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Abstract: The study utilizes osteosarcoma hematoxylin and the Eosin-stained image dataset, which is
unevenly dispersed, and it raises concerns about the potential impact on the overall performance and
reliability of any analyses or models derived from the dataset. In this study, a deep-learning-based
convolution neural network (CNN) and adapted heterogeneous ensemble-learning-based voting
classifier have been proposed to classify osteosarcoma. The proposed methods can also resolve the
issue and develop unbiased learning models by introducing an evenly distributed training dataset.
Data augmentation is employed to boost the generalization abilities. Six different pre-trained CNN
models, namely MobileNetV1, Mo-bileNetV2, ResNetV250, InceptionV2, EfficientNetV2B0, and
NasNetMobile, are applied and evaluated in frozen and fine-tuned-based phases. In addition, a
novel CNN model and adapted heterogeneous ensemble-learning-based voting classifier developed
from the proposed CNN model, fine-tuned NasNetMobile model, and fine-tuned Efficient-NetV2B0
model are also introduced to classify osteosarcoma. The proposed CNN model outperforms other
pre-trained models. The Kappa score obtained from the proposed CNN model is 93.09%. Notably,
the proposed voting classifier attains the highest Kappa score of 96.50% and outperforms all other
models. The findings of this study have practical implications in telemedicine, mobile healthcare
systems, and as a supportive tool for medical professionals.

Keywords: bone malignancy; convolution neural network (CNN); histopathological image
classification; osteosarcoma; transfer learning; ensemble learning

1. Introduction

Less than 0.2% of all cancer cases are predominant bone cancers, which are exception-
ally infrequent tumors whose true incidence is difficult to ascertain due to their rarity [1].
The three predominant forms of bone cancer are osteosarcoma, chondrosarcoma, and
Ewing sarcoma. The histological lineage of different bone cancer types determines their
nomenclature. Osteosarcomas arise from bone tissue; a chordoma originates from noto-
chordal tissue; and chondrosarcomas emerge from cartilage tissue. Primary bone cancers
exhibit significant clinical variability and are frequently curable when given appropriate
care. The incidence of bone cancers exhibits variations in both sex and age. With the highest
prevalence in the fifth to sixth decades of life, chordoma is more prevalent in men. Adults
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who are middle-aged or older are chondrosarcoma carriers, and younger generations and
children are barriers to Ewing sarcoma and osteosarcoma. The tumor leads to significant
skeletal transformation, cracks, distress, and malnutrition once it has spread to the bone,
making it a leading cause of mortality and morbidity. Patients diagnosed with advanced
breast, prostate, and lung cancer often encounter bone cancer discomfort due to the notable
tendency of these malignancies to metastasize to the skeletal system [2]. Osteosarcoma
stands in the eighth position among all cancers in children. It usually starts in the bone
cells, forming new bone tissue, and can develop in any bone in the body. However, it most
commonly occurs in the long legs and arms. The percentage of the most frequent sites of
osteosarcoma is 42% for the femur, 19% for the tibia, and 10% for the humerus [3]. The 10-
to 14-year-olds experience the first peak, and adults over 65 experience the second. Per
year, 3 million people are affected by osteosarcoma. However, the age group of 15 to 19 is
more affected by the health problem. In general, the incidence rate of females is lower than
that of males [4].

Symptoms of osteosarcoma can include pain, swelling, stiffness in the affected bone,
and difficulty moving the affected limb. A mass or lump may be visible on or near the
affected bone. The etiology of osteosarcoma remains uncertain, although certain risk
factors have been identified, including a prior history of radiation therapy, the presence
of specific genetic disorders such as Li-Fraumeni syndrome, and a previous diagnosis
of Paget’s disease. Spinal osteosarcoma is an aggressive form of bone cancer primarily
affecting the spine. Compared to osteosarcoma of the extremities, which has a mean age
of 38, osteosarcoma of the spine typically affects older age groups [5]. The danger lies
in its ability to rapidly grow and spread (metastasize) to other body parts, including the
lungs. Due to its location near critical nerves and the spinal cord, it can cause severe pain,
neurological deficits, and even paralysis. osteosarcoma has a significantly greater death
rate than other cancers. Early identification is crucial in these circumstances since it may
lower the death rate. Crucial diagnostic tools for osteosarcoma include magnetic resonance
imaging, X-rays, and histological biopsy tests. Presently, thorough clinical records are
taken at the introductory level of osteosarcoma diagnostic tests and physical exams [6].
To diagnose osteosarcoma, the knowledge level and experience of the doctor should be
proper and high. It can be challenging to distinguish the subtleties of histological images
because pathologists must look at many histological slides [7]. In this context, the use of an
automated method for osteosarcoma detection has the potential to alleviate the burdens
and obligations faced by pathologists due to the overwhelming volume of cases.

Furthermore, numerous laboratory tests are required due to the rising incidence of
cancer, which frequently causes pathologists to become exhausted. Cancer management
and diagnostic tests are currently more complicated than ever due to patient-specific treat-
ments [8]. In recent years, there has been a notable rise in the utilization of automated
analysis techniques for microscopic image examination in the context of cancer detection.
This trend has emerged as a response to the limitations posed by conventional methods.
Radiologists and pathologists can use computer-aided detection (CAD) technology to
immediately find neoplasms depending on histopathology image data [9,10]. Histological
slides are now being converted into digital image datasets in a trend that enables machine
learning (ML) to cooperate on photographic files to improve accurate diagnosis. CAD
innovation that incorporates potent algorithms, like deep learning (DL) models, which can
precisely identify cancerous tumor growth. Researchers have conducted several clinical
studies on various illnesses, including osteosarcoma. ML is very efficient for processing
digital images and can easily detect and classify osteosarcoma. In the detection of osteosar-
coma, researchers have utilized ML and DL approaches, such as convolutional neural
networks (CNNs), Support Vector Machines (SVMs), and several other strategies [11]. The
CNN model with data augmentation was employed by Asmaria et al. [12] as one of the
strategies to enhance the performance of the model.They used MATLAB to build the CNN
model. Their model performs well in classifying osteosarcoma, and the accuracy reaches
95.37%. Mahore et al. [13] employed various ML algorithms, including Decision Tree (DT),
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Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and AdaBoost (Adaptive
Boosting), to conduct a comparative analysis of the classification of osteosarcoma. The
findings revealed that AdaBoost outperformed the other algorithms, achieving an accuracy
rate of 91.70%. Several studies have demonstrated the reliable prediction of osteosarcoma
using DL systems. The goals of the proposed work are to ensure the development of an
expert system to diagnose osteosarcoma, which will aid doctors in treating patients more
quickly and effectively, to provide the proposed system as telemedicine since sophisticated
diagnostic equipment is not readily available in most rural areas, and to use the proposed
system as a smart hospital management system in diagnostic centers.

This study presents evidence of the efficacy of DL-based tools in accurately detecting
osteosarcoma tumors. The study utilizes a publicly available dataset and employs a sophis-
ticated classification system incorporating a proposed CNN architecture and a CNN-based
voting classifier. This approach, known as heterogeneous ensemble learning (ENL), aims to
ensure appropriate patient treatment. The fundamental principle behind ENL resides in
amalgamating the predictions derived from multiple models, potentially yielding superior
outcomes compared to utilizing any singular model in isolation [14]. The proposed voting
approach’s concepts enhance the majority voting strategy [15], meticulously designed
to address and rectify significant limitations. The dataset of pathology archives from the
Children’s Medical Center [16] has been processed to DL algorithms to facilitate subsequent
research to classify tumor, non-tumor, and necrotic tumor cells. Our dataset has uneven
distribution, which may cause the splitting strategy to accept an imbalance landmark in
the training set. For the unevenly distributed dataset, the biases exhibited by the models
may stem from a tendency to prefer a group with a larger population [17].

Bias in ML is widely regarded as a problematic factor [18]. Our solution introduces
a way for lowering biases to generate a DL model free of any slant. Six modified transfer
learning approaches, namely MobileNetV1 [19], MobileNetV2 [20], Res-NetV250 [21],
InceptionV2 [22], NasNetMobile [23], and EfficientNetV2-B0 [24] are treated. The improved
performance of the adapted transfer learning model over its predecessor architecture can be
seen in each scenario. The upper layer has undergone adjustment to optimize the product.
Frozen and fine-tuned-based phases are applied to train and assess six distinct transfer
learning models. A CNN model with a custom-built architecture is also designed and
developed by adapting and enhancing the concept outlined in [25] to classify osteosarcoma.
A comparative analysis has been made. The suggested CNN architecture trained with a
balanced training set achieves an accuracy of 95.63%. It outperforms ordinary and fine-
tune-based pre-trained models developed from balanced and imbalanced training sets.
Moreover, the ENL-based proposed max voting classifier prepared from the proposed
CNN, fine-tune-based NasNetMobile, and EfficientNetV2B0 base learner, designated as
ENL-CNE, has achieved 96.51% accuracy and outperforms all other models. For the group
of cancerous tumors, the proposed ENL model achieves the highest recall, which equals
100%. The subsequent section analyzes the contributions of this study.

• A structured dataset for ML-based osteosarcoma classification was constructed. An
augmentation strategy into the training data was incorporated.

• In transfer learning, six pre-trained CNN models were applied to the dataset for clas-
sifying osteosarcoma. An optimal pre-trained model using fine-tuning by unfreezing
the entire model was developed.

• A CNN architecture was developed that, with a balanced dataset, makes classification
more effective and gives a faster classification rate.

• An adapted heterogeneous ENL-based voting classifier and brute-force strategy were
constructed to evaluate all combinations of base learners systematically.

• The performance of all the learning models used in this study and comparisons among
them were analyzed.

The remainder of this study is structured as follows. In Section 2, the literature
review has been covered. In Section 3, the research technique is presented. Details of the
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implementation are presented in Section 4. The result analysis is shown in Section 5. Finally,
Section 6 summarizes the results and discusses potential future studies.

2. Literature Review

The following discussion draws on various available literature concerning the di-
agnosis of osteosarcoma. Ahmed et al. [26] proposed a compact CNN architecture to
classify small and imbalanced osteosarcoma histology image datasets. The study employed
an over-sampling technique to mitigate class imbalance and overfitting. Experimental
results demonstrate that the proposed CNN models achieve high accuracies, with the
non-regularized model attaining 78% testing accuracy for the imbalanced dataset and 81%
testing accuracy for the balanced dataset. The regularized model achieves 75% testing
accuracy for the imbalanced dataset and 86% testing accuracy for the balanced dataset.
Ahmed et al. [26], Gawade et al. [27], Vezakis et al. [28], and even our study utilizes a similar
dataset for the analysis. The dataset employed in these studies consists of microanatomy
images of hematoxylin and Eosin-stained osteosarcoma collected by a group of clinical
professionals from the University of Texas at Dallas.

Gawade et al. [27] proposed an automatic DL approach for detecting osteosarcoma
bone cancer using CNN-based models. The researchers examined four algorithms to
construct their conceptual framework: VGG16, VGG19, DenseNet201, and ResNet101. In
their study, the authors [27] used various performance metrics to assess the effectiveness
of their approach. The study used performance metrics, including accuracy, F1 score,
precision, recall, AUC, and Vscore, to evaluate the performance. The findings indicated
that the ResNet101 model exhibited superior performance compared to the other models,
attaining the greatest accuracy rate of 90.36%, F1 score of 89.35%, precision of 89.51%, recall
of 89.59%, AUC of 0.946, and Vscore of 2.720.

Furthermore, Vezakis et al. [28] intended to demonstrate the efficiency of 12 pre-trained
DL models for osteosarcoma classification, emphasizing the importance of selecting models
with smaller parameter sizes. They split the dataset into 70% for training and 30% for
testing. The pre-trained models were fine-tuned using the PyTorch framework, and the
top-performing networks with the appropriate image input size were selected. On average,
MobileNetV2 was identified as the best-performing model based on the macro-average
F1 score.

However, Shen et al. [29] are devoted to the field of ML and conducted a study
to classify osteosarcoma and benign tumor patients using ML algorithms, specifically
Random Forest (RF) and Support Vector Machine (SVM). They utilized image features and
metabolomic data, evaluating model performance based on accuracy, sensitivity, specificity,
P-value, and AUC. The study involved X-ray image segmentation, feature extraction,
selection, and ML-based categorization. To increase the accuracy of the models, they used
5-fold cross-validation. The RF model achieved an accuracy of 85%, sensitivity of 92%,
specificity of 78%, p-value of 0.044, and AUC of 0.94. In contrast, the SVM model achieved
an accuracy of 81%, sensitivity of 81%, specificity of 80%, p-value of 0.080, and AUC of 0.86.
The performance analysis demonstrates that the RF model outperformed the SVM model.
On the other hand, Nabid et al. [30] introduced a sequential Recurrent Convolutional
Neural Network (RCNN) comprising CNN and bidirectional Gated Recurrent Units (GRU)
for osteosarcoma classification. The model’s performance was enhanced using strain
normalization techniques. Using the osteosarcoma histopathological image dataset, a
comparison was made with the pre-trained models, including AlexNet, ResNet50, VGG16,
LeNet, and SVM. In [30], a method was proposed consisting of four Histology Region
Convolution (HRC) blocks, followed by bidirectional Gated Recurrent Units (GRU) and
dense networks. It achieved an accuracy of 89%, precision of 88%, recall of 89%, and F1
score of 89%. The area under the ROC curve for non-tumor, viable tumor, and necrotic cells
were 0.9, 0.86, and 0.88, respectively.

Anisuzzaman et al. [31] investigated the effectiveness of DL-based pre-trained models
for osteosarcoma detection using a public histological image dataset. The objective was
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to distinguish necrotic images from non-necrotic and healthy tissues. The novelty of the
proposed approach in [31] lies in applying pre-trained models to different dataset categories,
using the entire tile image as input. Without patches, transfer learning techniques such as
InceptionV3 and VGG19 were utilized on Whole Slide Images (WSI). Both binary and multi-
class classification were performed using VGG19 and InceptionV3. The models were trained
for 1500 epochs with an Adam optimizer and a learning rate of 0.01. The VGG19 model
demonstrated the best level of accuracy across all scenarios. In addition, Mishra et al. [32]
proposed using CNN to enhance the efficiency and accuracy of classifying osteosarcoma
tumors into tumor classes (viable tumor, necrosis) versus non-tumor. Their study introduces
a novel application of CNN designed for osteosarcoma image classification. The dataset
employed in their study comprised one thousand images categorized as Viable, Necrosis,
and Non-Tumor.

On the contrary, certain investigations are undertaken utilizing genome data. To
examine the expression profile of repetitive elements (RE) in osteosarcoma, Ho et al. [33]
conducted their study. They analyzed the entire RNA of 36 fresh-frozen paired samples
from osteosarcoma patients, 18 of which were tumors and 18 of which were not. They
discovered that Eighty-two repetitive DNA elements (REs) expressed differentially in
osteosarcoma and normal bone. A total of 35 REs were up-regulated, and 47 were down-
regulated out of all the significantly altered REs. Reimann et al. [34] identify innovative
biomarkers for osteosarcoma. The genes in which the mutations were identified can be
regarded as potential candidates for the identification of biomarkers for osteosarcoma. In
the exome of the tumor, a comprehensive analysis revealed extensive genomic rearrange-
ments that meet the criteria for chromotripsis. Next-generation sequencing was employed
to analyze the complete exome of both tumorous and non-tumorous bone tissue samples
obtained from a patient diagnosed with osteosarcoma. Multiple software programs were
used for data processing, in which exome data were integrated with RNA-seq data. Their
investigation identified about three thousand somatic single nucleotide variations (SNVs)
and minor insertions or deletions, as well as over two thousand copy number variants
(CNVs) distributed across various chromosomes. They also observed that somatic modifica-
tions are specifically related to the development of bone tumors, while germline mutations
are related to the occurrence of cancer in a broader sense.

The work introduces a CNN architecture consisting of three sets of convolutional
layers paired with corresponding max-pooling layers, which are employed to enhance the
feature extraction process. Additionally, two fully connected layers are used to enhance
data augmentation. The researchers explored different baseline architectures with varying
hidden layers to optimize performance. The extended neural network version (with
increased hidden layers and decreased filter size from 5 × 5 to 3 × 3) outperformed
the simple baseline architecture. The accuracy rates for different classes in the baseline
implementation and the proposed architecture were as follows: Viable—83% and 92%,
Necrosis—73% and 90%, and Non-Tumor—91% and 95%, respectively. Moreover, the
average accuracies of AlexNet, LeNet, VGGNet, baseline architecture, and their proposed
architecture were 73%, 67%, 67%, 84%, and 92.40%, respectively. Asito et al. [35] proposed
a computer-aided diagnosis system using CNNs for osteosarcoma detection on bone
radiography. They employed a window-based approach, where CNNs were applied to
classify each window and identify cancer-affected regions in the image. The dataset used in
the study originated from a study conducted at the University of Sao Paulo. The windows
were categorized as normal or tumor (osteosarcoma) using CNNs, comparing their custom
CNN model and a pre-trained VGG16. Beyond these techniques, Decision Tree, Random
Forest, MLP, and MLP with feature selection classifiers were employed. The pre-trained
CNN achieved the highest accuracy of 77% and the highest sensitivity of 84%, and the MLP
with feature selection algorithm also achieved the highest sensitivity of 84%. The MLP
attained the highest specificity of 76%. These findings highlight the effectiveness of CNNs
in osteosarcoma detection on bone radiography and demonstrate the superior performance
of the pre-trained VGG16 compared to the other models.
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3. Research Methodology

In this section, the research methods used for the study have been illustrated. Figure 1
concisely demonstrates the proposed methodology. The following phases are used to
develop our study. After obtaining the dataset from the Cancer Imaging Archive, the
dataset is organized into three folders and known as class names. Next, the dataset is
divided into two portions: 80% for training and 20% for testing. The raw dataset is
highly imbalanced, so data balancing has been performed on the training set using a data
augmentation library named “Albumentations”. The minority classes have been over-
sampled to the highest class. Subsequently, the training and test sets have undergone image
preprocessing procedures, including image normalization.

Figure 1. Proposed methodology.

A CNN model with a customized architecture tailored for this study undertaking
and six other deep transfer learning pre-trained CNN models, namely Mo-bileNetV1,
MobileNetV2, ResNetV250, InceptionV2, NasNetMobile, and EfficientNetV2B0 have been
applied to the training set. Every model has undergone a comprehensive evaluation, culmi-
nating in a comprehensive examination of the collective findings. Additionally, an adapted
voting classifier is shown in Figure 2, which constitutes a specialized implementation of
heterogeneous ENL, has been devised, and certain drawbacks are also mitigated.
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Figure 2. Functioning of the proposed majority voting ensemble algorithm.

The ENL approach is heterogeneous, as the constituent base models encompass diverse
types [36]. Adopting the max voting technique is intended to improve the effectiveness
of DL classifiers [37]. Algorithm 1 demonstrates the proposed modified majority voting
ensemble approach. In this approach, the vote counter tallies the votes from various
algorithms for each category corresponding to every testing instance and stores them
in CF. Subsequently, the final prediction FPrei describes the category that garners the
highest frequency value. The drawbacks, like two or more categories occurring the same
number of times, are addressed by incorporating class probability, as outlined in lines
16–21 of Algorithm 1. As depicted in Figure 2, the smart voting coordinator effectively
overcomes these limitations by deriving the ultimate output from the highest frequency
value obtained through the vote accumulation facilitated by the vote counter. Subsequently,
the smart voting coordinator utilizes a brute-force mechanism to assess every conceivable
combination of the underlying base learners rigorously. Wherein a combination comprises a
minimal count of base learners, precisely two. Such strategic coordination ensures a robust
and accurate final prediction. Reduced mortality upon osteosarcoma diagnosis is the main
objective in clinical procedures. The early-stage tumor must be kept from metastasizing at
all costs. In addition to lowering the likelihood of a false positive, early automatic detection
can also be used to support the physician in deciding whether metastasis has occurred.
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Using CNN, computer-aided technology, the effort of the physician can be significantly
reduced, and patient outcomes can be improved. Algorithm 1 describes the DL models
used in this study.

Algorithm 1 Adapted Majority Voting Ensemble Algorithm
Input: List of base models and BMk; Test data TDi
Output: Final prediction (FPrei) based on test data TDi

1 Model predictions dictionary, MPre : = {}
2 Class probability dictionary, MPrePro : = {}
3 Class frequencies, CF : = {}
4 for each BMk do
5 Predict test data TDi
6 Store prediction results in MPre with the model name
7 Store class probability in MPrePro
8 end
9 for each MPre do

10 Extract the predicted class from MPre
11 Increment CF
12 end
13 Determine the class CLj, that occurs most frequently in CF
14 if frequencies are similar for two or more classes then
15 Sum up the class probability in MPrePro for the class CLj
16 Update, FPrei← CLj for the TDi when the class probability is maximum
17 if class probabilities are similar for two or more classes then
18 Update, FPrei← CLj /* CLj accepts an overall maximum

occurrences in prediction results MPre */
19 end
20 end
21 Update, FPrei← CLj for the TDi
22 Return FPrei

3.1. Deep Learning Algorithms

This section will comprehensively discuss the deep learning (DL) methods employed
in our investigation. The fundamental elements of the deep CNN model, together with six
additional pre-trained deep transfer learning models, namely MobileNetV1, MobileNetV2,
ResNetV250, InceptionV2, NasNetMobile, and EfficientNetV2B0, have been elucidated.

1. CNN: Among all DL networks, CNN is widely utilized, particularly for computer
vision activities. Soon afterward, in Waibel et al. [38] and Lecun et al. [39] developed
two different architectures of CNNs for phoneme recognition that shared weights
between temporal receptive fields and back-propagation training and a useful CNN
architecture for document recognition, respectively. CNN belongs to DL networks and
is a supervised ML algorithm. The key convenience of CNN is that it can automatically
extract essentials from the dataset compared to its predecessors [40] as it consists of
some primary layers [41]. The subsequent section delineates its several layers.

• Convolutional Layers: It is one of the most significant layers of CNN. In this
layer, kernels or filters of weights are convoluted for feature extraction, which is
the main benefit of CNNs.

• Pooling Layers: The main objective of the pooling layer is to decrease the spatial di-
mensions of the input image systematically, therefore reducing the computational
load imposed on the network. In CNN, pooling reduces the size of the down-
sampling operation. It sends only the most crucial data to subsequent layers.
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• Dropout Layers: The dropout layer drops random nodes to reduce overfitting.
The main goal of the dropout layer is to drop random nodes throughout various
iterations of the process and introduce variability and non-linear effects to the
training set [42].

• Fully Connected Layers: The fully connected layer is one of the most elemental
components in CNN. The final several layers of the network are known as fully
connected layers. The fully connected layer is responsible for receiving the
output from the preceding pooling or convolutional layer. Prior to its application,
the output is flattened. In a fully connected layer, the input first undergoes
multiplication by a weight matrix and then an addition of a bias vector [43].

2. MobileNetV1: MobileNet is a pre-trained model in Transfer Learning of CNN archi-
tecture, trained with the ImageNet dataset. Its creation aimed to optimize precision,
considering the constraints imposed by the restricted resources typically available
for on-device or embedded applications. The foundation of MobileNet is depthwise
separable convolutions, which have pointwise and depthwise convolutions as their
two main internal layers. Filtering the input without adding new features is called
depthwise convolution [44]. Thus, pointwise convolution—a technique for creating
additional features—was merged. Depthwise separable convolution is the name
given to the two layers together. Each input channel underwent a singular filter
application through depthwise convolutions. The resulting output from the depth-
wise layer was subsequently merged in a linear manner using 1 × 1 convolutions
(pointwise).Following each convolution, the techniques of batch normalization (BN)
and rectified linear unit (ReLU) were applied [45].

3. MobileNetV2: MobileNet network is frequently a pre-trained model in CNN ar-
chitecture’s Transfer Learning, trained on the ImageNet dataset. With 1.4 million
photos and 1000 classes of online images, the ImageNet dataset was used as Mo-
bileNetV2’s pre-trained training set. MobileNetV2 is a lightweight neural network.
MobileNetV2’s fundamental architecture is based on that of MobileNetV1, its prede-
cessor. Fifty-three layers make up the CNN known as MobileNetV2. Google Inc. has
published MobileNetV2 [46]. MobileNetV2 employs linear bottlenecks to implement
the depthwise separable convolutions (DSC) technique for probabilistic computations.
Such a technique focuses on the problem of information degradation within non-linear
layers seen in convolutional blocks.It is a very efficient feature extractor for image
classification [47].

4. ResNetV250: In 2016, He et al. [48] developed a deep residual network or ResNet
model. ResNet network is a pre-trained model in Transfer Learning of CNN architec-
ture, trained with the ImageNet dataset. DL training has several challenges, including
time consumption and limited layers. The study [49] was created to address the com-
plexity of DL training. The computation time of ResNet has made it more efficient; it
takes low computation time, and the ability to train is excellent. Vanishing gradient
and K. He degradation problems are there in deeper neural training. When ResNet
has 50 layers total, then it is called ResNet50. The residual network architecture’s
capacity to accept images of sizes different from those used for training is another
reason to use it. The ImageNet dataset is responsible for the weights used in ResNet.

5. InceptionV2: The inception-v2 network is frequently pre-trained in CNN architec-
ture’s Transfer Learning. It is the second generation of the inception convolutional net-
work. Batch normalization is prominently used in Inception-v2. In addition, dropout
and local response normalization have been eliminated due to the advantages of
batch normalizing. It takes 224 × 224 sized images as its input. The architecture of
inception-v2 includes 3 × 3 sized filters, whereas inception-v1 has 5 × 5 sized filters,
making the second inception version faster [50].

6. NasNetMobile: The NasNetMobile is a CNN trained on a dataset consisting of
more than one million images obtained from the ImageNet collection. The Neural
Architecture Search Network was conceived and developed by the Google Brain team.
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It is an adaptable CNN architecture where reinforcement learning is used to optimize
the building blocks (cells). It comprises normal and reduction cells, its two primary
functionalities [51]. NasNet designs come in two major varieties: NASNetLarge and
NasNetMobile. According to the network’s necessary capacity, a cell comprises just a
few processes and is repeated several times.

7. EfficientNetV2B0: An efficient network is a pre-trained model in the CNN architec-
ture’s Transfer Learning that was trained using the ImageNet dataset. The efficient
network initially proposed by Tan and Le Deng et al. [52] was termed EfficientNet.
The EfficientNet model has eight varieties. The EfficientNet series network can be
subdivided into eight sub-networks, B0–B7, based on the degree of the scale, with each
model number corresponding to a version with more parameters and greater accuracy.
Google AI created the model, and it is accessible through GitHub repositories. Trans-
fer learning is used in the EfficientNet architecture to save processing time and power.
The EfficientNet Models have scaled CNN models that have already been trained
and may be applied for transfer learning in image classification issues [53]. Tan and
Le [54] further enhanced the Efficient network in 2021, named the EfficientNet-V2
network. They divided the enhanced Efficient network into S, M, and L sub-networks.
After experimental validation, the new network is more efficient, consumes fewer
resources, and has greater real test accuracy than the previous EfficientNetV1 [54].

3.2. Data Collection

The dataset for this investigation was obtained from the Cancer Imaging Archive
website [11]. The dataset named “Osteosarcoma Data from UT Southwestern/UT Dallas
for Viable and Necrotic-Tumor Assessment (Osteosarcoma-Tumor-Assessment)” contains
1144 images of size 1024 × 1024 at 10× resolution. It consists of histology images of
osteosarcoma stained with hematoxylin and eosin (H&E). The histology images included in
the dataset were obtained from Children’s Medical Center, Dallas. The dataset encompasses
a total of 50 patients who were treated at the medical center throughout the period spanning
from 1995 to 2015. The images in Figure 3 are categorized based on the predominant type
of cancer present. These categories include Non-Tumor, which indicates the absence of
tumor cells; Viable Tumor, which indicates the presence of actively growing tumor cells;
and Necrosis Tumor, which indicates the presence of tumor cells that have been destroyed.
Among these, the non-tumor category comprises a total of 536 histological photographs.
The viable-tumor category encompasses 345 images, while the necrotic-tumor category
includes just 263 histological images.

Figure 3. Example images of osteosarcoma histology image dataset at 10×magnification.
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3.3. Data Preprocessing and Normalization

Image preprocessing is a technique employed to prepare images for utilization in
model training and inference. Additional preprocessing processes encompass resizing,
orienting, and color modifications. Preprocessing aims to improve picture data that re-
duces unintentional distortions or increases visual properties crucial for further processing.
The size of the images within the dataset utilized in the present investigation is 1024 by
1024 pixels. The images were resized into 224 × 224 pixels to make the computations
faster. Normalization is a technique used in image processing to modify the range of pixel
luminance levels. The typical function of image normalization is to transform an input
image into pixel levels that are more conventional or comfortable to the senses. The images
consist solely of a composite of distinct pixel values dispersed across the range of 0 to 255.
Working with huge values is impractical and time-consuming, necessitating more capable
computing devices. However, the normalization process involves dividing the pictures by
a value of 255, which reduces such burden.

3.4. Dataset Splitting

The dataset must be divided into a particular size for training and testing. We should
keep most of the data from the training set rather than the testing set to build an accurate
model [55]. In this study, the dataset was divided into 80% and 20% ratios for training and
testing, respectively. A total of 10% of the training set examples were used as a validation set.

3.5. Dataset Balancing and Augmentation

The dataset utilized in this study presents a highly imbalanced distribution, which
significantly impacts the obtained results. Such data imbalance poses a considerable
challenge, as it may introduce biases and hinder the effective application of traditional
learning algorithms in real-world domains. A pivotal step has been taken to balance the
dataset after splitting it into training, testing, and validation sets [56] with one of the
data augmentations libraries named “Albumentations” [57]. Albumentations is a quick
and adaptable open-source library for image augmentation that offers a wide range of
image transform operations and functions as an intuitive wrapper for other augmentation
tools [58]. After splitting the dataset, the training set contains the following images: the
non-tumor class contains 422 images, the necrotic-tumor class contains 208 images, and the
viable class contains 285 images. The minority classes in the training set have been over-
sampled to the highest class. The number of necrotic-tumor and viable-tumor images have
been over-sampled into 422 images. The training set was over-sampled using the technique
of horizontal flipping. Figure 4 demonstrates the data distribution of each class before and
after balancing. Our training dataset applies augmentation techniques such as vertical flip,
rotation, and brightness adjustments. Data augmentation is a strategy employed to expand
the volume of data utilized to train a model. DL models sometimes require significant
training data to provide reliable predictions, which may not always be readily available.
Consequently, the available data are expanded to enhance the development of a more
comprehensive model. The ImageDataGenerator class from Keras API was used to ensure
that the model is exposed to novel modifications of the images throughout each epoch.
One notable benefit of utilizing the ImageDataGenerator is its ability to minimize memory
use effectively.
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Figure 4. Data distribution of each class before and after balancing.

4. Implementation Details

In this study, six transfer learning techniques, pre-trained CNN models, namely
MobileNetV1, MobileNetV2, ResNetV250, InceptionV2, NasNetMo-bile, EfficientNetV2B0,
applied in both frozen-based and fine-tuning phases with full model unfreezing, and a
self-constructed architecture for the CNN model and innovative ENL approach, fortified
by a brute-force mechanism, has been formulated to overcome the classification tasks with
high exactitude.

4.1. Setup of Proposed CNN

Figure 5 shows the proposed architecture of the CNN model. In the proposed ar-
chitecture, the convolution layer and pooling layers work simultaneously. First, batch
normalization has been applied to normalize the input data and to make the model faster.
The input and output size of the image array is the same as 224 × 224 × 3. Then, the input
array size of the first convolution layer is 224 × 224 × 3 and generates 32 feature maps with
the filter size 3 × 3. The max-pooling layer takes these feature maps and down-sample
them into 112 × 112 × 3. The second convolution layer takes 32 inputs and makes it into
32 again. The second max-pooling layer reduces the size of the feature map from 112 × 112
to 56 × 56. The third convolution layer takes 32 inputs and makes it into 64 feature maps.
The third max-pooling layer, along with certain crucial features, reduces the size from
56 × 56 to 28 × 28. The fourth convolution layer takes 64 inputs, and the feature maps
remain 64. The fourth pooling layer decreases the size from 28 × 28 to 14 × 14 with some
crucial features. The fifth convolution layer takes 64 inputs and makes it into 128 feature
maps, and the fifth pooling layer reduces the size from 14 × 14 to 7 × 7. Finally, the sixth
convolution layer takes 128 inputs. It makes it into 128 feature maps, and the pooling layer
reduces the size from 7 × 7 to 3 × 3. Next, the seventh convolution layer takes 128 inputs.
It makes it into 256 feature maps, and the pooling layer reduces the size from 3 × 3 to 1 × 1.
The flattened layer converts the output shape 1 × 1 into 256 single nodes and passes to the
first dense layer. The output shape of the first dense layer is 512 with the ReLU activation
function and calculates 131,584 parameters. Then, one dropout layer was applied. The
second dense layer contains three nodes of three classes with SoftMax activation function
and calculates 1539 parameters. The total parameters of the architecture is 715,311. Table 1
demonstrates the layers of the proposed CNN model.
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Table 1. Detail description of proposed CNN layers.

Layer Filter Size
(f)

Depth Input Shape
(IS)

Output Shape
(OS)

Parameters

Batch Normalization - - 224 × 224 × 3 224 × 224 × 3 12
Conv2D layer 1 3 × 3 32 224 × 224 × 3 224× 224× 32 896
Pooling layer 1 2 × 2 32 224× 224× 32 112× 112× 32 0
Conv2D layer 2 3 × 3 32 112× 112× 32 112× 112× 32 9248
Pooling layer 2 2 × 2 32 112× 112× 32 56 × 56 × 32 0
Conv2D layer 3 3 × 3 64 56 × 56 × 32 56 × 56 × 64 18,496
Pooling layer 3 2 × 2 64 56 × 56 × 64 28 × 28 × 64 0
Conv2D layer 4 3 × 3 64 28 × 28 × 64 28 × 28 × 64 36,928
Pooling layer 4 2 × 2 64 28 × 28 × 64 14 × 14 × 64 0
Conv2D layer 5 3 × 3 128 14 × 14 × 64 14 × 14 × 128 73,856
Pooling layer 5 2 × 2 128 14 × 14 × 128 7 × 7 × 128 0
Conv2D layer 6 3 × 3 128 7 × 7 × 128 7 × 7 × 128 147,584
Pooling layer 6 2 × 2 128 7 × 7 × 128 3 × 3 × 128 0
Conv2D layer 7 3 × 3 256 3 × 3 × 128 3 × 3 × 256 295,168
Pooling layer 7 2 × 2 256 3 × 3 × 256 1 × 1 × 256 0
Flatten layer 256 1 × 1 × 256 256 0
Dense layer 1 512 256 512 131,584
Dropout layer 1 512 512 512 0
Dense layer 2 3 512 3 1539(SoftMax)
Total Parameters 715,311

One of the numerous histological patterns that pathologists have linked to the disease,
such as the osteoblastic, chondroblastic, or fibroblastic pattern, may have an impact on the
diagnosis of osteosarcoma. CNNs distinguish between non-tumor and tumor tissues based
on the inherent differences in pixel intensity patterns and spatial features within medical
images [59], such as histological images, used in this study. CNNs leverage their ability to
automatically learn and extract distinctive features from the images during training. For
instance, tumors often exhibit irregular shapes, abnormal textures, or enhanced regions
compared to surrounding healthy tissues. These unique characteristics, combined with the
network’s learned filters, enable CNNs to identify subtle structural variations and intensity
differences within the images [60]. Through a process of feature extraction and hierarchical
representation learning, CNNs can effectively classify tissues as non-tumors or tumors in
medical diagnosis and treatment planning.

Figure 5. The architecture of the proposed CNN model.

4.2. Transfer Learning

A stored architecture that has already undergone training on a sizable dataset—typically
an extensive image classifying task—is referred to as a pre-trained model. Transfer learning is
an ML technique in which a model constructed for one task is utilized as the foundation for a
model for another. The model construction can be formed by applying transfer learning to
adapt the pre-trained network to a specific proposal or by utilizing the model in its standard
form. It is the enhancement of learning by transferring information to a new task. The
complete training process of a novel DL model might incur significant computing expenses.
Furthermore, more datasets are needed for DL than conventional ML techniques. However,
its progress is frequently constrained by the scarcity of histology and radiological images.
These shortcomings are what transfer learning is meant to address [61]. The fundamental
tenet of ML and DL algorithms is that training and prospect data should always be distributed
across the same area. Difficulties arise in ML when insufficient training data are available
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for the given research topic. Consequently, the DL model can be taught using previously
learned networks to derive the fundamental parameters, which can be applied to data sets
from different areas. Learning outcomes can be improved if knowledge transmission is carried
out effectively in these circumstances and limiting costly data labeling efforts.

4.3. Parameters Setup

There are different parameters used in proposed CNN models. Table 2 demonstrates
the parameters and their values used in all CNN models. Conversely, a brute-force mecha-
nism has been established for the proposed ENL approach to evaluate every conceivable
combination of the underlying base learners rigorously. Wherein a combination includes at
least two primary learners.

Table 2. Chosen parameters value for all CNN models.

Parameter Name Value

optimizer Adam
loss-function Sparse Categorical cross-entropy
learning_rate 0.001
batch_size 16
epochs 200

4.4. Performance Measure

The evaluation techniques used in this study are based on measures obtained from [62],
namely Accuracy (AY), Precision (PN), Recall (RL), F-Measure (FE), Kappa (KA), Log-Loss
(LS) and class-specific AUC ROC curves, and Confusion Matrix. These metrics serve as
significant benchmarks for assessing the results of the experiment. Accuracy is the ratio
of the sum of two accurate predictions (True Positive (TPOS) and True Negative (TNG))
and the total number of data sets (TPOS, TNG, False Positive (FPOS) and False Negative
(FNG)) [59]. The accuracy of the model ranges from 1, indicating optimal performance,
to 0, indicating minimal effectiveness. The accuracy metric calculates the proportion of
accurate predictions for all evaluated instances. The accuracy of a classification model can
be determined using (1). Precision is the ratio of positive accurate prediction (TPOS) and
summation of two positive predictions (TPOS + FPOS). 1.0 is the best value, and 0.0 is the
worst value [59]. The model precision can be calculated using (2). On the contrary, recall is
the ratio of positive accurate prediction (TPOS) and the summation of positive accurate
prediction (TPOS) and incorrect negative prediction (FNG) [63]. Using Equation (3), we
may find out how well a model performs in terms of recall. The weighted mean of recall
and precision, based on the weight function β, is called the F score or the F1 score. Using (4)
can allow us to calculate the recall of a model. The Kappa coefficient is a metric that
contrasts the observed accuracy with the anticipated one. The Kappa coefficient measures
classification performance by comparing the test classifier’s performance with that of a
random classifier. The metric Kappa can be computed using (5) [64]. The most significant
probability-based order unit of measurement is log-loss. The log-loss metric quantifies
the uncertainty of a probabilistic approach by evaluating its accuracy in predicting true
labels [62]. A low log-loss value suggests an accurate prediction. Using (6) facilitates the
computation of a model’s log-loss.

AY =
TPOS + TNG

TPOS + TNG + FPOS + FNG
(1)

PN =
TPOS

TPOS + FPOS
(2)

RL =
TPOS

TPOS + FNG
(3)



Diagnostics 2023, 13, 3155 15 of 25

FE =
2× PN × RL

PN + RL
, (4)

KA =
total accuracy − random accuracy

1− random accuracy
, (5)

LS = − 1
N

N

∑
i=1

di · log(p(di)) + (1− di) · log(1− p(di)) (6)

where d represents the level of the target variable, and p(d) denotes the projected probability
of the point reaching the desired value.

The confusion matrix, alternatively referred to as an error matrix, is a tabular repre-
sentation that depicts an algorithm’s effectiveness, often supervised in nature, within ML
and statistical classification domains. The incidences in each true class are represented in
the matrix’s rows, and those in each forecasted class are represented in the columns or
conversely. The Receiver Operating Characteristic Area Under the Curve (ROC-AUC) met-
ric illustrates the relationship between sensitivity and specificity. It indicates the model’s
ability to discriminate [62].

5. Results and Discussion

This section presents an examination of the results derived from each model. The
pre-trained CNN models have been trained on the imbalance training set in two distinct
phases, where all the weights of each layer of the models are kept the same as the original
model (Frozen), and second, where all the weights of each layer are trained (Fine-Tuning).
Table 3 demonstrates the efficacy of each model on an unbalanced training set. Among
all pre-trained models, MobileNetV1 had the best accuracy, precision, recall, and f1-score,
94.32%, 94%, 94%, and 94%, respectively, and Kappa is 90.93%. Then EfficientNetV2B0
comes simultaneously with 93.89% accuracy, 93% precision, recall, and f1-score. The ROC
score and log-loss of EfficientNetV2 B0 are 0.990 and 0.303, respectively.

To obtain better performance and to make the evaluation logical and unbiased, the
training set has been balanced, and all the models have been applied to the balanced
set. Table 4 displays the results of all models on an evenly distributed dataset. In most
instances, the overall efficacy of all models has been enhanced. For example, MobileNetV2,
NasNetMobile, and EfficientNetV2B0 trained in fine-tune mode indicate the finest accuracy
among all pre-trained models.

Table 3. Accuracy (%), Precision (%), Recall (%), F1-Score (%), AUC, Kappa (%), and Log-loss of all
models on an imbalanced training set.

Phase Algorithm Accuracy Precision Recall F1-Score AUC Kappa Log-Loss

Froze-
based MobileNetV1 91.27 90 90 90 0.981 86.02 0.519

MobileNetV2 92.14 91 91 91 0.986 87.46 0.407
ResnetV250 88.65 88 87 88 0.981 81.77 0.437
InceptionV2 91.7 91 91 91 0.984 86.74 0.375
NasNetMobile 88.65 87 88 88 0.973 81.98 0.54
EfficientNetV2B0 90.83 89 90 90 0.98 85.4 0.353

Fine-tuned MobileNetV1 94.32 94 94 94 0.975 90.93 0.474
MobileNetV2 92.14 93 90 91 0.983 87.17 0.395
ResnetV250 88.65 88 88 88 0.975 81.81 0.381
InceptionV2 85.15 84 86 84 0.958 76.83 1.06
NasNetMobile 87.77 92 84 86 0.971 79.6 0.736
EfficientNetV2B0 93.89 93 93 93 0.99 90.25 0.303

Complete
Training CNN 95.2 95 95 95 0.995 92.33 0.129
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Table 4. Accuracy (%), Precision (%), Recall (%), F1-Score (%), AUC, Kappa (%), and Log-loss of all
models on a balanced training set.

Phase Algorithm Accuracy Precision Recall F1-Score AUC Kappa Log-Loss

Frozen-
based MobileNetV1 91.27 90 90 90 0.982 86.04 0.62

MobileNetV2 92.14 91 92 92 0.981 87.55 0.582
ResnetV250 89.08 88 89 88 0.98 82.72 0.565
InceptionV2 88.65 88 88 87 0.977 81.91 0.51
NasNetMobile 91.7 91 91 91 0.981 86.75 0.459
EfficientNetV2B0 91.27 90 90 90 0.978 86.12 0.461

Fine-tuned MobileNetV1 92.58 93 91 92 0.989 87.97 0.248
MobileNetV2 93.89 93 93 93 0.989 90.22 0.237
ResnetV250 86.9 86 85 86 0.965 78.99 0.432
InceptionV2 86.9 88 83 85 0.979 78.55 0.496
NasNetMobile 93.89 93 93 93 0.991 90.26 0.222
EfficientNetV2B0 93.89 93 93 93 0.991 90.22 0.23

Complete
Training CNN 95.63 95 96 95 0.993 93.09 0.158

The line graph in Figure 6 demonstrates the analogy of the Kappa score of diverse
frozen and fine-tune-based transfer learning models prepared from balanced and im-
balanced training sets. It is reasonable to observe that the fine-tuned models, namely
MobileNetV2, NasNetMobile, and EfficientNetV2B0, trained on a balanced dataset, have
demonstrated improved Kappa scores compared to their prior iterations, indicating their
higher performance. Frozen-based ResnetV250 prepared from a balanced training set is
also responsible for showing the top score compared to its previous states. NasNetMobile
has the second-highest accuracy and Kappa score of all pre-trained models. Again, Nas-
NetMobile demonstrates the lowest log-loss, indicating superior probabilistic estimation
and uncertainty quantification capabilities. Fine-tune-based MobileNetV1 trained with an
imbalanced dataset had the best accuracy and Kappa score of any pre-trained model.

Figure 6. Comparison of Kappa score of different Frozen and Fine-Tune-based transfer learning
models prepared from balanced and imbalanced training sets.

Confusion matrices in Figures 7 and 8 convey a clear visual of the performance gap
between MobileNetV1 and NasNetMobile. The MobileNetV1 model elucidates superior
performance in classifying the “Non-Tumor” and “Viable-Tumor” categories. Conversely,
the NasNetMobile model accurately classifies instances of the “Necrosis Tumor” class,
correctly identifying 52 examples from the test set. These findings underscore the strengths
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of each model in handling specific tumor classes, providing valuable insights for targeted
application and analysis in medical image classification tasks.

Figure 7. Confusion matrix of MobileNetV1 trained with the imbalanced set.

Figure 8. Confusion matrix of NasNetMobile trained with the balanced set.

The proposed CNN model has also been trained with the same imbalanced training
set presented in Table 3. The best results have been obtained from the proposed CNN
architecture among all other models prepared from the imbalanced set where the accuracy,
precision, recall, f1-score, ROC score, Kappa, and log-loss are 95.20%, 95%, 95%, 95%,
0.995, 92.33%, and 0.129, respectively. In Table 4, it is shown that our proposed CNN
architecture has also been trained with a balanced training set. The suggested CNN
model’s performance exhibits favorable results compared to current models that have been
trained using either a balanced or unbalanced training dataset.The highest accuracy of
95.63% is attained using the suggested CNN approach. Its precision, recall, f1-score, ROC
score, Kappa, and log-loss are 95%, 96%, 95%, 0.993, 93.09%, and 0.158, respectively.

The training and validation accuracy curves illustrate a gradual increase in the vali-
dation accuracy line, closely following the trend of the training accuracy line. Similarly,
the training and validation loss curves depict a steady reduction in the validation loss,
mirroring the pattern of the training loss. Figures 9 and 10 exhibit graphical representations
of the training and validation accuracy and loss curves for the CNN model developed in
this study. These figures depict the performance of the model on the balanced dataset.
These plots offer valuable insights into the model’s performance and convergence during
training, enabling a comprehensive evaluation of its learning capabilities.
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Figure 9. Training and validation accuracy curve of the proposed CNN model.

Figure 10. Training and validation loss curve of proposed CNN model.

In the test dataset, the number of non-tumor images is 114, whereas the model can
classify 108 images correctly. A total of 5 images have been classified as necrotic-tumor
and 1 image as viable. In the necrotic-tumor class, the images are 55, whereas 54 images
are classified correctly, and 1 image is classified as non-tumor. In the viable class, the total
number of images is 60, whereas 57 images are classified correctly, and 3 are classified as
necrotic tumors. The confusion matrix of the proposed CNN model on the balanced dataset
is shown in Figure 11.

Figure 11. Confusion matrix of the proposed CNN model.

Table 5 shows the class-wise performance of the proposed CNN model on a balanced
training set. In this context, our proposed CNN model notably achieves the highest levels
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of accuracy, AUC, and f1-score for the “Viable” class. Additionally, it attains the maximum
precision for the “Non-tumor” class and the highest recall for the “Necrotic-Tumor” class.
Figure 12 provides a clear comparative visualization of the proposed CNN model’s class-
wise accuracy, precision, recall, f1-score, and AUC score on the balanced dataset. The
graphical representation allows for an intuitive understanding of the model’s performance
across different classes, aiding in assessing its strengths and weaknesses in classifying
individual categories.

Table 5. Class-wise Accuracy (%), Precision (%), Recall (%), F1-Score (%), AUC of the proposed CNN
model on Balanced Dataset.

Classes Accuracy Precision Recall F1-Score AUC

Non-Tumor 96.94 99 95 97 0.99
Necrotic-
Tumor 96.07 87 98 92 0.99
Viable 98.25 98 95 97 1

Figure 12. Class-wise accuracy (%), precision (%), recall (%), f1-score (%), and AUC score 603 (%) of
the proposed CNN model on a balanced dataset.

In the AUC ROC analysis of the proposed CNN model demonstrated in Figure 13, the
micro-average and macro-average AUC achieve an impressive score of 99%.

Figure 13. AUC ROC (Receiver Operating Characteristic) curve of proposed CNN model.

The findings are obtained from evaluating all combinations of balanced fine-tune-
based models, including the suggested CNN model trained on a balanced training set.
Wherein a combination includes at least two primary learners. For example, the data
contains the performance metrics of three ensemble models that have demonstrated high-
performance levels, recorded in Table 6. Table 6 shows that the ensemble model ENL-CNE
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shows the highest precision, Kappa score, recall, F1 score, and accuracy compared to the
other two. ENL-CNE outperforms all other models in terms of accuracy, Kappa score,
precision, and F1 score.

Table 6. Performance comparison of three highly performing ensemble learning models generated
from the idea of brute-force approach.

EL Models Accuracy Precision Recall F1-Score Kappa

ENL-MNE MobileNetV2, NasNetMobile, EfficientNetV2B0 92.14 0.9236 0.9214 0.922 87.55
ENL-CMINE CNN, MobileNetV2, InceptionV2, NasNetMobile,

EfficientNetV2B0
94.32 0.9437 0.9432 0.9434 94.32

ENL-CNE CNN, NasNetMobile, EfficientNetV2B0 96.51 0.965 0.9651 0.965 96.5

Class-wise performance comparison of the proposed CNN model and proposed
ensemble learning-based ENL-CNE model has been displayed in Table 7.

Table 7. Comparison of class-wise precision (%), Recall (%), and F1-Score (%) of the proposed CNN
model and ENL-CNE model on the balanced training set.

Proposed CNN Proposed ENL-CNE

Classes Precision Recall F1-Score Precision Recall F1-Score

Non-Tumor 99 95 97 97 96 97
Necrotic-Tumor 87 98 92 93 93 93

Viable 98 95 97 98 100 99

The proposed CNN model has increased precision for non-tumors and superior recall
for necrotic tumors. However, the ENL-CNE model outperforms the proposed CNN model
in all other circumstances. Figure 14 exhibits the confusion matrix for the proposed ENL-
CNE model. One hundred 14 non-tumor images are present within the test set, of which the
model accurately classifies 110 images. In the necrotic-tumor class, comprising 55 images,
the model correctly classifies 51 images. Similarly, in the viable class, encompassing
60 images, the model achieves precise classification for 60 images. The proposed ENL
model achieves an outstanding classification rate for the group of cancerous viable tumors.

Figure 14. Confusion matrix of proposed ENL-CNE model.

The findings of our suggested CNN model are compared in Table 8 with those of other
studies that have used the same osteosarcoma dataset. Among existing literature, the anal-
ysis performed by Ahmed et al. [26] shows the lowest accuracy from their proposed CNN,
and VGG19 is liable for the highest accuracy when Anisuzzaman et al. [31] redacted the
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analysis. The CNN model introduced by Mishra et al. [32] attained the second-highest accu-
racy of 92.40% among the existing methodologies. Mahore et al. [13] and Vezakis et al. [28]
achieved commendable accuracies of about 91% by employing AdaBoost and MobileNetV2,
respectively. Our proposed CNN exceeded these figures with an accuracy of 95.63%. Fur-
thermore, our novel approach, the proposed ENL-CNE classifier, which is an ENL-based
model composed of the suggested CNN, fine-tuned NasNetMobile, and EfficientNetV2B0
base learners, pushed the boundaries even further, achieving an impressive accuracy of
96.51%. The comparative analysis underscores the robustness of our methodologies and
their potential to advance the field’s standard of exactness. Even though different validation
methods affect comparisons, our study’s success shines and shows how far our research
has come in accuracy.

Table 8. Comparative evaluation of exactness with other investigations.

Study Approach Validation Method Overall Accuracy (%)

Mahore et al. [13] Adaboost Holdout 91.7
Ahmed et al. [26] CNN Holdout 86
Gawade et al. [27] ResNet101 Holdout 90.36
Vezakis et al. [28] MobileNetV2 Cross-Validation 91
Nabid et al. [30] Sequential RCNN Holdout 89
Anisuzzaman et al. [31] VGG19 Holdout 93.91
Mishra et al. [32] CNN Holdout 92.4

Our Study Proposed CNN Holdout 95.63
Proposed ENL-CNE Holdout 96.51

The Gradient-weighted Class Activation Mapping (Grad-CAM) technique has been
employed to enhance the interpretability of our model’s visualization. The CNN modules
are designed to extract information from images at multiple layers, therefore capturing a
range of levels of abstraction. The Grad-CAM technique utilizes the gradients of the score of
the target class to the feature maps of a specific convolutional layer. These gradients indicate
how changes in the feature maps affect the final classification score [65]. In Figure 15, Grad-
CAM provides a visualization that helps to interpret and understand our proposed CNN’s
decision-making process, making it more transparent and explainable.

Figure 15. Proposed CNN model’s interpretability using Grad-CAM technique for Necrotic-Tumor
category.

6. Conclusions

This study presents a novel CNN architecture and an adapted heterogeneous ensemble
learning-based voting classifier prepared from proposed CNN, fine-tuned NasNetMobile,
and fine-tuned Efficient-NetV2B0 base learners to classify osteosarcoma effectively. Due to
intra-class changes, inter-class similarities, crowded con-texts, and inconsistent data, the
classification and prediction of a limited dataset with CNN architecture are challenging
and complex. As imbalanced data negatively affects model performance and is responsible
for the model’s unbiasedness, a balanced training set was developed using an image aug-
mentation technique to counteract these obstacles. Subsequently, the proposed CNN model
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and adapted heterogeneous ensemble learning-based voting classifier have been developed
to classify the tumor, non-tumor, and necrotic tumor cells. In addition, six pre-trained
CNN models were also trained in frozen and fine-tuned cases. However, our proposed
CNN model functions well on the balanced dataset and outperforms all pre-trained models.
However, our proposed CNN and adapted heterogeneous ensemble learning-based voting
classifier unequivocally outperform all competing models. Hence, the equivalent CNN
architecture and proposed voting classifier can be applied to different forms of cancer,
enabling the creation of a generic model capable of analyzing diverse histology datasets for
medical diagnosis. The findings of this study have practical implications in telemedicine,
mobile healthcare systems, and as a supportive tool for medical professionals. Our research
will also continue investigating different neural network training topologies and strategies
for categorizing various medical photos and identifying tumors.
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20. Buiu, C.; Dănăilă, V.R.; Răduţă, C.N. MobileNetV2 Ensemble for Cervical Precancerous Lesions Classification. Processes 2020,

8, 595. [CrossRef]
21. Pedersen, M.; Andersen, M.B.; Christiansen, H.; Azawi, N.H. Classification of renal tumour using convolutional neural networks

to detect oncocytoma. Eur. J. Radiol. 2020, 133, 109343. [CrossRef]
22. Halawa, L.J.; Wibowo, A.; Ernawan, F. Face Recognition Using Faster R-CNN with Inception-V2 Architecture for CCTV

Camera. In Proceedings of the 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS), Semarang,
Indonesia, 29–30 October 2019. [CrossRef]

23. Cakmak, M.; Tenekeci, M.E. Melanoma detection from dermoscopy images using Nasnet Mobile with Transfer Learning.
In Proceedings of the 2021 29th Signal Processing and Communications Applications Conference (SIU), Istanbul, Turkey,
9–11 June 2021. [CrossRef]

24. Venkatesh.; Sheela, R.K.; Nagaraju, Y.; Sahu, D.A. Histopathological Image Classification of Breast Cancer using EfficientNet.
In Proceedings of the 2022 3rd International Conference for Emerging Technology (INCET), Belgaum, India, 27–29 May 2022.
[CrossRef]

25. Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. Breast cancer histopathological image classification using Convolutional
Neural Networks. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC,
Canada, 24–29 July 2016; pp. 2560–2567. [CrossRef]

26. Ahmed, I.; Sardar, H.; Aljuaid, H.; Khan, F.A.; Nawaz, M.; Awais, A. Convolutional Neural Network for Histopathological
Osteosarcoma Image Classification. Comput. Mater. Contin. 2021, 69, 3365–3381. [CrossRef]

27. Gawade, S.; Bhansali, A.; Patil, K.; Shaikh, D. Application of the convolutional neural networks and supervised deep-learning
methods for osteosarcoma bone cancer detection. Healthc. Anal. 2023, 3, 100153. [CrossRef]

28. Vezakis, I.A.; Lambrou, G.I.; Matsopoulos, G.K. Deep Learning Approaches to Osteosarcoma Diagnosis and Classification: A
Comparative Methodological Approach. Cancers 2023, 15, 2290. [CrossRef]

29. Shen, R.; Li, Z.; Zhang, L.; Hua, Y.; Mao, M.; Li, Z.; Cai, Z.; Qiu, Y.; Gryak, J.; Najarian, K. Osteosarcoma Patients Classification
Using Plain X-Rays and Metabolomic Data. In Proceedings of the 2018 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 690–693. [CrossRef]

30. Nabid, R.A.; Rahman, M.L.; Hossain, M.F. Classification of Osteosarcoma Tumor from Histological Image Using Sequential
RCNN. In Proceedings of the 2020 11th International Conference on Electrical and Computer Engineering (ICECE), Dhaka,
Bangladesh, 17–19 December 2020; pp. 363–366. [CrossRef]

31. Anisuzzaman, D.; Barzekar, H.; Tong, L.; Luo, J.; Yu, Z. A deep learning study on osteosarcoma detection from histological
images. Biomed. Signal Process. Control. 2021, 69, 102931. [CrossRef]

32. Mishra, R.; Daescu, O.; Leavey, P.; Rakheja, D.; Sengupta, A. Convolutional Neural Network for Histopathological Analysis of
Osteosarcoma. J. Comput. Biol. 2018, 25, 313–325. [CrossRef]

33. Ho, X.D.; Nguyen, H.G.; Trinh, L.H.; Reimann, E.; Prans, E.; Kõks, G.; Maasalu, K.; Le, V.Q.; Nguyen, V.H.; Le, N.T.; et al. Analysis
of the expression of repetitive DNA elements in osteosarcoma. Front. Genet. 2017, 8, 193. [CrossRef]

34. Reimann, E.; Kõks, S.; Ho, X.D.; Maasalu, K.; Märtson, A. Whole exome sequencing of a single osteosarcoma case—integrative
analysis with whole transcriptome RNA-seq data. Hum. Genom. 2014, 8, 20.

35. Asito, L.Y.; Pereira, H.M.; Nogueira-Barbosa, M.H.; Tinós, R. Detection of osteosarcoma on bone radiographs using convolutional
neural networks. In Proceedings of the Anais do 15. Congresso Brasileiro de Inteligência Computacional, Kharagpur, India, 2
January 2021. [CrossRef]

36. Pham, K.; Kim, D.; Park, S.; Choi, H. Ensemble learning-based classification models for slope stability analysis. CATENA 2021,
196, 104886. [CrossRef]

http://dx.doi.org/10.1145/3489088.3489093
http://dx.doi.org/10.1109/ICCCNT51525.2021.9579556
http://dx.doi.org/10.1109/ACCESS.2020.2999816
http://dx.doi.org/10.1155/2021/8608630
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=52756935
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=52756935
http://dx.doi.org/10.1016/j.jjimei.2022.100111
http://dx.doi.org/10.3390/jrfm14110565
http://dx.doi.org/10.1007/s11036-020-01640-1
http://dx.doi.org/10.3390/pr8050595
http://dx.doi.org/10.1016/j.ejrad.2020.109343
http://dx.doi.org/10.1109/ICICoS48119.2019.8982383
http://dx.doi.org/10.1109/SIU53274.2021.9477985
http://dx.doi.org/10.1109/INCET54531.2022.9824351.
http://dx.doi.org/10.1109/IJCNN.2016.7727519
http://dx.doi.org/10.32604/cmc.2021.018486
http://dx.doi.org/10.1016/j.health.2023.100153
http://dx.doi.org/10.3390/cancers15082290
http://dx.doi.org/10.1109/EMBC.2018.8512338
http://dx.doi.org/10.1109/ICECE51571.2020.9393159
http://dx.doi.org/10.1016/j.bspc.2021.102931
http://dx.doi.org/10.1089/cmb.2017.0153
http://dx.doi.org/10.3389/fgene.2017.00193
http://dx.doi.org/10.21528/CBIC2021-16
http://dx.doi.org/10.1016/j.catena.2020.104886


Diagnostics 2023, 13, 3155 24 of 25

37. Nalini, T.; Rama, A. Impact of temperature condition in crop disease analyzing using machine learning algorithm. Meas. Sens.
2022, 24, 100408. [CrossRef]

38. Waibel, A.; Hanazawa, T.; Hinton, G.; Shikano, K.; Lang, K. Phoneme recognition using time-delay neural networks. IEEE Trans.
Acoust. Speech Signal Process. 1989, 37, 328–339. [CrossRef]

39. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

40. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021,
8, 53. [CrossRef]

41. Minaee, S.; Boykov, Y.Y.; Porikli, F.; Plaza, A.J.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A
Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 3523–3542. [CrossRef] [PubMed]

42. Zhang, Y.D.; Pan, C.; Sun, J.; Tang, C. Multiple sclerosis identification by convolutional neural network with dropout and
parametric ReLU. J. Comput. Sci. 2018, 28, 1–10. [CrossRef]

43. Zhang, C.L.; Luo, J.H.; Wei, X.S.; Wu, J. In Defense of Fully Connected Layers in Visual Representation Transfer. In Advances in
Multimedia Information Processing—PCM 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 807–817. [CrossRef]

44. Rabano, S.L.; Cabatuan, M.K.; Sybingco, E.; Dadios, E.P.; Calilung, E.J. Common Garbage Classification Using MobileNet. In
Proceedings of the 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Commu-
nication and Control, Environment and Management (HNICEM), Baguio City, Philippines, 29 November–2 December 2018.
[CrossRef]

45. Sae-Lim, W.; Wettayaprasit, W.; Aiyarak, P. Convolutional Neural Networks Using MobileNet for Skin Lesion Classification. In
Proceedings of the 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), Chonburi,
Thailand, 10–12 July 2019; pp. 242–247. [CrossRef]

46. Patel, R.; Chaware, A. Transfer Learning with Fine-Tuned MobileNetV2 for Diabetic Retinopathy. In Proceedings of the 2020
International Conference for Emerging Technology (INCET), Belgaum, India, 5–7 June 2020. [CrossRef]

47. Dong, K.; Zhou, C.; Ruan, Y.; Li, Y. MobileNetV2 Model for Image Classification. In Proceedings of the 2020 2nd International
Conference on Information Technology and Computer Application (ITCA), Guangzhou, China, 18–20 December 2020; pp. 476–480.
[CrossRef]

48. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [CrossRef]

49. Sarwinda, D.; Paradisa, R.H.; Bustamam, A.; Anggia, P. Deep Learning in Image Classification using Residual Network (ResNet)
Variants for Detection of Colorectal Cancer. Procedia Comput. Sci. 2021, 179, 423–431. [CrossRef]

50. Mustafa, T.; Dhavale, S.; Kuber, M.M. Performance Analysis of Inception-v2 and Yolov3-Based Human Activity Recognition in
Videos. SN Comput. Sci. 2020, 1, 138. [CrossRef]

51. Addagarla, S.K. Real Time Multi-Scale Facial Mask Detection and Classification Using Deep Transfer Learning Techniques. Int. J.
Adv. Trends Comput. Sci. Eng. 2020, 9, 4402–4408. [CrossRef]

52. Deng, L.; Suo, H.; Li, D. Deepfake Video Detection Based on EfficientNet-V2 Network. Comput. Intell. Neurosci. 2022,
2022, 3441549. [CrossRef]

53. Marques, G.; Agarwal, D.; de la Torre Díez, I. Automated medical diagnosis of COVID-19 through EfficientNet convolutional
neural network. Appl. Soft Comput. 2020, 96, 106691. [CrossRef] [PubMed]

54. Tan, M.; Le, Q.V. EfficientNetV2: Smaller Models and Faster Training. arXiv 2021, arXiv:2104.00298. [CrossRef]
55. Yu, Z.; Haghighat, F.; Fung, B.C.; Yoshino, H. A decision tree method for building energy demand modeling. Energy Build. 2010,

42, 1637–1646. [CrossRef]
56. Barus, O.P.; Happy, J.; Jusin; Pangaribuan, J.J.; H, S.Z.; Nadjar, F. Liver Disease Prediction Using Support Vector Machine and

Logistic Regression Model with Combination of PCA and SMOTE. In Proceedings of the 2022 1st International Conference on
Technology Innovation and Its Applications (ICTIIA), Tangerang, Indonesia, 23–23 September 2022. [CrossRef]

57. Beuque, M.; Martin-Lorenzo, M.; Balluff, B.; Woodruff, H.C.; Lucas, M.; de Bruin, D.M.; van Timmeren, J.E.; Boer, O.J.; Heeren,
R.M.; Meijer, S.L.; et al. Machine learning for grading and prognosis of esophageal dysplasia using mass spectrometry and
histological imaging. Comput. Biol. Med. 2021, 138, 104918. [CrossRef]

58. Xu, Y.; Lam, H.K.; Jia, G. MANet: A two-stage deep learning method for classification of COVID-19 from Chest X-ray images.
Neurocomputing 2021, 443, 96–105. [CrossRef] [PubMed]

59. Sharmili, K.C.; Suja, G.P.; Pandian, E.; Walid, M.A.A.; Arunachalam, S.; Babu, G. An Effective Diagnosis of Alzheimer’s Disease
with the Use of Deep Learning based CNN Model. In Proceedings of the 2023 7th International Conference on Intelligent
Computing and Control Systems (ICICCS), Madurai, India, 17–19 May 2023. [CrossRef]

60. Yadav, S.S.; Jadhav, S.M. Deep convolutional neural network based medical image classification for disease diagnosis. J. Big Data
2019, 6, 113. [CrossRef]

61. Bechelli, S.; Delhommelle, J. Machine Learning and Deep Learning Algorithms for Skin Cancer Classification from Dermoscopic
Images. Bioengineering 2022, 9, 97. [CrossRef]

http://dx.doi.org/10.1016/j.measen.2022.100408
http://dx.doi.org/10.1109/29.21701
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1186/s40537-021-00444-8
http://dx.doi.org/10.1109/TPAMI.2021.3059968
http://www.ncbi.nlm.nih.gov/pubmed/33596172
http://dx.doi.org/10.1016/j.jocs.2018.07.003
http://dx.doi.org/10.1007/978-3-319-77383-4_79.
http://dx.doi.org/10.1109/HNICEM.2018.8666300
http://dx.doi.org/10.1109/JCSSE.2019.8864155
http://dx.doi.org/10.1109/INCET49848.2020.9154014
http://dx.doi.org/10.1109/ITCA52113.2020.00106
http://dx.doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1016/j.procs.2021.01.025
http://dx.doi.org/10.1007/s42979-020-00143-w
http://dx.doi.org/10.30534/ijatcse/2020/33942020
http://dx.doi.org/10.1155/2022/3441549
http://dx.doi.org/10.1016/j.asoc.2020.106691
http://www.ncbi.nlm.nih.gov/pubmed/33519327
http://dx.doi.org/10.48550/arXiv.2104.00298
http://dx.doi.org/10.1016/j.enbuild.2010.04.006
http://dx.doi.org/10.1109/ICTIIA54654.2022.9935879
http://dx.doi.org/10.1016/j.compbiomed.2021.104918
http://dx.doi.org/10.1016/j.neucom.2021.03.034
http://www.ncbi.nlm.nih.gov/pubmed/33753962
http://dx.doi.org/10.1109/iciccs56967.2023.10142306
http://dx.doi.org/10.1186/s40537-019-0276-2
http://dx.doi.org/10.3390/bioengineering9030097


Diagnostics 2023, 13, 3155 25 of 25

62. Uddin, M.J.; Ahamad, M.M.; Hoque, M.N.; Walid, M.A.A.; Aktar, S.; Alotaibi, N.; Alyami, S.A.; Kabir, M.A.; Moni, M.A. A
Comparison of Machine Learning Techniques for the Detection of Type-2 Diabetes Mellitus: Experiences from Bangladesh.
Information 2023, 14, 376. [CrossRef]

63. Walid, M.A.A.; Ahmed, S.M.; Sadique, S.M.S. A Comparative Analysis of Machine Learning Models for Prediction of Passing
Bachelor Admission Test in Life-Science Faculty of a Public University in Bangladesh. In Proceedings of the 2020 IEEE Electric
Power and Energy Conference (EPEC), Edmonton, AB, Canada, 9–10 November 2020. [CrossRef]

64. Hassan, M.M.; Mollick, S.; Yasmin, F. An unsupervised cluster-based feature grouping model for early diabetes detection. Healthc.
Anal. 2022, 2, 100112. [CrossRef]

65. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice,
Italy, 22–29 October 2017. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/info14070376
http://dx.doi.org/10.1109/epec48502.2020.9320119
http://dx.doi.org/10.1016/j.health.2022.100112
http://dx.doi.org/10.1109/iccv.2017.74

	Introduction
	Literature Review
	Research Methodology
	Deep Learning Algorithms
	Data Collection
	Data Preprocessing and Normalization
	Dataset Splitting
	Dataset Balancing and Augmentation

	Implementation Details
	Setup of Proposed CNN
	Transfer Learning
	Parameters Setup
	Performance Measure

	Results and Discussion
	Conclusions
	References

