively. Rawat et al. [18]
devised a classification model for separating ALL and AML subtypes in leukemic cells.
In addition, the classification model was able to classify AML and ALL into subtypes. AML
was classified into AML M2, AML M3, and AML M5, while ALL was subdivided into
L1, L2, and L3. The classification process made use of geometrical, textural, and color
features. An SVM was utilized to implement the classification process, whereas a genetic
algorithm was utilized to pick and optimize features. The classification system achieved
a classification accuracy of 98.5%. Dasariraju et al. [19] identified 16 features related to
nucleus size and shape, elliptical features, and color feature to classify immature WBCs
as monoblasts, myeloblasts, erythroblasts, and promyelocytes by using a random forest.
Other immature WBCs were not included due to a lack of resources. The WBCs were first
segmented, and then a binary classification model was utilized to distinguish between
mature and immature WBCs, followed by a multiclassification model for immature WBCs.
The binary classification model had 91.23% precision and 95.41% sensitivity. Using an SVM,
Dincic et al. [5] investigated morphological, fractal, and textural features for the classifi-
cation of WBCs into 12 unique subtypes, including mature and immature cells. Cell area,
nucleus-to-cell ratio, nucleus solidity, fractal dimension, correlation, contrast, homogeneity,
and energy were retrieved as the most important features. They attained an average clas-
sification precision of 80%. Several researchers, on the other hand, used a deep learning
approach to classify immature WBCs into different subtypes. Qin et al. [20] classified
fine-grained WBCs based on a PB smear into 40 distinct subtypes by using deep residual
learning. The classification accuracy ranged from 37% to 89%. The myeloblast, promyelo-
cyte, neutrophil (band), neutrophil (segmented), eosinophil, lymphocyte, and monocyte
classification accuracies were 75%, 62%, 77%, 76%, 51%, 87%, and 64.9%, respectively.
Matek et al. [2] used blood smear images to classify AML WBCs into 15 different kinds,
including normal, immature, and atypical cells, by using a deep learning system based on a
CNN algorithm. The literature indicates that the classification of atypical WBCs has mostly
centered on normal WBCs and acute lymphoid leukemia (ALL). However, limited study
has been undertaken on the classification of atypical WBCs in AML, particularly immature
WBCs, due to a number of obstacles.

3. Materials and Methods
3.1. Dataset

This work utilized a single-cell morphological dataset (AML Cytomorphology LMU)
of leukocytes from AML patients and non-malignant controls. The dataset consisted of
18,365 single-cell images identified by experts and acquired from peripheral blood smears
of 100 AML patients and 100 controls between 2014 and 2017 at the Munich University
Hospital. The collection was categorized into 15 distinct single-cell image categories. Four
of these were leukemic cells, whereas the remaining eleven were healthy white blood
cells. Seven of the eleven categories were adult leukocytes, while four were immature.
Expert pathologists evaluated malignant and noncancerous WBCs based on an established
morphological classification [21]. Figure 1 shows samples of the fifteen different types of
WBCs presented in the dataset.
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Figure 1. Samples of the fifteen different types of WBCs presented in the dataset, including normal
and abnormal cells [5].

3.2. The Proposed Model

In this study, the DCAE-CNN deep learning model was proposed to classify atypical
WBCs into eight distinct subclasses. The WBCs were first segmented by using the CMYK-
Moment Localization-Feature Fusion Extraction framework proposed by Elhassan et al. [7].
These cells were recognized by their uneven distribution in blood samples. Therefore, a new
augmentation method based on the GT and DCAE generative model, which was called GT-
DCAE, was proposed to generate additional synthetic WBC images.The proposed method
comprised of two stages: a binary classification model to differentiate between typical and
atypical WBCs and a multiclassification model to classify atypical WBCs into eight subtypes.
This model is a hybrid of a DCAE network and a CNN. It first transformed the image into
a new representation by using DCAE, and then passed the new representation to a CNN
model for additional feature extraction. The proposed model consisted of four phases:
phase I: WBC augmentation, phase II: WBC encoding and feature extraction, phase III: two-
stage atypical WBC classification, and phase IV: model evaluation. Figure 2 demonstrates
the components of the two-stage DCAE-CNN classification model. The following is an
explanation of the model architecture’s details.

Figure 2. Components of the two-stage DCAE-CNN atypical WBC classification model.
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3.2.1. Phase I: WBC Augmentation

In this phase, the WBC images were first geometrically transformed by using random
rotation at varying angles (0°, 365°), as well as vertical and horizontal flipping. Other
augmentation techniques, such as zooming, shearing, and brightness adjustment, were
avoided due to the sensitive nature of the problem, as utilizing these techniques could alter
the properties of WBCs. The DCAE was then applied to the original and transformed im-
ages to generate new synthetic images. Figure 3 depicts the GT-DCAE WBC augmentation
model. The following is a description of the GT-DCAE architecture.

Figure 3. The GT-DCAE augmentation model.

The DCAE model was designed to generate new WBCs that were close to the orig-
inal WBCs, but not identical. This model was trained to learn novel low-dimensional
discriminative features of WBCs for image reconstruction with minimal errors by utilizing
backpropagation and a distance loss function. The model consisted of three components:
the encoder, the decoder, and the latent vector, which is also called the bottleneck. The en-
coders compressed the input data into a low-dimensional latent representation that the
decoder utilized to reconstruct the original image. The latent vector is a collection of
low-dimensional image representations that could be described as a collection of filtered
images. Let X be the input WBC image, let E be the encoder function, let D be the decoder
function, and let Z be the latent vector; the encoder, decoder, and loss functions can be
defined as follows:

E : X → Z (1)

D : Z → X (2)

E, D = argminE,D||X− EoD||2 (3)

where EoD is the predicted image. The following is a summary of the DCAE components.

• The encoder network: Using filter banks, the encoder network performed several
convolutional operations to generate a new set of feature maps. The encoder network
comprised three convolutional layers of 32, 64, and 128 filters using a 3× 3 kernel and a
LeakyReLU activation function. Following every convolutional layer was a maximum
pooling layer of size 2 × 2 and a one-step stride. This method yielded a collection
of pooled feature maps with the greatest weights. In this situation, the maximum
pooling layer could be viewed as a feature selection strategy analogous to the feature
selection algorithms used in conventional ML approaches.

• Latent vector space: This was expressed as 28 × 28 × 128, with 28 × 28 being the
image size and 128 representing the number of compressed feature mappings. To retain
the semantics across the encoder and decoder units, we built a latent vector space by
using convolutional layers as opposed to dense layers [22]. The latent vector could be
obtained by using the following equation:

Z = σ(X⊗W) + b (4)
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where Z denotes the latent vector, X is the WBC input image, and W and b are the
weights and bias, respectively. σ denotes the activation function.

• The decoder network: This consisted of three convolutional layers of 128, 64, and 32
filters using a 3 × 3 kernel and a LeakyReLU activation function. To reconstruct the
compressed image into the original, each convolutional layer was up-sampled by
using a subsampling layer. The reconstruction process of the encoded image shown in
Equation (1) can be expresses as follows:

Y = σ(Z⊗W
′
) + C (5)

where W
′

identifies the inverse operation across both weight dimensions of the kth
feature map. C denotes the bias. Algorithm 1 shows the details of the GT-DCAE
augmentation model.

3.2.2. Phase II: WBC Encoding and Feature Extraction

In this phase, the WBC images were first transformed into a new image representation
(28 × 28 × 128) by using the DCAE–encoder unit, where 28 × 28 represents the size of
the encoded image and 128 represents the number of retrieved features. The new image
representation was then fed into the the two-stage DCAE-CNN classification mode.

3.2.3. Phase III: The Two-Stage Atypical WBC Classification

This model consisted of two consecutive stages, the first of which was a binary clas-
sification model for classifying WBCs into typical WBC vs. atypical WBCs. The second
was a multiclassification model for further classifying atypical WBCs into one of eight
distinct subtypes. Figure 4 illustrates the two-stage DCAE-CNN classification model. The
following is a detailed description of the proposed classification model.

Stage I: The Typical vs. Atypical WBC Binary Classification Model
The Stage I classifier was a CNN model designed in a depth-wise fashion to enable the
learning of more complex nonlinear functions. The model comprised three convolutional
layers and one fully connected layer. The CNN’s input layer received the compressed
image representation and applied a sequence of convolutional operations according to the
following equation:

H(Z) =
28

∑
m=1

28

∑
n=1

128

∑
k=1

F(m, n, k)Z(Zx + m− 1, Zy + n− 1, k) (6)

where H(Z) is the set of feature maps obtained by applying convolutional operations on
the latent vector Z at the special location Z = (Zx, Zy), and F is the kernel defined between
the input Z and H.

Figure 5 illustrates Stage I (typical vs. atypical binary classification model).
The model was made up of three batch-normalized convolutional layers, with each

having 64 of (28 × 28 × 128), 128 of (28 × 28 × 64), and 256 of (28 × 28 × 64) feature
maps, and it employed a 3 × 3 kernel, the ReLU activation function, and L2 regularization.
Following each of the first two convolutional layers, a maximum pooling layer to reduce
the image dimensions. This procedure yielded 128 of (7 × 7) feature maps. A 20% dropout
approach was utilized to prevent overfitting, while zero-padding was used to maintain
boundary information and continuous feature map reductions.
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Algorithm 1 The GT-DCAE WBC augmentation algorithm.
Input:

I(x, y, k) is the input image.
H is the image height.
W is the image width.
C is the number of channels.
F (x, y, k) is the convolutional filter.
P is the padding ε {valid, same}.
S is the striding window.
ψ is the activation function.
PS is the pooling size.
R is the dropout rate.
UPR is the upsampling rate.
X is the 1-D flattened image.
N is the number of neurons.
input_shape is the input image shape.
Encoder_output is the latent representation of the WBC image..

Function conv (I,C,F,ψ,S,P) Return transformed image
conv(I, F)x,y = ∑H

m=1 ∑W
n=1 ∑C

k=1 F(m, n, k)I(x + m− 1, y + n− 1, k)
conv(I, F)x,y = ψconv(I, F)x,y

EndFunction
Function BN(I(x, y, k) Return batch-normalized image

INorm = I−mean(I)
std(I)

IBN = γINorm + β
EndFunction
Function Max-pool(I(x, y, k),S) Return pooled_image

IPool = maxPS
i,j I(x + i, y + j)

EndFunction
Function Upsampling (IPool , UPR) Return upsampled_image.

IUPR = (IPool)UPR
EndFunction
Procedure DropoutI(x, y, k),R

Freeze R neuron in CNN
EndProcedure
Function Dense(X, N, ψ) Return transformed 1-D matrix

densei(X, units) = ∑N
j=1 wij Xj + ηi

densei(X, units) = ψ(densei(X, units))
EndFunction
Function GT I(x, y, k) Return GT transformed image.
GT=[]

for j = (1 : 15) do
for (0o : 360o) do

IR = Rotation(I, d)
IGT = IGT .append(IR)
IV = V. f lip(I)
IH = H. f lip(I)
IGT = IGT .append(IV )
IGT = IGT .append(IH)

end for
end for
EndFunction
Function Encoder (I, input_shape) Return encoded_image.

Eecoder_input= Input (input_shape)
Conv1= conv(I, C, f1, ψ, S, P)
Conv1= Max-pool (Conv1, S)
Conv2= conv(I, C, f2, ψ, S, P)
Conv2= Max-pool (Conv2, S)
Conv3= conv(I, C, f3, ψ, S, P)
Conv3= Max-pool (Conv3, S)
Encoder_output = Conv3
Encoder= Model (Eecoder_input, Encoder_output)

EndFunction
Function Decoder (Encoder_output) Return decoded_image

Z= Encoder_output
Decoder_input= Input (input_shape)
Conv1= conv(Z, C, f3, ψ, S, P)
Conv1= Upsampling (Conv1, S)
Conv2= conv(Conv1, C, f2, ψ, S, P)
Conv2= Upsampling (Conv2, S)
Conv3= conv(Conv2, C, f1, ψ, S, P)
Conv3= Upsampling (Conv3, S)
Decoder_output=Conv(Conv3, 3, 3, ψ, S, P)
Decoder = Model (Decoder_input, Decoder_output)

EndFunction
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Figure 4. The two-stage DCAE-CNN atypical WBC classification model.

Figure 5. Stage I: Typical vs. atypical binary classification model.

Stage II: The Atypical WBC Multiclassification Model
Stage II is a multiclassification scheme for classifying atypical WBCs into eight subtypes, as
mentioned earlier. Figure 6 illustrates Stage II (atypical WBC multiclassification model).
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Figure 6. Stage II: Atypical WBC multiclassification model.

The model consisted of four batch-normalized convolution layers and one fully con-
nected layer. The model received an input feature with a shape of 28 × 28 × 128. The con-
volutional layers consisted of 32 of (28 × 28 × 128), 64 of (28 × 28 × 32), 128 of (28 × 28
× 64), and 256 of (28 × 28 × 128) feature maps, respectively, which were generated by
using a 3 × 3 kernel, the ReLU activation function, and L2 regularization. Following the
third and fourth convolutional layers, there was a maximum pooling layer with a size
of 2. The maximum pooling process produced 256 of (7 × 7) feature maps, which were
subsequently passed through a fully connected layer. Zero-padding was used to preserve
the boundary information and consistent feature map dimensions, while 20% dropout was
used to avoid model overfitting. After the convolutional layers was a fully connected layer
of 50 neurons. This layer received the output of the previous convolutional layer after
flattening to produce feature maps of a uniform size. Algorithm 2 depicts the details of the
two-stage DCAE-CNN model.

3.2.4. Model Training

The dataset was split 80/20 for training and testing. Both models were trained with
SGD (0.8 momentum, 0.00001 learning rate). In Stage I, one neuron and a sigmoid function
were used to classify WBCs as normal or abnormal. The Stage II model classified WBCs
into eight subtypes by using a dense layer of eight neurons and a SoftMax loss function.
The model was built by utilizing an Intel® CoreTM i7-9750 h at 2.60 GHz 192 CPU with
16 GB of RAM and an NVIDIA GeForce RTX 2070 with a max-design. The algorithm
was written in Python by using Keras and other image-processing libraries to extract
handcrafted features.

3.2.5. Phase III: Model Evaluation

The DCAE model’s performance was assessed by calculating the mean square error
between the original and synthetic images (MSE). Overall accuracy, sensitivity, precision,
specificity, and the area under the receiver characteristic curve (AUC) were used to evaluate
the classification performance.
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Algorithm 2 The two-Stage DCAE-CNN atypical WBC classification algorithm.
Input:

I(x, y, k) is the input image.
Function Typicalv̇sȦtypical I (x, y, k) Return WBC_type

Z= Encoder (I)
Conv1 = conv (Z, C, f1, ψ, S, P)
Conv1 = BN (Conv1)
Conv1 = Max-pool (Conv1, S)
Conv1 = Dropout (Conv1, 0.2)
Conv2= conv (Conv1, C, f2, ψ, S, P)
Conv2 = BN (Conv1)
Conv2 = Max-pool (Conv2, S)
Conv2 = Dropout (Conv2, 0.2)
Conv3= conv (Conv1, C, f3, ψ, S, P)
Conv3 = BN (Conv1)
Conv3 = Dropout (Conv2, 0.2)
Conv3= flatten (Conv3)
Dense1= Dense (Conv3, 50)
Dense1= Dropout (Dense1, 0.2)
Output= Dense (Dense1, 1, sigmoid)

EndFunction
Function Atypical_WBC_subtype I (x, y, k) Return Atypical_WBC_subtype

Z= Encoder (I)
Conv1= conv (Z, C, f1, Ψ, S, P)
Conv1 = BN (Conv1)
Conv2= conv (Conv1, C, f2, ψ, S, P)
Conv2 = BN (Conv1)
Conv3= conv (Conv1, C, f3, ψ, S, P)
Conv3 = BN (Conv1)
Conv3 = Max-pool (Conv3, S)
Conv3 = Dropout (Conv2, 0.2)
Conv4= conv (Conv3, C, f4, ψ, S, P)
Conv4 = BN (Conv4)
Conv4 = Max-pool (Conv4, S)
Conv4 = Dropout (Conv4, 0.2)
Conv4= flatten (Conv4)
Dense1= Dense (Conv4, 50)
Dense1= Dropout (Dense1, 0.2)
Output= Dense (Dense1, 8, softMax)

EndFunction
Function Two_Stage_atypical WBC_subtype I (x, y, k) Return Atypical_WBC_subtype

Read input image I (x, y, k)
GT(I)
Encoder(I)
WBC_type = Typical.vs.Atypical (I)

if WBC_type = “Typical” then
Exit

else
Return WBC_subtype = AtypicalW BC_subtype(I)

end if
EndFunction

4. Results

The results for both the GT-DCAE augmentation model and the two-stage DCAE-CNN
classification model are discussed in detail in this section.

4.1. WBC Augmentation

Eight distinct GT-DCAE models were generated for each distinct subtype of atypical
WBCs, and 10,000 WBC images were obtained for each subtype. The MSE values for all
models ranged from 0.001 to 0.005, indicating that the distance between the original image
and the generated image was minimal and that the model was able to produce similar
images. In addition, as depicted in Figure 7, the proposed model displayed excellent
calibration for all atypical WBC types by using the training and validation loss. To evaluate
the significance of the proposed GT-DCAE augmentation method, the GT-DCAE method
was compared to the standard GT augmentation method by using the proposed two-stage
DCAE-CNN classification model, as shown in Table 4. The classification model performed
better with the GT-DCAE than with the GT augmentation method. The details are presented
in the section that follows.
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Figure 7. The DCAE model convergence based on training and validation loss

4.2. Stage 1: Typical vs. Atypical Binary Classification

In this stage, WBCs were classified as either typical or atypical. The new dataset
had 38,715 (51%) normal WBCs compared to 37,035 (49%) atypical WBCs. Using training
and validation learning curves, the model stability was tested by analyzing the model
convergence. Figure 8a,b depict the training and validation learning curves with regard
to the loss and overall accuracy. Figure 8 shows that the validation learning curve spiked
at the 15th epoch, which was considered an early stage of the learning process. However,
after 15 epochs, the model began to converge, and by 50 epochs, the results were more
stable. The training of the model was extended to 100 epochs to ensure learning stability.
After 50 epochs, the training and learning curves converged, indicating that the model had
reached convergence.

To evaluate the performance of the model, the level of agreement between the model
predictions and actual values was calculated. The level of agreement was measured by
using precision and sensitivity. The model attained a sensitivity of 97.77% and a precision
of 97.42%. The AUC was utilized to evaluate the model’s capacity to discriminate between
typical and atypical WBCs. The model attained a 99.99% AUC. Figure 9 shows a graphical
illustration of the ROC curve obtained by plotting the true-positive rate (TPR) versus the
false-positive rate (FPR) with different thresholds.
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Figure 8. Stage I DCAE-CNN classification model convergence based on loss and accuracy :
(a) training and validation loss; (b) training and validation accuracy.

Figure 9. Stage I DCAE-CNN classification model ROC curve.

4.3. Stage II: The Atypical WBC Multiclassification Model

At this point, the dataset contained the eight distinct types of WBCs mentioned in the
previous section. Using the training and validation learning curves, the model stability was
tested by analyzing the model convergence. Figure 10a,b depict the training and validation
learning curves with regard to the loss and overall accuracy, respectively. Figure 10 shows
that after 50 epochs, the training and validation learning curves began to converge; however,
after 150 epochs, the learning curves remained unchanged, indicating that the model had
converged. Model training was extended to 200 epochs to assure the learning stability.

The classification performance of the Stage II model was tested by comparing
pathologist-generated ground-truth labels with the model’s predictions. Each model pre-
diction was a vector of eight probabilities, π = [π1, π2, . . . , π8], where πi corresponds
to the ith subclass and iε[0, 1, . . . , 7]. The Argmax function was used to identify the class
with the highest predicted probability. The model was evaluated by using the precision,
sensitivity, F-score, and AUC. Table 1 displays the class-wise precision and sensitivity. It
demonstrates that the model performed quite well in categorizing atypical WBCs, particu-
larly myeloblasts, which are the most essential cell type for diagnosing AML. In classifying
myeloblasts, the model reached 99% sensitivity and 99% precision. Additionally, the model
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performed exceptionally well when classifying other blast cells, such as erythroblasts
and monoblasts.

Figure 10. Stage II DCAE-CNN classification model convergence based on loss and accuracy:
(a) training and validation loss; (b) training and validation accuracy.

Table 1. The classification results of the Stage II DCAE-CNN. of the DCAE-CNN in Stage II.

Precision Sensitivity Number of Images/Class

Erythroblast 1.00 0.94 78.

Lymphocyte (atypical) 0.50 1.00 11

Metamyelocyte 0.33 0.50 15

Monoblast 1.00 0.86 26

Myeloblast 0.99 0.99 3268

Myelocyte 0.88 0.78 42

Promyelocyte (bilobed) 0.20 1.00 18

Promyelocyte 0.67 0.53 70

In terms of precision, both erythroblasts and monoblasts possessed the highest level
of precision, which was 100%. Moreover, the sensitivity for these types was 94% for
erythroblasts and 86% for monoblasts, which is also considered to be high. This showed
that there were no false positives for these two categories of WBCs; yet, a fraction of these
WBCs were not recognized, indicating that there were false negatives. Promyelocytes
(bilobed) and metamyelocytes, on the other hand, displayed the poorest precision: 20%
and 33%, respectively. However, in terms of sensitivity, promyelocytes (bilobed) achieved
100%, while metamyelocytes achieved 50%. This showed that promyelocytes (bilobed)
were classified with a significant rate of false positives, but no false negatives. Figure 11
reveals that promyelocytes (bilobed) were commonly misclassified as myeloblasts, an earlier
stage of promyelocyte, while metamyelocytes were misclassified as myelocytes, an earlier
stage of the metamyelocyte stage. This could be because promyelocytes (bilobed) and
metamyelocytes are in the intermediate stages of myelopoiesis, which is known to be a
difficult task and is subject to misclassification, as opposed to erythroblasts and monoblasts,
which are considered be early stages of myelopoiesis. Erythroblasts is the earliest stage
of erythropoiesis, which gives rise to red blood cells (RBCs), whereas monoblasts are the
earliest stage of monocytopoiesis, that grow into monocytes or macrophages [23].
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Figure 11. Confusion matrix for the atypical WBC multiclassification model.

In terms of sensitivity, the model demonstrated that lymphocytes (atypical) and
promyelocytes (bilobed) had the maximum sensitivity, with both having a 100% sensitivity.
As opposed to this, the precision for lymphocytes (atypical) was 50%, indicating that
this class was overestimated with no false negatives and some false positives, which
may have been caused by the testing dataset’s sparse images that were available for this
class. The least sensitive cell types, however, were metamyelocytes and promyelocytes,
which demonstrated 50% and 53% sensitivity with 33% and 67% precision, respectively.
However, given that these two types represent two consecutive phases of myelopoiesis
and, as a result, have relatively low sensitivity and precision, this was to be expected. The
model achieved a sensitivity of 67%, 20%, 88%, and 33% and a precision of 53%, 100%, 78%,
and 50% for promyelocytes, promyelocytes (bilobed), myelocytes, and metamyelocytes,
respectively, Figure 12 shows the class-wise sensitivity and precision of atypical WBCs.

The model yielded superior outcomes to those of earlier research by Matek et al., with
the exception of promyelocytes and promyelocytes (bilobed). For promyelocytes, the model
improved its precision, but not its sensitivity, whereas for promyelocytes (bilobed), it at-
tained 100% sensitivity, but was unable to enhance the precision. Figure 11 demonstrates
that both types of promyelocytes (PMO and PMB) were largely misclassified as myeloblasts,
with 3 of 12 promyelocytes being misclassified as myeloblasts and 3 of 4 bilobed promye-
locytes being classified as myeloblasts. However, as stated previously, the intermediate
phases of myelopoiesis are subject to misclassification, especially for WBCs that mature
in the following stages [2–4]. Since promyelocytes and myeloblasts represent consecutive
stages of the same myelopoiesis lineage, namely, the granulopoiesis lineage, misclassifica-
tion may occur [24,25]. Morphologically, the only distinction between promyelocytes and
myeloblasts is that the cytoplasm of promyelocytes contains azurophilic granules, while
the cytoplasm of myeloblasts has neither granules nor vacuoles.

The proposed model also demonstrated improved performance in identifying atypical
lymphocytes, a type of cell reactivated by viral, bacterial, or parasitic infection. In terms
of the size and volume of cytoplasm, atypical lymphocytes are comparable to monocytes;
nevertheless, their nuclei are more regular than those of monocytes. Therefore, the precise
classification of atypical lymphocytes is a difficult task. Despite this, the model was able to
improve the atypical lymphocyte classification accuracy with a sensitivity of 100% and a
precision of 50% when compared to the results from Matek et al.

The F-score of the proposed model summarized both the sensitivity and precision,
as presented in Table 2 and Figure 13. The cells with the highest scores were myeloblasts
and erythroblasts, whereas promonocytes and metamyelocytes had the lowest. This was
due to the distinct natures of erythroblasts and myeloblasts, which stem from two distinct
myelopoiesis lineages. In addition, the large number of images provided for myeloblasts
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allowed the model to learn more accurate features and generate more accurate find-
ings. Promonocytes and metamyelocytes, on the other hand, are in sequential stages
of myelopoiesis and are, consequently, subject to misclassification.

Figure 12. Precision and sensitivity of the Stage II DCAE-CNN.

Additionally, the model demonstrated excellent discrimination between the eight
classes, with an average AUC of 99.7%. Figure 14 displays the class-wise and overall
ROC curves, as well as the AUCs. The AUCs for blast cells, the most significant WBC
types for identifying AML, were 100%, 100%, and 99.4% for erythroblasts, monoblasts,
and myeloblasts, respectively. In addition, the model’s ability to distinguish atypical
lymphocytes from other WBCs was 90%, which was a decent result given the restricted
number of atypical lymphocytes in the dataset. Other immature WBCs exhibited AUC
values of 99.7%, 95.9%, 80.5%, and 99.3% for metamyelocytes, myelocytes, promyelocytes
(bilobed), and promyelocytes, respectively.

Table 2. F-scores and AUCs for r Stage II DCAE-CNN classification model.

WBCs F-Score AUC

Erythroblast 0.9700 1.0000

Lymphocyte (atypical) 0.6700 0.9020

Metamyelocyte 0.4000 0.9970

Monoblast 0.9200 1.0000

Myeloblast 0.9900 0.9900

Myelocyte 0.8200 0.9590

Promyelocyte (bilobed) 0.3300 0.80500

Promyelocyte 0.5900 0.9930
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Figure 13. F-scores of Stage II: DCAE-CNN atypical WBC classification.

Figure 14. ROC curve for Stage II: DCAE-CNN classification.

The effectiveness of our model was evaluated based on two factors: first, the signifi-
cance of the features extracted by the DCAE, and second, the use of the GT-DCAE synthetic
images. Consequently, our model was compared to the following models:

• CNN model employing GT-DCAE images without features extracted by the DCAE to
evaluate the significance of the DCAE-extracted features, as shown in Table 3.

• DCAE-CNN on GT images, excluding synthetic images generated by the DCAE model,
to examine the impact of synthetic images on improving the classification accuracy, as
presented in Table 4.
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Table 3. DCAE-CNN and CNN Comparison of based on GT-DCAE augmented dataset.

GT-DCAE GT

Precision Sensitivity Precision Sensitivity

Erythroblast 1.00 0.94 1.00 0.20

Lymphocyte (atyp) 5.00 1.00 0.00 0.00

Metamyelocyte 0.33 0.50 0.00 0.00

Monoblast 1.00 0.86 0.00 0.00

Myeloblast 0.99 0.99 0.93 0.90

Myelocyte 0.88 .78 0.00 0.00

Promyelocyte (bilobed) 0.20 1.00 0.00 0.00

Promyelocyte 0.67 0.53 0.00 0.00

Average overall accuracy 0.970 0.83

Table 3 demonstrates that the proposed model outperformed the CNN model in terms
of the class-wise and total accuracy, demonstrating the significance of DCAE-extracted
features.

Table 4. GT-DCAE and GT augmentation approaches based on a two-stage DCAE-CNN model
comparison.

GT-DCAE GT

Precision Sensitivity Precision Sensitivity

Erythroblast 1.00 0.94 1.00 0.79

Lymphocyte (atyp) 5.00 1.00 0.50 1.00

Metamyelocyte 0.50 1.00 0.50 1.00

Metamyelocyte 0.33 0.50 0.33 0.33

Monoblast 1.0 0.86 1.00 0.75

Myeloblast 0.99 0.99 0.95 1.00

Myelocyte 0.88 0.78 0.75 0.26

Promyelocyte (bilobed) 0.20 1.00 0.80 0.20

Promyelocyte 0.67 0.53 0.42 0.56

Promyelocyte 0.67 0.53 0.42 0.56

Average overall accuracy 0.97 0.93

Table 4 demonstrates that the use of the DCAE synthetic images led to an increase in
class-wise accuracy—particularly sensitivity—and overall accuracy. The results of the pro-
posed model were compared to those of other studies that utilized different methodologies
on the same dataset. Matek et al. [2], Dasariraju et al. [19], and Dinčić et al. [5] were the
accessible studies. A summary of these studies is provided in the section on related work.
Table 5 compares our findings to those of these studies.
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Table 5. Comparison with other models.

Authors Matek et al. (2019) [2] Dasariraju et al. (2020) [19] Dincic et al. (2021) [5] Our Model 2022

Prob. Unadjusted Unadjusted Adjusted Unadjusted Unadjusted Adjusted

Metrics Precision Sensitivity Precision Sensitivity Precision Sensitivity Precision Sensitivity Precision Sensitivity Precision Sensitivity

Erythroblast 0.7500 0.8700 1.0000 0.9130 0.9123 0.8710 0.8600 1.0000 1.0000 0.9400 0.9679 0.9303

Lymphocyte (atyp) 0.200 0.0700 - - - - - - 0.5000 1.000 0.4839 0.9897

Metamyelocyte 0.070 0.1300 - - - - 0.5000 0.4300 0.3300 0.5000 0.3194 0.4948

Monoblast 0.5200 0.5800 0.8750 1.0000 0.7982 0.9540 0.8800 0.9600 1.0000 0.8600 0.9679 0.8512

Myeloblast 0.9400 0.9400 0.9675 0.9444 0.8826 0.9009 0.8000 0.9600 0.9900 0.9900 0.9582 0.9798

Myelocyte 0.4600 0.4300 - - - - 0.6500 0.5200 0.8800 0.7800 0.8517 0.7720

Promyelocyte (bilobed) 0.4500 0.4100 - - - - - - 0.2000 1.0000 0.1935 0.9897

Promyelocyte 0.6300 0.5400 0.6250 0.8330 0.5701 0.5439 0.8900 0.7100 0.6700 0.5300 0.6484 0.5245

Overall Accuracy - 0.9340 0.8676 0.8100 0.9700 0.9312

AUC 0.9860 Not Cal Not cal Not cal 0.997 0.9897
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5. Conclusions

In this study, a two-stage deep learning model was developed to classify atypical WBCs.
These cells are difficult to characterize and have received little scientific attention. This study
combined the DCAE and a CNN to extract more discriminant WBC features and present
a new model for classifying atypical WBCs. This research proposes a new augmentation
strategy by using a hybrid model of geometric transformation and a deep convolutional
autoencoder to improve the model classification performance by addressing imbalanced
WBC distribution. Finally, the model’s results were compared to the ground truth and were
benchmarked against existing classification methods of atypical WBCs; the model showed
superior performance.
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5. Dinčić, M.; Popović, T.B.; Kojadinović, M.; Trbovich, A.M.; Ilić, A.Ž. Morphological, fractal, and textural features for the blood
cell classification: The case of acute myeloid leukemia. Eur. Biophys. J. 2021, 50, 1111–1127. [CrossRef] [PubMed]

6. Choi, J.W.; Ku, Y.; Yoo, B.W.; Kim, J.A.; Lee, D.S.; Chai, Y.J.; Kong, H.J.; Kim, H.C. White blood cell differential count of maturation
stages in bone marrow smear using dual-stage convolutional neural networks. PLoS ONE 2017, 12, e0189259. [CrossRef]
[PubMed]

7. Elhassan, T.A.M.; Rahim, M.S.M.; Swee, T.T.; Hashim, S.Z.M.; Aljurf, M. Feature Extraction of White Blood Cells Using CMYK-
Moment Localization and Deep Learning in Acute Myeloid Leukemia Blood Smear Microscopic Images. IEEE Access 2022,
10, 16577–16591. [CrossRef]

8. Bigorra, L.; Merino, A.; Alferez, S.; Rodellar, J. Feature analysis and automatic identification of leukemic lineage blast cells and
reactive lymphoid cells from peripheral blood cell images. J. Clin. Lab. Anal. 2017, 31, e22024. [CrossRef] [PubMed]

9. Rad, A.E.; Rahim, M.S.M.; Rehman, A.; Saba, T. Digital dental X-ray database for caries screening. 3D Res. 2016, 7, 1–5. [CrossRef]
10. Rad, A.E.; Mohd Rahim, M.S.; Kolivand, H.; Mat Amin, I.B. Morphological region-based initial contour algorithm for level set

methods in image segmentation. Multimed. Tools Appl. 2017, 76, 2185–2201. [CrossRef]
11. Muhsen, I.N.; Elhassan, T.; Hashmi, S.K. Artificial intelligence approaches in hematopoietic cell transplantation: A review of the

current status and future directions. Turk. J. Hematol. 2018, 35, 152.
12. Elhassan, T.A.; Rahim, M.S.M.; Swee, T.T.; Hashim, S.Z.M.; Aljurf, M. Segmentation of White Blood Cells in Acute

Myeloid Leukemia Microscopic Images: A Review. In Prognostic Models in Healthcare: AI and Statistical Approaches; Springer:
Berlin/Heidelberg, Germany, 2022; pp. 1–24.

13. Suryani, E.; Wiharto, W.; Polvonov, N. Identification and counting white blood cells and red blood cells using image processing
case study of leukemia. arXiv 2015, arXiv:1511.04934.

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=61080958
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=61080958
http://doi.org/10.1038/s42256-019-0101-9
http://dx.doi.org/10.1007/s00249-021-01574-w
http://www.ncbi.nlm.nih.gov/pubmed/34642776
http://dx.doi.org/10.1371/journal.pone.0189259
http://www.ncbi.nlm.nih.gov/pubmed/29228051
http://dx.doi.org/10.1109/ACCESS.2022.3149637
http://dx.doi.org/10.1002/jcla.22024
http://www.ncbi.nlm.nih.gov/pubmed/27427422
http://dx.doi.org/10.1007/s13319-016-0096-5
http://dx.doi.org/10.1007/s11042-015-3196-y


Diagnostics 2023, 13, 196 20 of 20

14. Wiharto, E.S.; Palgunadi, S.; Putra, Y.R.; Suryani, E. Cells identification of acute myeloid leukemia AML M0 and AML M1 using
K-nearest neighbour based on morphological images. In Proceedings of the 2017 International Conference on Data and Software
Engineering (ICoDSE), Palembang, Indonesia, 1–2 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6.

15. Wiharto, W.; Suryani, E.; Putra, Y.R. Classification of blast cell type on acute myeloid leukemia (AML) based on image morphology
of white blood cells. Telecommun. Comput. Electron. Control 2019, 17, 645–652. [CrossRef]

16. Harjoko, A.; Ratnaningsih, T.; Suryani, E.; Palgunadi, S.; Prakisya, N.P.T. Classification of acute myeloid leukemia subtypes M1,
M2 and M3 using active contour without edge segmentation and momentum backpropagation artificial neural network. In
Proceedings of the MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 154, p. 01041.

17. Roy, E.K.; Aditya, S.K. Prediction of acute myeloid leukemia subtypes based on artificial neural network and adaptive neuro-fuzzy
inference system approaches. In Innovations in Electronics and Communication Engineering; Springer: Berlin/Heidelberg, Germany,
2019; pp. 427–439.

18. Rawat, J.; Singh, A.; Bhadauria, H.; Virmani, J.; Devgun, J.S. Computer assisted classification framework for prediction of acute
lymphoblastic and acute myeloblastic leukemia. Biocybern. Biomed. Eng. 2017, 37, 637–654. [CrossRef]

19. Dasariraju, S.; Huo, M.; McCalla, S. Detection and classification of immature leukocytes for diagnosis of acute myeloid leukemia
using random forest algorithm. Bioengineering 2020, 7, 120. [CrossRef] [PubMed]

20. Qin, F.; Gao, N.; Peng, Y.; Wu, Z.; Shen, S.; Grudtsin, A. Fine-grained leukocyte classification with deep residual learning for
microscopic images. Comput. Methods Programs Biomed. 2018, 162, 243–252. [CrossRef] [PubMed]

21. Matek, C.; Schwarz, S.; Marr, C.; Spiekermann, K. A Single-Cell Morphological Dataset of Leukocytes from AML Patients and
Non-Malignant Controls [Data Set]; The Cancer Imaging Archive: Frederick, MD, USA, 2019.

22. Trang, K.; TonThat, L.; Thao, N.G.M. Plant leaf disease identification by deep convolutional autoencoder as a feature extraction
approach. In Proceedings of the 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecom-
munications and Information Technology (ECTI-CON), Phuket, Thailand, 24–27 June 2020; IEEE: Piscataway, NJ, USA, 2020;
pp. 522–526.

23. He, G.; Wang, C.; Li, Q.; Tan, H.; Chen, F.; Huang, Z.; Yu, B.; Zheng, L.; Zheng, R.; Liu, D. Clinical and laboratory features of
seven patients with acute myeloid leukemia (AML)-M2/M3 and elevated myeloblasts and abnormal promyelocytes. Cancer Cell
Int. 2014, 14, 1–9. [CrossRef] [PubMed]

24. Almezhghwi, K.; Serte, S. Improved classification of white blood cells with the generative adversarial network and deep
convolutional neural network. Comput. Intell. Neurosci. 2020, 2020, 6490479. [CrossRef] [PubMed]

25. Bradshaw, R.A.; Stahl, P.D. Encyclopedia of Cell Biology; Academic Press: Cambridge, MA, USA, 2015.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.12928/telkomnika.v17i2.8666
http://dx.doi.org/10.1016/j.bbe.2017.07.003
http://dx.doi.org/10.3390/bioengineering7040120
http://www.ncbi.nlm.nih.gov/pubmed/33019619
http://dx.doi.org/10.1016/j.cmpb.2018.05.024
http://www.ncbi.nlm.nih.gov/pubmed/29903491
http://dx.doi.org/10.1186/s12935-014-0111-y
http://www.ncbi.nlm.nih.gov/pubmed/25678855
http://dx.doi.org/10.1155/2020/6490479
http://www.ncbi.nlm.nih.gov/pubmed/32695152

	Introduction
	Related Work
	Materials and Methods
	Dataset
	The Proposed Model
	Phase I: WBC Augmentation
	Phase II: WBC Encoding and Feature Extraction
	Phase III: The Two-Stage Atypical WBC Classification
	Model Training
	Phase III: Model Evaluation


	Results
	WBC Augmentation 
	Stage 1: Typical vs. Atypical Binary Classification 
	Stage II: The Atypical WBC Multiclassification Model

	Conclusions
	References

