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Abstract: The pathology is decisive for disease diagnosis but relies heavily on experienced patholo-
gists. In recent years, there has been growing interest in the use of artificial intelligence in pathology
(AIP) to enhance diagnostic accuracy and efficiency. However, the impressive performance of deep
learning-based AIP in laboratory settings often proves challenging to replicate in clinical practice. As
the data preparation is important for AIP, the paper has reviewed AIP-related studies in the PubMed
database published from January 2017 to February 2022, and 118 studies were included. An in-depth
analysis of data preparation methods is conducted, encompassing the acquisition of pathological
tissue slides, data cleaning, screening, and subsequent digitization. Expert review, image annotation,
dataset division for model training and validation are also discussed. Furthermore, we delve into the
reasons behind the challenges in reproducing the high performance of AIP in clinical settings and
present effective strategies to enhance AIP’s clinical performance. The robustness of AIP depends
on a randomized collection of representative disease slides, incorporating rigorous quality control
and screening, correction of digital discrepancies, reasonable annotation, and sufficient data volume.
Digital pathology is fundamental in clinical-grade AIP, and the techniques of data standardization
and weakly supervised learning methods based on whole slide image (WSI) are effective ways to
overcome obstacles of performance reproduction. The key to performance reproducibility lies in
having representative data, an adequate amount of labeling, and ensuring consistency across multiple
centers. Digital pathology for clinical diagnosis, data standardization and the technique of WSI-based
weakly supervised learning will hopefully build clinical-grade AIP.

Keywords: artificial intelligence in pathology; data preparation; clinical-grade; deep learning

1. Introduction

Pathological diagnosis stands as the gold standard in disease diagnosis [1], relying on
microscopic examination of tissues and cells from glass slides. However, the traditional
glass slide format presents challenges in terms of storage, sharing and remote consultation.
The advancement of digitalization technology has introduced a transformative solution by
enabling the conversion of glass slides into high-resolution whole slide images (WSI) [2]
through pathological scanners. This paradigm shift towards digital image-based pathology,
often referred to as digital pathology (DP), has gained increasing prominence [3,4].

Recently, the combination of DP and artificial intelligence (AI) has given birth to the
new computational pathology (CPATH) or AI in pathology (AIP). This fusion of technolo-
gies has shown remarkable potential in enhancing the efficiency and accuracy of disease

Diagnostics 2023, 13, 3115. https://doi.org/10.3390/diagnostics13193115 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13193115
https://doi.org/10.3390/diagnostics13193115
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://doi.org/10.3390/diagnostics13193115
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13193115?type=check_update&version=1


Diagnostics 2023, 13, 3115 2 of 22

diagnosis, effectively addressing the scarcity of pathologists. For example, the current
shortage of pathologists in China is up to 100,000; in addition, the number of pathologists
in the United States also decreased by 17.53% from 2007 to 2017 [5]. In the past few years, a
large number of AIP systems have emerged, focusing on tasks such as classification, grad-
ing, outcome prediction, prognosis determination [6,7] and the diagnosis of various cancers
such as gastric cancer [8,9], prostate cancer [10–13], bowel cancer [14], breast cancer [15–19],
and cervical cancer [20,21] among others.

AIP predominantly relies on deep learning, utilizing datasets consisting of hundreds
to tens of thousands of WSIs for training and testing. Although the AIP has proved
to be effective and robust, showing extremely high performance, even comparable to
pathologists, their high performance is generally difficult to reproduce in the clinic. The
pivotal factor influencing the accuracy and generalization capabilities of deep learning-
based AI is the meticulous preparation of data, making it a crucial element in surmounting
the hurdles faced by AIP when transitioning into clinical practice [22].

Given the extreme importance of datasets to develop effective AI, we conducted a
comprehensive review of AIP studies to date, with a focus on data preparation methods
aimed at enhancing the accuracy and robustness of AI systems. Our primary objective is to
find a solution that can address the impediments to the clinical application of AIP, that is,
how to prepare data for developing clinical-grade AIP.

Our search encompassed the PubMed database with the time frame set from January
2017 to February 2022, utilizing keywords such as pathology, machine learning, digital
pathology, pathological diagnosis, and deep learning. A total of 829 papers were retrieved.
Figure 1 illustrates the distribution of AIP studies using deep learning methods over the
past five years, with the highest number of 450 studies published in 2021, as depicted in
Figure 1.
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Figure 1. Publications of AIP by years.

We initially reviewed paper abstracts, reviewed research types and topics, and iden-
tified 220 papers related to pathological images. Following a thorough examination of
the full text, we selected 118 papers that align with the objectives of our data preparation
analysis, adhering to the following three exclusion criteria.

1. Papers utilizing non-pathological image data were excluded.
2. Works lacking detailed descriptions of the data preparation process or relying solely

on public datasets were excluded.
3. Studies exclusively focused on AI or pathology without addressing the intersection

were excluded.

We conducted an in-depth analysis of the 118 selected papers, elucidating the pipeline
of data preparation for constructing effective AIP systems, as illustrated in Figure 2, and
summarizing detailed information about the datasets used in these papers, such as the
number of slides, scanner, patch size and more in the Supplementary Table S1. The first
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step is to collect tissue samples according to the AIP objectives. Subsequently, meticulous
examination is carried out to eliminate dust particles from slides, ensuring the integrity and
color fidelity of the tissue. These slides undergo digitization through pathology scanners,
resulting in the acquisition of high-resolution whole slide images (WSIs). Quality control
measures are indispensable for WSIs to identify and exclude image artifacts, and various
annotation methods are used to establish connections between the data and medical facts.
After model training, comprehensive validation is essential to assess the accuracy and
generalization capabilities of the AIP system.
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Figure 2. Data preparation pipeline for a robust AI system. (a) Data collection. Locating slides in
pathological library, followed by a rigorous screening and review process. (b) Digitalization and
quality control. Digitalizing slides using a digital scanner to obtain WSIs. Employing technology to
rectify image distortion. Then pathologists review the quality of WSIs. (c) Annotation. This figure
illustrates three types of annotation, from left to right: fine, weak, sparse annotation. (d) Dataset
preparation. The collected data should be divided into training set, testing set, and validation set.

2. Data Collection
2.1. Pathological Slide Cellection

AIP relies heavily on the availability of a substantial quantity of high-quality WSIs
from clinical diagnoses [23]. However, the tissue specimens are initially preserved in the
form of glass slides. Researchers undertake the task of identifying relevant keywords.
Subsequently, technicians use these keywords to access patient identities through the
Pathology Information System (PIS) and obtain the necessary slides.

The performance of deep learning is heavily dependent on the volume of training
data. For example, a substantial increase in the colorectal cancer dataset, expanding from
420 [24] to 13,111 slides [25], resulted in a noteworthy enhancement in AIP accuracy and
good multicenter generalization ability [26–28]. Impressively, a collection of 44,732 slides
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from 15,178 cases achieved an impressive area under the curve (AUC) of up to 0.98, even in
independent medical centers [23]. Beyond quantity, the representation of various disease
subtypes and grades within the slides is equally critical to prevent data bias [28].

Ensuring a balanced distribution of slides across various classes is another critical
consideration [20]. Some diseases are relatively rare, thus resulting in a scarcity of slides.
An imbalanced dataset, as observed in renal cell carcinoma, led to a 10% lower recall rate
for disease types with limited sample sizes compared to the more prevalent subtypes [29].
When factors such as age, gender, and post-surgery outcomes potentially impact results, it
is imperative to ensure an equitable distribution of slides for each factor. One approach to
maintaining data balance is to randomly select a subset from classes with large sample size.
For example, in order to equalize the number of survivors and deaths of colorectal cancer
patients within five years after surgery, 182 survivor data were randomly removed [24].
Increasing the number of slides for classes with small sample sizes from other centers is
also a viable option.

To mitigate the influence of uncontrollable factors, the collection of slides should be as
randomized as possible [14]. For example, reagent types and preparation methods may
exhibit temporal variations. Therefore, the timespan during which slides were produced
should be as extensive as possible to encompass variations in the production process. For
instance, collecting 250 specimens from January 2009 to December 2017 resulted in an
AUC of 0.95 for a hepatocellular carcinoma prognostic model [30]. Similarly, as the span of
disease-free survival and age were as long as 4–86 months and 25–75 years respectively, the
prognostic model of oral squamous cell carcinoma achieved high accuracy up to 96.31% [31].
However, it is worth noting that extensive assessments of potentially influential factors
such as ethnicity and brand of tableting drug are still lacking.

Collecting slides from multiple centers [8,22,32–35], each with distinct production pro-
tocols and drug usage, is a recommended practice. AIP trained on one data from one center
may suffer from a significant performance degradation when applied to other centers [36].
Multi-center training datasets can help mitigate this issue. For instance, a model trained on
data from multiple centers has an average Dice coefficient of 5.6% [22]. Combining slides
from three hospitals with different production protocols and four pathological scanners im-
proved the model’s AUC from 0.808 to 0.983 [20]. In addition, slides from multiple centers
allow for a more comprehensive generalization assessment, as discussed in Section 6.

Public datasets like the TCGA (The Cancer Genome Atlas) can serve as valuable
supplements. Many AIPs are trained and tested by public datasets [16,25,26,30,37–40],
and there are also some challenges that provide pathological images, such as the Grand-
challenge (https://camelyon.grand-challenge.org, accessed on 15 June 2022) [41], MITOS-
ATYPIA [42] etc. listed in Table 1.

Table 1. Public datasets for AI in pathology.

Dataset Number Disease Type Reference

PatchCamelyon 400 WSI lymph nodes [43]
GlaS 165WSI Stage T3 or T4 colorectal adenocarcinoma [44]

LUAD-HistoSeg - lung cancer [45]
Camelyon16 Dataset 400 WSI lymph nodes [41]

Colorectal cancer 10 WSI and 5000 patches bowel cancer [46]
PAIP 100WSI liver [47]

However, the images in public datasets are usually derived from a small number of
slides. For example, the PAIP dataset contains only one hundred WSIs. Second, the staining
process of the same WSI is similar, so the patches cut from the same WSI are also similar.
Third, the public datasets may be only applicable to specific diseases, for example, the GlaS
contains only images of T3 or T4 colorectal adenocarcinoma.

https://camelyon.grand-challenge.org
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2.2. Ethics Statement

The ethical approval from the local ethics committee is a fundamental prerequisite for AIP
studies. Although most studies are retrospective and do not necessitate informed consent from
patients [9,24,48], however, for some prospective studies [11] such as disease outcomes [31,49],
private information (name, date of birth and so on) should be anonymized 16. The National
Management Measures for Health Care Big Data Standards, Security and Services (Trial) [50],
Health Insurance Portability and Accountability Act (HIPAA) [51] and other related laws
should be complied strictly in data collection, storage, usage and disclosure.

2.3. Slide Screening and Review

Given the extended storage duration of many slides, a thorough cleaning process is
essential to eliminate any contamination. Maintaining consistent high-quality production
for a large number of tissue specimens can be challenging. After cleaning, the quality of the
slides must be carefully checked under microscope. This assessment includes scrutinizing
the integrity of tissue specimens, detecting tissue folding, identifying air bubbles, evaluating
staining quality, and checking for any signs of fading [33].

In cases where the specimens were folded and wrinkled, addressing these issues is
critical. Studies have shown that when dealing with such unaddressed anomalies, the mean
absolute error between the immunohistochemical score calculated by the model and the
results predicted by the pathologist was 2.24 higher [52]. Consequently, unqualified slides
should be excluded before the next. In addition, since misdiagnosis always happened, it is
essential to ensure the diagnostic accuracy of the collected slides [32]. As a precaution, a
review of the slides, either at present or following digitization, is recommended to maintain
data integrity and accuracy.

3. Digitalization and Quality Control
3.1. Digitization

High-resolution WSIs are obtained from slides through the use of a fully automatic
pathological scanner [53], providing a wealth of information about the morphological
and functional characteristics of biological systems [54,55]. WSIs are available in various
file formats, including KFB file from Ningbo Jiangfeng Bio-Information Technology Co.
(KFBIO company, Ningbo City, China) [32], Leica’s SVS file [30] and TIFF file [23], causing
some trouble for data sharing [56]. To mitigate this issue, files should be converted into
universally compatible image formats such as JPEG by the software library of manufacturer.

As the production of pathological scanners by different manufacturers continues to
grow, disparities in the resulting WSIs inevitably emerge [57]. These variations can have
a notable impact on the performance of AIP. For example, when prostate cancer slides
initially scanned with an Olympus VS120-S5 were subsequently rescanned using a Philips
Ultra-Fast scanner, there was a notable 5% increase in the Area Under the Curve (AUC) [58].

The magnification of WSI has a significant impact on model performance [59]. While
scanning slides with lower magnification such as 5× (times), may not readily reveal
cellular morphology but provide a macroscopic view of tissue structure. Conversely,
higher magnifications yield finer details but entail the inclusion of more redundant pixels,
leading to large amount of computation to AI model (Figure 3). Usually, 20× [25,60,61] and
40× [20,30,37,62] WSIs are used for most AIP.

To overcome the differences of scanners during digitization, recent studies have high-
lighted the importance of employing a diverse array of scanners [7,16,20]. This approach
helps minimize the impact of differences in sharpness, resolution, and imaging differences
on AIP. The magnification, color fidelity and imaging quality of scanners should be care-
fully evaluated when selecting scanners. Notably, the Digital Pathology Commission of
the Federal Association of German Pathologists has developed a guideline for pathology
digitization [63], delineating the minimum technical requirements for scanner systems
that can be used in digitalization. However, the absence of overarching standards and
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specifications underscores the pressing need for a more robust and universally calibrated
evaluation system to uphold scanner validity.
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3.2. Post-Processing after Digitalization

The quality of some WSIs may not be ideal for developing artificial intelligence.
The tissue folding, poor staining and other problems in slides may be introduced into
the images [8]. The digitalization may encounter challenges, such as defocusing [53].
The main distortion in WSI lies in color change, partial out-of-focus and noises. Studies
have shown that the accuracy of AIP was reduced by 6–22.8% on the images without
image normalization [64]. Therefore, post-processing after digitalization is necessary to
improve performance.

3.2.1. Color Normalization

Various methods for color normalization have been proposed, including color match-
ing, color normalization after stain separation, and neural networks for style transfer, as
illustrated in Figure 4. The color matching aligns the statistical color and intensity distribu-
tions (e.g., mean and standard deviation) between a source image and a pre-selected target
image [65], where the histogram specification is the most commonly used [66]. However,
this method uses contrast stretching forcing the histogram of source image to match the
histogram of destination image, resulting in unnatural effects [67], which may lead to
unnecessary bias to subsequent image analysis [68].

The staining separation method normalizes each color channel individually. Due
to the non-linear relationship between the concentration of RGB dyes and light intensity,
direct use of RGB for dye separation is not feasible. Therefore, the RGB channels are
converted to optical density (OD) space, where dye concentration and light intensity is
linearly separable [67]. The image intensity (V) is defined as the logarithm of the ratio of
incident (I0) to transmitted light intensity (I):

V = log10
(

I0

I

)
= W·H (1)

The OD value is the staining vector (W) times the staining density map (H). Recent
studies have employed neural networks to automatically estimate the appropriate W and
subsequently conduct a deconvolution operation for image reconstruction [69–72].

Color normalization has evolved into a technique known as style transfer [73]. A
generative network is employed to adapt the input image to the color style of a target
image, effectively restoring normal color features [64]. Importantly, this method achieves
similarity between the input image and the target image without requiring a reference
image. A more recent advancement involves the use of conditional generative adversarial
networks (cGAN) for color normalization. This approach reduces the reliance on manual
selection and overcomes the limitation of learning a single-color style, as observed in prior
studies [74].



Diagnostics 2023, 13, 3115 7 of 22

Diagnostics 2023, 13, x FOR PEER REVIEW 7 of 24 
 

 

direct use of RGB for dye separation is not feasible. Therefore, the RGB channels are con-

verted to optical density (OD) space, where dye concentration and light intensity is line-

arly separable [67]. The image intensity (V) is defined as the logarithm of the ratio of inci-

dent (𝐼0) to transmitted light intensity (𝐼): 

𝑉 = 𝑙𝑜𝑔10(
𝐼0

𝐼
) =  𝑊 · 𝐻  (1) 

The OD value is the staining vector (𝑊) times the staining density map (𝐻). Recent 

studies have employed neural networks to automatically estimate the appropriate 𝑊 and 

subsequently conduct a deconvolution operation for image reconstruction [69–72]. 

 

Figure 4. Three methods of color normalization. From top to bottom: Histogram-Based Color Match-

ing (Red Box): This method involves color normalization using histogram-based matching. Color 

Normalization After Stain Separation (Blue Box): Here, the contribution of individual stains is sep-

arated, and the input image is aligned with the template image. Style Transfer Method (Green Box): 

This technique transforms the color style of the source image to match that of the template image. 

Color normalization has evolved into a technique known as style transfer [73]. A gen-

erative network is employed to adapt the input image to the color style of a target image, 

effectively restoring normal color features [64]. Importantly, this method achieves simi-

larity between the input image and the target image without requiring a reference image. 

A more recent advancement involves the use of conditional generative adversarial net-

works (cGAN) for color normalization. This approach reduces the reliance on manual se-

lection and overcomes the limitation of learning a single-color style, as observed in prior 

studies [74]. 

3.2.2. Image Distortion Correction 

Figure 4. Three methods of color normalization. From top to bottom: Histogram-Based Color Matching
(Red Box): This method involves color normalization using histogram-based matching. Color Normal-
ization After Stain Separation (Blue Box): Here, the contribution of individual stains is separated, and
the input image is aligned with the template image. Style Transfer Method (Green Box): This technique
transforms the color style of the source image to match that of the template image.

3.2.2. Image Distortion Correction

The presence of bubbles and tissue folding in slides will lead to artifacts in WSIs [75].
The saturation changes in the folded tissue (Figure 5a) may degrade the AI performance.
The folded regions can be detected by enhanced brightness of image pixels, but some
isolated pixels may be mislabeled [76]. If the connectivity of saturation and intensity was
used for folding detection in low resolution WSI, AUC improved by 5% after excluding the
regions with tissue folding [77].
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Figure 5. Artifacts in histopathology images. (a) Typical Tissue Folding (Yellow Arrow): In this
diagram, folded tissue, as indicated by the yellow arrow, appears thicker than the surrounding
tissue. (b,c) shows regions out-of-focus: these regions are highlighted by the yellow circle and arrow,
respectively, indicating areas where the image is out of focus.
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The higher magnification lens in the scanner processes a narrower depth of field,
making the WSI susceptible to going out-of-focus (Figure 5b,c) when dealing with uneven
tissue on the slide, resulting in blurred images. Although imaging algorithms strive to
adjust focus positions, limitations in scan speed often result in localized blurring [78]. Such
blurriness can adversely impact the detection and classification of certain diseases, where
the out-of-focus normal tissue may be misjudged as the tumor [79].

To address this challenge, a detection method for detecting blurred regions was
proposed based on local pixel-level metrics. This innovative approach achieved an AUC
surpassing 0.95 [80]. Furthermore, a convolutional neural network was trained to serve as
a blur detector, effectively reducing detection errors by 12.3% [81]. However, there remains
a dearth of out-of-focus correction methods for WSI. A promising development involved
the proposal of a deblurring method for pathological microscope images, showcasing the
potential for enhancing the clarity of pathological images through post-processing [82].

3.2.3. Data Augmentation

Deep learning-based AIP often require extensive quantities of labeled data to achieve
high performance [26]. However, labeled data are often difficult to obtain, especially for
some rare diseases. Therefore, the data augmentation techniques are widely employed
such as cropping, rotating, flipping images [83], changing image contrast and brightness [9]
and so on. Example images of various data augmentation methods are shown in Figure 6.
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The generative adversarial network (GAN) to synthesize new data has become promis-
ing currently [84]. Within this framework, the generator component creates fresh synthetic
images while the discriminator distinguishes them [85]. These synthetic images serve to
augment sample sizes, especially for rare diseases, potentially enhancing the accuracy of
artificial intelligence in pathology. For example, the inclusion of 3000 glioma histopatholog-
ical images generated by GAN in the training set for predicting the status of the glioma
marker isocitrate dehydrogenase, significantly increased the prediction accuracy from
0.794 to 0.853 [86]. The conditional GAN (cGAN) has also been used to augment train-
ing data [13], resulting in a remarkable 7% improvement in the classification accuracy of
prostate cancer, outperforming the conventional method’s 2% gain.



Diagnostics 2023, 13, 3115 9 of 22

While synthetic data alleviates the challenge of amassing large labeled datasets, it
is crucial to acknowledge that images generated by GANs can exhibit a variety of illu-
sions or artifacts, including checkerboard patterns, blurriness, and excessive smoothing.
These issues can result from improper network architecture, inadequately designed loss
functions, suboptimal training techniques, and poor-quality training data [87]. Especially
for histopathological images, which are replete with intricate structural and texture fea-
tures [88]. Consequently, GANs operating on such data can be intricate and somewhat
unstable. For example, the colorectal cancer images generated by cGAN looked blurry and
slightly lost the image details [89]. In-depth evaluation by two pathologists revealed that
while GANs were effective in maintaining clear image boundaries and accurate cytoplasmic
colors, they still exhibited inaccuracies such as blurred chromatin, a lack of nuclear detail
and incorrect texture of keratin flakes [90].

Therefore, despite the visual authenticity of generated images, they should not be
included into the dataset without rigorous validation [91,92]. The images without further
confirmation may adversely affect data distribution and degrade the model’s performance.

3.2.4. WSI Review

In order to ensure the quality of data, a critical step involves the reevaluation of WSIs
before subsequent preparation. Typically, a dual review by two senior and experienced
pathologists is needed on each WSI. If the assessments align, this WSI can be included in
the dataset, otherwise it will be discarded [25]. Additionally, a thorough check is performed
to ensure that WSIs do not exhibit severe color distortions, artifacts, and blurriness. While
human review is feasible during the creation of training and testing datasets for AIP.
However, in the context of AIP applications in clinical prediction, automatic detection
techniques discussed in Section 3.2 should be developed to exclude the WSIs with the
presence of severe artifacts, which may cause a significant drop in performance.

3.2.5. Patch Extraction

Given that the image size of 40X WSI can extend up to dimensions of 100,000 × 100,000
pixels, they cannot be directly input into the graphics processing unit (GPU) for training
and testing. Therefore, it is common practice to manually or automatically extract small
regions of interest (ROIs) related to the objects such as image region of diseases [25,40].

The height or width of the ROI include up to thousands of pixels, which exceeds
the default input of most neural networks, prompting further segmentation into some
non-overlapping patches. These patches typically take the form of square areas with
dimensions ranging from 32 × 32 to 1000 × 1000 pixels [86]. At a magnification of 20×, the
256 × 256 [62,93–95] 224 × 224 [26,74] pixels are common sizes for each patch, matching
the input size of most neural networks.

4. Annotation
4.1. Annotation Methods

Artificial intelligence in Pathology primarily relies on supervised deep learning, thus
requiring a substantial volume of accurately annotated data. Image annotation establishes
association between images and medical events, such as diagnostic results, which is essen-
tial for supervised deep learning. Therefore, a sufficient number of accurately annotated
images can enhance system’s accuracy [96,97]. The pathologists routinely employ WSIs
for pathological diagnosis, it can be considered that all the WSIs are inherently annotated.
However, the WSIs are often immense, and the regions of interest are typically minuscule,
resulting in annotations that are not intricately linked to the specific regions. Furthermore,
building artificial intelligence systems in pathology directly using WSI-based annotations
is often impractical due to computational constraints [98].

In order to attain the level of accuracy necessary for robust AI, it is often necessary to
further narrow down the annotation, particularly concerning disease location. However,
the annotation of WSI is a complex task, and only professional pathologists can deter-
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mine the accurate locations. At present, the annotation methods can be categorized into
three main types: fine annotation, weak annotation and sparse annotation, as shown in
Figures 7 and 8.
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Figure 7. Examples of various annotation methods. (a) Fine annotation, where the boundary between
the tumor and normal tissue is depicted carefully. (b) Left: weak annotation using the bounding box,
right: weak annotation using a series of non-lapping patches with labels of cancer and non-cancer.
(c) Sparse annotation, where only some and not all targets in the image are annotated. From
left to right, sparse annotation combined with fine annotation, sparse annotation combined with
weak annotation.

4.2. Fine Annotation

Fine annotation, often referred to as pixel-level annotation, is commonly used espe-
cially for image segmentation [47,99,100]. This method involves precisely delineating the
location or boundaries of target tissues or cells, effectively connecting individual image
pixels with specific targets. For instance, the segmentation of kidney tissue, performed via
meticulous pixel-by-pixel fine annotation, achieved a remarkable Dice Coefficient of 0.95
for glomerular segmentation [101]. The colorectal cancer dataset in the DigestPath 2019
challenge was also finely annotated, the proposed segmentation method achieved Dice
Coefficient with 0.7789 and AUC with 1 [102].

However, it is important to note that fine annotation is an inefficient and time-
consuming process, as it involves precise outlining of boundaries/contours or annotating
individual cells. This demanding nature often requires the expertise of multiple experi-
enced pathologists. Notably, boundaries between tissues are often ambiguous, leading to
inconsistencies in labeling among pathologists. Due to these challenges, the usage of fine
annotation is decreasing in addition to the segmentation or measurement for geometric
parameters [23,93,103].
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Figure 8. Various annotation methods. (a) the original image. (b) fine annotation for the segmentation
task, in which the yellow regions represent the cells and the purple represents the background.
(c) weak annotation (point labeling), where the yellow dots represent the location of the cells, while
the purple dots represent the background location. (d) sparse annotation, where only some cells are
annotated by yellow dots.

4.3. Weak Annotation

In order to alleviate annotation workload, recent approaches have increasingly em-
ployed annotations involving bounding boxes [104] and points [103,105] as alternatives
to fine annotation. These annotations only point out the target object without necessi-
tating precise location or boundary delineation. Weak annotation strategies have also
demonstrated substantial potential in achieving high-performance results. For instance, the
classification accuracy of melanoma images labeled with bounding boxes reached 86.2%,
outperforming the accuracy of dermatologists at 79.5% [106]. Since bounding boxes for
annotation of dense cell or lesion tissue often overlap each other, point annotation is widely
used for cell segmentation tasks. On the ISBI Cell Tracking Challenge dataset in 2020,
coarse point labels for cell locations yielded an average Dice value of 0.639 [107].

Another prevalent approach involves annotating image patches. WSIs are initially
divided into non-overlapping patches with the same size manually or automatically. For
example, some patches contain cancer cells, while others exclusively feature normal tis-
sues. Patch-level annotation tends to involve a more manageable workload compared to
bounding box or point annotation, significantly enhancing the efficiency of the annota-
tion process [25,59]. In a specific case, benign and malignant hepatocellular carcinoma
were labeled at the patch level, resulting in a Dice coefficient of 0.767 for liver cancer
cell classification, slightly outperforming model trained on fine annotation data (the Dice
was 0.754) [59]. Moreover, the performance of AI frequently benefits from training with
large-scale weakly annotated data compared to small-scale fine annotation data [23].
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Recently, several studies based on multi-instance learning have embraced WSI-level
annotation, where annotations pertain to the entire image without dividing WSIs into
smaller sections [108,109]. This approach is advantageous in terms of time and effort
efficiency and shows great promise [110]. However, the performance of AI models in
pathology relying on WSI-level annotation warrants further evaluation. Many published
studies have relied on public rather than clinical datasets. Moreover, the presented models
can often achieve good results primarily when the disease area within the WSI is extensive,
potentially making them less effective compared to models employing weak annotation at
the patch level.

4.4. Sparse Annotation

Sparse annotation is a strategy to reduce the annotation workload by labeling only
a limited number of objects while leaving a substantial number unlabeled. The sparse
annotation is often combined with other annotation methods to reduce overall annotation
effort. For example, in combination with weak annotation, sparse annotation was employed
to label cells using a limited number of points, resulting in a trained model with 90.1%
accuracy and a Dice coefficient of 93.1% [103]. Another example involves the use of sparse
and fine annotation to segment gastric tumor images, achieving an intersection over union
(IOU) of 0.883, and average accuracy of 0.9109 [96].

5. Dataset Preparation

Data collected for AI in pathology is typically divided into three subsets: training
set, validation set, and test set [60]. The training set is primarily utilized for generating AI
model and constitutes the largest portion of the data. The validation set plays a critical role
in model selection, aiding in the selection of hyperparameters that yield optimal results.
Finally, the test set is crucial for evaluating the accuracy and overall performance of the
model. Figure 9 depicts the role of each dataset in building the model. While specific
ratios for these datasets may not always be specified, the configuration of the training set is
particularly pivotal in ensuring the robustness of AI in pathology.
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Figure 9. The process of building AI. Initially, the training set is used for model training, followed
by the validation set for selecting hyperparameters through the evaluation of model performance.
After multiple rounds of validation, the hyperparameters with the best performance are employed
for training, and finally, the test set is utilized to assess the AI’s overall performance.

(1) To maintain the independence of each set, divisions should be made at the patient
level. This ensures that the WSIs from the same patient or patches cut from the same WSI
will not appear in different sets [98].

(2) The characteristics of the training set greatly affect the performance of AI. It should
cover various disease subtypes and cell morphology distributions, which is close to the
real data distribution encountered in clinical practices.
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(3) When dealing with a limited dataset, it is advisable to maximize the utilization of
WSIs in the training set. For instance, utilizing 205 WSIs out of a collection of 227 WSIs
as the training set yielded an 82% accuracy for high-grade ovarian cancer [7]. Conversely,
reducing the training set size from 5045 WSIs to 1257 WSIs resulted in a 5.58% decrease in
AUC for the classification of phosphorylated cell carcinoma [26]. When data collection is
sufficient, the validation set can be expanded accordingly. For example, in a lung cancer
dataset comprising 5734 WSIs, 3554 WSIs were designated for training, and 2180 WSIs for
evaluation, yielding a AUC exceeding 0.97 [100].

(4) AIP generalization is often assessed by collecting data from multiple different
centers. For example, the data from one single center can be served for training, while the
data from other centers can be served as an independent test set [14,111]. Some studies
incorporated multi-center data into the training set, so that the model can be adaptive to
the differences of the production and digitization process. As an example, using data from
five centers in the training set for cervical cancer screening achieved a specificity of 93.5%,
and a sensitivity of 95.1% in multi-centers [20].

6. Limitations and Improvements of Evaluation

Evaluation of AI in pathology is crucial to establish its clinical effectiveness. The
evaluation methods for deep learning fall into both internal validation and external valida-
tion approaches. When the data available is insufficient, randomly selecting a subset for
testing is commonly used; however, it can introduce significant performance fluctuations.
Cross-validation is a valuable technique in evaluating the performance [100,112], where
the dataset is randomly divided into K mutually exclusive subsets. Each time using one
subset for training and one subset for testing, the training and testing are repeated K times
respectively. The resulting mean and confidence interval of the K-fold cross-validation
can eliminate the randomness effect caused by a single data division, leading to a more
reliable assessment.

However, cross-validation, while valuable, remains an internal validation method as it
uses data from the same source. Therefore, its ability is confined to evaluating the model’s
performance on samples from the same center, potentially leading to overestimations of
performance [27,113].

More precise evaluations can be achieved using data entirely independent of the
training set [114]. The data from different centers, diverse scanners, or distinct production
protocols can better assess the generalization capabilities. For instance, the AUC of the
translocation renal cell carcinoma model reached 0.886 in internal validation and 0.894 in an
independent external dataset, demonstrating consistency [66]. Similarly, a semi-supervised
approach for colorectal cancer recognition achieved an AUC of 0.974 on 12,183 WSIs from
12 medical centers, slightly outperforming pathologists with an AUC of 0.969 [25].

It is worth noting that the testing set is significantly smaller than the clinical WSIs,
making it nearly impossible to cover all the cellular and histological patterns present in
clinic. Laboratory evaluation, therefore, falls short of addressing the complexities of clini-
cal application. After a blinded study on an external testing set, the misdiagnosis of the
presented models still occurred clinically in 17 sites and 6 cases, including misdiagnosis
in detection, grading of prostate cancer and detection of perineural invasion [115]. Ad-
ditionally, some models’ performance experienceda great decline when confronted with
datasets from different countries, medical centers, patient populations and even patho-
logical scanners. For example, t breast cancer images from diverse sources and scanners
resulted in a 3% decrease in AUC [79]. Therefore, an overly optimistic view of the actual
clinical performance of AI in pathology should be avoided [116]. To properly validate the
real performance of the model, it is urgent to collect data from different countries [117], and
different medical centers to conduct prospective studies [49,113,117,118], thus enhancing
model generalization and robustness.

It is important to note that in clinical practice, even within the same healthcare center,
variations can occur in both histological and digital processes. For instance, it is challenging
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to ensure complete consistency in the staining process for each specimen, and aging or
color changes in scanners can introduce artifacts into the images. Additionally, nearly
all assessments rely on pathologists’ annotations as the ground truth. However, the vari-
ability and subjectivity among different pathologists in their assessments suggest that a
certain level of inherent uncertainty exists. This inherent uncertainty implies the need for
increased caution and complexity in AI assessments to ensure the accuracy and reliability
of the results.

The key to deploying AIP in clinical practice lies in its ability to predict data unseen
in the training set, with one feasible method being to assess AIP in clinical practice. The
evaluation of AI should be prospective and oriented towards practical application in the real
world. This entails involving multiple centers and pathologists and taking into account the
diversity of clinical pathological conditions to validate the robustness of AI across various
target images. Therefore, obtaining external validation data directly from clinical sources
or synchronously validating it with pathologists’ diagnostic results is crucial for reliably
assessing the repeatability of AI performance. External validation must demonstrate that
AIP exhibits high reliability and accuracy, providing real benefits to patients. Hence, there
is an urgent need for prospective clinical trial evaluations to demonstrate whether AIP
tools can have a positive impact on patients [119].

There are already some guidelines and standards to aid in the assessment of AI
in pathology. The Standard Protocol Items: Recommendations for Interventional Trials-
Artificial Intelligence (SPIRIT-AI) and Consolidated Standards of Reporting Trials-Artificial
Intelligence (CONSORT-AI) are the international standards for AI system clinical trials,
enhancing the integrity and transparency [119]. SPIRIT-AI is an extension of the clinical
trial protocol guide SPIRIT 2013 with 15 new entries; And the CONSORT-AI is an extension
of the clinical trial reporting guide CONSORT 2010 with 14 new entries [120]. These
standards have provided detailed descriptions of AI interventions, instructions, skills,
and the integration environment required for use, inputs and outputs, human-computer
interaction details, and provision of error case studies. However, SPIRIT-AI and CONSORT-
AI mainly focus on supervised learning, with limited guidance on handling unsupervised
and self-supervised learning. Additionally, these standards are predominantly image-based
and currently lack constructive guidance for speech and text types.

7. Obstacles and Solutions for Clinic Implementation of AI in Pathology

Although the data preparation methods mentioned above have led to the development
of robust AI systems that exhibit effectiveness and accuracy in laboratory settings [60],
significant obstacles persist, impeding the replication of high performance AI in clinical
practice [121].

Firstly, the number of WSIs in public datasets is notably limited, containing only
typical manifestations of diseases. These images are rigorously stain-normalized and care-
fully confirmed by several experienced pathologists [122]. However, they are deliberately
selected to represent specific characteristics, failing to cover the full spectrum of biolog-
ical and morphological variations seen in clinical cases. Consequently, AI may struggle
to identify diverse disease morphologies encountered in clinical practice. The datasets
collected from the clinic can be as many as tens of thousands of WSIs, so models can often
achieve better performance. However, these datasets cannot contain enough disease types
or subtypes which are rare [123], so the performance of AI degrades rapidly while these
subtypes appear.

Secondly, there are great differences in slide production and digitization protocols
across multi-centers, as well as variations in color among images, present significant
challenges. Issues such as bubbles, tissue folding, and image blurring may reduce image
quality and cause a decrease in the performance of AI. Although normalization techniques
such as color correction offer some relief, they may require retraining when AI is deployed
in new centers.
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Thirdly, even when a sufficient number of WSIs are available, the number of annotation
is still limited, especially for fine annotation of rare diseases, remains a bottleneck for clinical
AI performance [124]. Weak and sparse annotations can expedite annotation speed but fall
short in addressing the challenge of insufficient data and lack of representative samples.
Although GAN can augment data, they face difficulty accurately generating cases not
present in the training set. The unsupervised pre-training and semi-supervised learning
may reduce annotation requirements, but their performance rely on the coverage of typical
disease morphology [125].

Based on the discussion above, the main obstacle of AI used in clinic is the dataset
such as lack of representative samples that cannot cover all morphologies. Due to the
lack of standardization, the differences in production protocols and digitization in other
centers have resulted in a decline in the performance of AIP trained on one center. The
third obstacle is that the number of annotations is too small. There are three strategies to
hopefully overcome the obstacles.

7.1. Develop Digital Pathology for Clinical Diagnosis

In contemporary medical practice, a significant portion of samples still exists in the
form of slides due to limited digitalization. As previously discussed, the digitization of
these slides for data preparation in Pathological Artificial Intelligence is a time-consuming
endeavor. This is primarily because the current diagnosis is based on slides rather than
digital images. Despite the increasing use of high-resolution pathological scanners, the
sheer number of pixels in Whole Slide Images (WSI) leads to exorbitant storage and
scanning time costs. Consequently, the high cost of slide digitization constrains the clinical
application of digital pathology, with slide-based diagnosis remaining the norm across
most medical institutions [126].

The shift to digital pathology in clinical diagnosis, where all the samples are images
and not slides, holds the potential to significantly increase the number of available samples
while alleviating the lack of representative samples. The key to fostering the growth of
digital pathology is to reduce the cost of digitization, including storage and scanning time.
An innovative approach involves low-resolution digitization, where the slides are initially
scanned with a 5× lens, storing 5× images that are later enhanced to 40× images using
super-resolution techniques. This approach not only reduces digitization costs to a fraction
(1/64) but also maintains diagnostic accuracy, demonstrating promise in addressing the
high cost of slide digitization. By promoting digital pathology, this method facilitates the
accumulation of sufficient high-quality data for training clinical-grade AI [127].

7.2. Standardization for Slide Production and Image Digitization

There are many differences in the production protocol and digitization equipment
across different centers which results in variations between images used for training AI
and those encountered in clinical practice. The slide preparation and digitization stan-
dardization can reduce the differences and improve the cross-center performance. Firstly,
production protocols should undergo standardization, encompassing factors such as chem-
ical concentrations and well-defined quality standards for slides. Secondly, the resolution,
sharpness or color fidelity of pathological scanners must be meticulously evaluated, guiding
the formulation of digitization guidelines and industry standards for scanners. Addition-
ally, newly generated WSIs should undergo automated quality checks before entering AI
workflows. Therefore, the industry standards of slide production and image digitization
are crucial in harmonizing clinical data, with quality checks contributing to consistent AI
performance in clinical practice.

7.3. WSI-Level Annotation and Weakly Supervised Learning

The time-intensive nature of pixel-level or patch-level annotations often results in
an insufficient amount of labeled data for training AI in pathology. With the promotion
of digital pathology, as discussed in Section 7.1, it is not difficult to obtain enough WSI
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for training. However, there is still a major obstacle in labeling a large number of pixels
or patches. It is worth noting that WSI-level annotation is inherently available due to
pathology diagnoses conducted on WSIs. Weakly supervised learning approaches, such as
multi-instance learning do not mandate precise location annotations, rendering WSI-level
annotation a viable alternative. Several AI models leveraging weakly supervised learning
based on WSIs have demonstrated promise. The WSIs were coded into bags, and contextual
information from different instances was harnessed to achieve impressive results, including
an AUC of 0.99 for lung adenocarcinoma classification and an AUC of 0.73 for lymph
node metastasis prediction [110]. A multi-instance learning approach based on clustering
and attention mechanisms was proposed to improve data validity and achieved excellent
performance in cancer classification [109]. Recently, the WSI- based AI focusing on three
cancers obtained from the Anatomical Pathology Laboratory Information System (LIS)
demonstrated an AUC exceeding 0.98 [23].

While AI performance based on WSI-level weak annotation may not yet rival that of
fine annotation, it is poised to adapt to the evolving landscape of digital pathology, where
annotation complexities are expected to diminish. It is believed that the combination of
sufficient annotated data from clinic and weakly supervised learning at WSI level holds
significant promise for developing the clinical-grade AIP.

8. Conclusions

Data serves as the cornerstone of Artificial Intelligence (AI) in Pathology, and effective
data preparation is an indispensable step in achieving high-performance AI model. In this
review, we underscore the pivotal role of high-quality data in the field of AI, conducting a
detailed analysis of how the data preparation process influences data quality, such as the
acquisition and preprocessing of Whole Slide Images (WSIs). Given the demand for large
datasets, employing weak annotation, patch-level annotation, or WSI-level annotation can
reduce the workload while yielding results closely approaching fine annotation. Dataset
partitioning also holds significance. Ensuring the independence of different datasets and
maintaining a balanced distribution of different disease subtypes is essential to ensure
model performance stability.

To address the issue of insufficient available data, hospitals and medical institutions
should vigorously promote digital pathology, converting more pathological glass slides into
digital images for enhanced inter-institutional collaboration and data sharing. However, it
is imperative to be mindful of privacy and ethical considerations when conducting research
on pathological AI, adhering to relevant regulations and ethical guidelines to ensure the
confidentiality and security of patient data.

Future research and practice should continuously advance pathology digitization,
explore novel methods to enhance data quality, establish robust privacy protection mecha-
nisms, and adhere to ethical standards. These efforts will further propel the field, facilitating
the broader application of pathological AI in clinical practice and providing superior solu-
tions for healthcare.

Finally, it should be noted that while we conducted a comprehensive search on the
PubMed database, there are noteworthy works, particularly in the rapidly evolving field of
AI in pathology, that may not be indexed on PubMed for various reasons. Nonetheless, we
genuinely believe that the 118 papers selected can provide a comprehensive and robust
foundation to support the above conclusions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics13193115/s1, Table S1: The detailed information of the
datasets in reviewed papers.
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of different preprocessing algorithms on the prognostic value of breast tumour microscopic images. J. Microsc. 2018, 270, 17–26.
[CrossRef]

7. Laury, A.R.; Blom, S.; Ropponen, T.; Virtanen, A.; Carpén, O.M. Artificial intelligence-based image analysis can predict outcome
in high-grade serous carcinoma via histology alone. Sci. Rep. 2021, 11, 19165. [CrossRef]

8. Song, Z.; Zou, S.; Zhou, W.; Huang, Y.; Shao, L.; Yuan, J.; Gou, X.; Jin, W.; Wang, Z.; Chen, X.; et al. Clinically applicable
histopathological diagnosis system for gastric cancer detection using deep learning. Nat. Commun. 2020, 11, 4294. [CrossRef]

9. Hinata, M.; Ushiku, T. Detecting immunotherapy-sensitive subtype in gastric cancer using histologic image-based deep learning.
Sci. Rep. 2021, 11, 22636. [CrossRef]

10. Pinckaers, H.; Bulten, W.; van der Laak, J.; Litjens, G. Detection of Prostate Cancer in Whole-Slide Images Through End-to-End
Training With Image-Level Labels. IEEE Trans. Med. Imaging 2021, 40, 1817–1826. [CrossRef]

11. Arvaniti, E.; Fricker, K.S.; Moret, M.; Rupp, N.; Hermanns, T.; Fankhauser, C.; Wey, N.; Wild, P.J.; Rüschoff, J.H.; Claassen, M.
Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Sci. Rep. 2018, 8, 12054. [CrossRef] [PubMed]

12. Hameed, B.M.Z.; Shah, M.; Naik, N.; Ibrahim, S.; Somani, B.; Rice, P.; Soomro, N.; Rai, B.P. Contemporary application of artificial
intelligence in prostate cancer: An i-TRUE study. Ther. Adv. Urol. 2021, 13, 1756287220986640. [CrossRef] [PubMed]

13. Karimi, D.; Nir, G.; Fazli, L.; Black, P.C.; Goldenberg, L.; Salcudean, S.E. Deep Learning-Based Gleason Grading of Prostate Cancer
From Histopathology Images—Role of Multiscale Decision Aggregation and Data Augmentation. IEEE J. Biomed. Health Inform.
2020, 24, 1413–1426. [CrossRef] [PubMed]

14. Iizuka, O.; Kanavati, F.; Kato, K.; Rambeau, M.; Arihiro, K.; Tsuneki, M. Deep Learning Models for Histopathological Classification
of Gastric and Colonic Epithelial Tumours. Sci. Rep. 2020, 10, 1504. [CrossRef]

15. Bychkov, D.; Linder, N.; Tiulpin, A.; Kücükel, H.; Lundin, M.; Nordling, S.; Sihto, H.; Isola, J.; Lehtimäki, T.; Kellokumpu-Lehtinen,
P.-L.; et al. Deep learning identifies morphological features in breast cancer predictive of cancer ERBB2 status and trastuzumab
treatment efficacy. Sci. Rep. 2021, 11, 4037. [CrossRef]

16. Cruz-Roa, A.; Gilmore, H.; Basavanhally, A.; Feldman, M.; Ganesan, S.; Shih, N.N.; Tomaszewski, J.; González, F.A.;
Madabhushi, A. Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach
for quantifying tumor extent. Sci. Rep. 2017, 7, srep46450. [CrossRef]

17. Hamidinekoo, A.; Denton, E.; Rampun, A.; Honnor, K.; Zwiggelaar, R. Deep learning in mammography and breast histology, an
overview and future trends. Med. Image Anal. 2018, 47, 45–67. [CrossRef]

18. Liu, Y.; Gargesha, M.; Qutaish, M.; Zhou, Z.; Qiao, P.; Lu, Z.-R.; Wilson, D.L. Quantitative analysis of metastatic breast cancer in
mice using deep learning on cryo-image data. Sci. Rep. 2021, 11, 17527. [CrossRef]

19. Rawat, R.R.; Ortega, I.; Roy, P.; Sha, F.; Shibata, D.; Ruderman, D.; Agus, D.B. Deep learned tissue “fingerprints” classify breast
cancers by ER/PR/Her2 status from H&E images. Sci. Rep. 2020, 10, 7275. [CrossRef]

20. Cheng, S.; Liu, S.; Yu, J.; Rao, G.; Xiao, Y.; Han, W.; Zhu, W.; Lv, X.; Li, N.; Cai, J.; et al. Robust whole slide image analysis for
cervical cancer screening using deep learning. Nat. Commun. 2021, 12, 5639. [CrossRef]

https://doi.org/10.1159/000292644
https://doi.org/10.1159/000442823
https://www.ncbi.nlm.nih.gov/pubmed/27099935
https://doi.org/10.1007/s00292-018-0431-0
https://www.ncbi.nlm.nih.gov/pubmed/29691675
https://doi.org/10.1159/000442391
https://www.ncbi.nlm.nih.gov/pubmed/27101397
https://doi.org/10.1001/jamanetworkopen.2019.4337
https://doi.org/10.1111/jmi.12645
https://doi.org/10.1038/s41598-021-98480-0
https://doi.org/10.1038/s41467-020-18147-8
https://doi.org/10.1038/s41598-021-02168-4
https://doi.org/10.1109/TMI.2021.3066295
https://doi.org/10.1038/s41598-018-30535-1
https://www.ncbi.nlm.nih.gov/pubmed/30104757
https://doi.org/10.1177/1756287220986640
https://www.ncbi.nlm.nih.gov/pubmed/33633799
https://doi.org/10.1109/JBHI.2019.2944643
https://www.ncbi.nlm.nih.gov/pubmed/31567104
https://doi.org/10.1038/s41598-020-58467-9
https://doi.org/10.1038/s41598-021-83102-6
https://doi.org/10.1038/srep46450
https://doi.org/10.1016/j.media.2018.03.006
https://doi.org/10.1038/s41598-021-96838-y
https://doi.org/10.1038/s41598-020-64156-4
https://doi.org/10.1038/s41467-021-25296-x


Diagnostics 2023, 13, 3115 18 of 22

21. Wang, C.W.; Liou, Y.A.; Lin, Y.J.; Chang, C.C.; Chu, P.H.; Lee, Y.C.; Wang, C.H.; Chao, T.K. Artificial intelligence-assisted fast
screening cervical high grade squamous intraepithelial lesion and squamous cell carcinoma diagnosis and treatment planning.
Sci. Rep. 2021, 11, 16244. [CrossRef] [PubMed]

22. Sarma, K.V.; Harmon, S.; Sanford, T.; Roth, H.R.; Xu, Z.; Tetreault, J.; Xu, D.; Flores, M.G.; Raman, A.G.; Kulkarni, R.; et al.
Federated learning improves site performance in multicenter deep learning without data sharing. J. Am. Med. Inform. Assoc. 2021,
28, 1259–1264. [CrossRef] [PubMed]

23. Campanella, G.; Hanna, M.G.; Geneslaw, L.; Miraflor, A.; Silva, V.W.K.; Busam, K.J.; Brogi, E.; Reuter, V.E.; Klimstra, D.S.;
Fuchs, T.J. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med.
2019, 25, 1301–1309. [CrossRef]

24. Bychkov, D.; Linder, N.; Turkki, R.; Nordling, S.; Kovanen, P.E.; Verrill, C.; Walliander, M.; Lundin, M.; Haglund, C.; Lundin, J.
Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci. Rep. 2018, 8, 3395. [CrossRef] [PubMed]

25. Yu, G.; Sun, K.; Xu, C.; Shi, X.-H.; Wu, C.; Xie, T.; Meng, R.-Q.; Meng, X.-H.; Wang, K.-S.; Xiao, H.-M.; et al. Accurate recognition of
colorectal cancer with semi-supervised deep learning on pathological images. Nat. Commun. 2021, 12, 6311. [CrossRef] [PubMed]

26. Chen, C.L.; Chen, C.C.; Yu, W.H.; Chen, S.H.; Chang, Y.C.; Hsu, T.I.; Hsiao, M.; Yeh, C.Y.; Chen, C.Y. An annotation-free whole-slide
training approach to pathological classification of lung cancer types using deep learning. Nat. Commun. 2021, 12, 1193. [CrossRef]

27. Bulten, W.; Pinckaers, H.; van Boven, H.; Vink, R.; de Bel, T.; van Ginneken, B.; van der Laak, J.; Hulsbergen-van de Kaa, C.;
Litjens, G. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: A diagnostic study. Lancet
Oncol. 2020, 21, 233–241. [CrossRef]

28. Skrede, O.-J.; De Raedt, S.; Kleppe, A.; Hveem, T.S.; Liestøl, K.; Maddison, J.; Askautrud, H.A.; Pradhan, M.; Nesheim, J.A.;
Albregtsen, F.; et al. Deep learning for prediction of colorectal cancer outcome: A discovery and validation study. Lancet 2020,
395, 350–360. [CrossRef]

29. Tabibu, S.; Vinod, P.K.; Jawahar, C.V. Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images
using deep learning. Sci. Rep. 2019, 9, 10509. [CrossRef]

30. Yamashita, R.; Long, J.; Saleem, A.; Rubin, D.L.; Shen, J. Deep learning predicts postsurgical recurrence of hepatocellular
carcinoma from digital histopathologic images. Sci. Rep. 2021, 11, 2047. [CrossRef]

31. Shaban, M.; Khurram, S.A.; Fraz, M.M.; Alsubaie, N.; Masood, I.; Mushtaq, S.; Hassan, M.; Loya, A.; Rajpoot, N.M. A Novel
Digital Score for Abundance of Tumour Infiltrating Lymphocytes Predicts Disease Free Survival in Oral Squamous Cell Carcinoma.
Sci. Rep. 2019, 9, 13341. [CrossRef]

32. Yang, H.; Chen, L.; Cheng, Z.; Yang, M.; Wang, J.; Lin, C.; Wang, Y.; Huang, L.; Chen, Y.; Peng, S.; et al. Deep learning-based
six-type classifier for lung cancer and mimics from histopathological whole slide images: A retrospective study. BMC Med. 2021,
19, 80. [CrossRef]

33. Wang, X.; Chen, Y.; Gao, Y.; Zhang, H.; Guan, Z.; Dong, Z.; Zheng, Y.; Jiang, J.; Yang, H.; Wang, L.; et al. Predicting gastric
cancer outcome from resected lymph node histopathology images using deep learning. Nat. Commun. 2021, 12, 1637. [CrossRef]
[PubMed]

34. Ambrosini, P.; Hollemans, E.; Kweldam, C.F.; van Leenders, G.J.L.H.; Stallinga, S.; Vos, F. Automated detection of cribriform
growth patterns in prostate histology images. Sci. Rep. 2020, 10, 14904. [CrossRef] [PubMed]

35. Lotter, W.; Diab, A.R.; Haslam, B.; Kim, J.G.; Grisot, G.; Wu, E.; Wu, K.; Onieva, J.O.; Boyer, Y.; Boxerman, J.L.; et al. Robust breast
cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach. Nat.
Med. 2021, 27, 244–249. [CrossRef] [PubMed]

36. Yamashita, R.; Long, J.; Longacre, T.; Peng, L.; Berry, G.; Martin, B.; Higgins, J.; Rubin, D.L.; Shen, J. Deep learning model for
the prediction of microsatellite instability in colorectal cancer: A diagnostic study. Lancet Oncol. 2021, 22, 132–141. [CrossRef]
[PubMed]

37. Diao, J.A.; Wang, J.K.; Chui, W.F.; Mountain, V.; Gullapally, S.C.; Srinivasan, R.; Mitchell, R.N.; Glass, B.; Hoffman, S.;
Rao, S.K.; et al. Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse
molecular phenotypes. Nat. Commun. 2021, 12, 1613. [CrossRef]

38. Hägele, M.; Seegerer, P.; Lapuschkin, S.; Bockmayr, M.; Samek, W.; Klauschen, F.; Müller, K.-R.; Binder, A. Resolving challenges in
deep learning-based analyses of histopathological images using explanation methods. Sci. Rep. 2020, 10, 6423. [CrossRef]

39. Cho, S.Y.; Lee, J.H.; Ryu, J.M.; Lee, J.E.; Cho, E.Y.; Ahn, C.H.; Paeng, K.; Yoo, I.; Ock, C.Y.; Song, S.Y. Deep learning from HE slides
predicts the clinical benefit from adjuvant chemotherapy in hormone receptor-positive breast cancer patients. Sci. Rep. 2021, 11, 17363.
[CrossRef]

40. Jiang, S.; Zanazzi, G.J.; Hassanpour, S. Predicting prognosis and IDH mutation status for patients with lower-grade gliomas using
whole slide images. Sci. Rep. 2021, 11, 16849. [CrossRef]

41. Guo, Z.; Liu, H.; Ni, H.; Wang, X.; Su, M.; Guo, W.; Wang, K.; Jiang, T.; Qian, Y. A Fast and Refined Cancer Regions Segmentation
Framework in Whole-slide Breast Pathological Images. Sci. Rep. 2019, 9, 882. [CrossRef] [PubMed]

42. Tarek Shaban, M.; Baur, C.; Navab, N.; Albarqouni, S. StainGAN: Stain Style Transfer for Digital Histological Images. arXiv 2018,
arXiv:1804.01601.

43. Veeling, B.S.; Linmans, J.; Winkens, J.; Cohen, T.; Welling, M. Rotation Equivariant CNNs for Digital Pathology. In Proceedings of
the Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada,
Spain, 16–20 September 2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 210–218.

https://doi.org/10.1038/s41598-021-95545-y
https://www.ncbi.nlm.nih.gov/pubmed/34376717
https://doi.org/10.1093/jamia/ocaa341
https://www.ncbi.nlm.nih.gov/pubmed/33537772
https://doi.org/10.1038/s41591-019-0508-1
https://doi.org/10.1038/s41598-018-21758-3
https://www.ncbi.nlm.nih.gov/pubmed/29467373
https://doi.org/10.1038/s41467-021-26643-8
https://www.ncbi.nlm.nih.gov/pubmed/34728629
https://doi.org/10.1038/s41467-021-21467-y
https://doi.org/10.1016/S1470-2045(19)30739-9
https://doi.org/10.1016/S0140-6736(19)32998-8
https://doi.org/10.1038/s41598-019-46718-3
https://doi.org/10.1038/s41598-021-81506-y
https://doi.org/10.1038/s41598-019-49710-z
https://doi.org/10.1186/s12916-021-01953-2
https://doi.org/10.1038/s41467-021-21674-7
https://www.ncbi.nlm.nih.gov/pubmed/33712598
https://doi.org/10.1038/s41598-020-71942-7
https://www.ncbi.nlm.nih.gov/pubmed/32913202
https://doi.org/10.1038/s41591-020-01174-9
https://www.ncbi.nlm.nih.gov/pubmed/33432172
https://doi.org/10.1016/S1470-2045(20)30535-0
https://www.ncbi.nlm.nih.gov/pubmed/33387492
https://doi.org/10.1038/s41467-021-21896-9
https://doi.org/10.1038/s41598-020-62724-2
https://doi.org/10.1038/s41598-021-96855-x
https://doi.org/10.1038/s41598-021-95948-x
https://doi.org/10.1038/s41598-018-37492-9
https://www.ncbi.nlm.nih.gov/pubmed/30696894


Diagnostics 2023, 13, 3115 19 of 22

44. Foucart, A.; Debeir, O.; Decaestecker, C. SNOW: Semi-Supervised, Noisy And/Or Weak Data For Deep Learning in Digital
Pathology. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11
April 2019; pp. 1869–1872.

45. Han, C.; Lin, J.; Mai, J.; Wang, Y.; Zhang, Q.; Zhao, B.; Chen, X.; Pan, X.; Shi, Z.; Xu, Z.; et al. Multi-layer pseudo-supervision for
histopathology tissue semantic segmentation using patch-level classification labels. Med. Image Anal. 2021, 80, 102487. [CrossRef]

46. Trivizakis, E.; Ioannidis, G.S.; Souglakos, I.; Karantanas, A.H.; Tzardi, M.; Marias, K. A neural pathomics framework for classifying
colorectal cancer histopathology images based on wavelet multi-scale texture analysis. Sci. Rep. 2021, 11, 15546. [CrossRef]
[PubMed]

47. Khened, M.; Kori, A.; Rajkumar, H.; Krishnamurthi, G.; Srinivasan, B. A generalized deep learning framework for whole-slide
image segmentation and analysis. Sci. Rep. 2021, 11, 11579. [CrossRef]

48. Sadhwani, A.; Chang, H.-W.; Behrooz, A.; Brown, T.; Auvigne-Flament, I.; Patel, H.; Findlater, R.; Velez, V.; Tan, F.; Tekiela, K.; et al.
Comparative analysis of machine learning approaches to classify tumor mutation burden in lung adenocarcinoma using
histopathology images. Sci. Rep. 2021, 11, 16605. [CrossRef]

49. Kanavati, F.; Toyokawa, G.; Momosaki, S.; Takeoka, H.; Okamoto, M.; Yamazaki, K.; Takeo, S.; Iizuka, O.; Tsuneki, M. A deep
learning model for the classification of indeterminate lung carcinoma in biopsy whole slide images. Sci. Rep. 2021, 11, 8110.
[CrossRef]

50. National Health and Medical Big Data Standards, Security and Service Management Measures (for Trial Implementation). China.
2018. Available online: http://www.cac.gov.cn/2018-09/15/c_1123432498.htm (accessed on 15 June 2022).

51. Health Insurance Portability and Accountability Act(HIPAA). 1996. Available online: https://www.investopedia.com/terms/h/
hipaa.asp (accessed on 15 June 2022).

52. Liu, J.; Xu, B.; Zheng, C.; Gong, Y.; Garibaldi, J.; Soria, D.; Green, A.; Ellis, I.O.; Zou, W.; Qiu, G. An End-to-End Deep Learning
Histochemical Scoring System for Breast Cancer TMA. IEEE Trans. Med. Imaging 2019, 38, 617–628. [CrossRef]

53. Hosseini, M.S.; Brawley-Hayes, J.A.Z.; Zhang, Y.; Chan, L.; Plataniotis, K.N.; Damaskinos, S. Focus Quality Assessment of
High-Throughput Whole Slide Imaging in Digital Pathology. IEEE Trans. Med. Imaging 2020, 39, 62–74. [CrossRef]

54. Banavar, S.R.; Chippagiri, P.; Pandurangappa, R.; Annavajjula, S.; Rajashekaraiah, P.B. Image Montaging for Creating a Virtual
Pathology Slide: An Innovative and Economical Tool to Obtain a Whole Slide Image. Anal. Cell. Pathol. 2016, 2016, 9084909.
[CrossRef]

55. Baidoshvili, A.; Bucur, A.; van Leeuwen, J.; van der Laak, J.; Kluin, P.; van Diest, P.J. Evaluating the benefits of digital pathology
implementation: Time savings in laboratory logistics. Histopathology 2018, 73, 784–794. [CrossRef] [PubMed]

56. Higgins, C. Applications and challenges of digital pathology and whole slide imaging. Biotech. Histochem. 2015, 90, 341–347.
[CrossRef] [PubMed]

57. Shrestha, P.; Kneepkens, R.; Vrijnsen, J.; Vossen, D.; Abels, E.; Hulsken, B. A quantitative approach to evaluate image quality of
whole slide imaging scanners. J. Pathol. Inform. 2016, 7, 56. [CrossRef] [PubMed]

58. Swiderska-Chadaj, Z.; de Bel, T.; Blanchet, L.; Baidoshvili, A.; Vossen, D.; van der Laak, J.; Litjens, G. Impact of rescanning and
normalization on convolutional neural network performance in multi-center, whole-slide classification of prostate cancer. Sci.
Rep. 2020, 10, 14398. [CrossRef] [PubMed]

59. Diao, S.; Luo, W.; Hou, J.; Yu, H.; Chen, Y.; Xiong, J.; Xie, Y.; Qin, W. Computer Aided Cancer Regions Detection of Hepatocellular
Carcinoma in Whole-slide Pathological Images based on Deep Learning. In Proceedings of the 2019 International Conference on
Medical Imaging Physics and Engineering (ICMIPE), Shenzhen, China, 22–24 November 2019; pp. 1–6.

60. Lu, M.Y.; Chen, T.Y.; Williamson, D.F.K.; Zhao, M.; Shady, M.; Lipkova, J.; Mahmood, F. AI-based pathology predicts origins for
cancers of unknown primary. Nature 2021, 594, 106–110. [CrossRef]

61. Wei, J.W.; Tafe, L.J.; Linnik, Y.A.; Vaickus, L.J.; Tomita, N.; Hassanpour, S. Pathologist-level classification of histologic patterns on
resected lung adenocarcinoma slides with deep neural networks. Sci. Rep. 2019, 9, 3358. [CrossRef]

62. Hou, L.; Gupta, R.; Van Arnam, J.S.; Zhang, Y.; Sivalenka, K.; Samaras, D.; Kurc, T.M.; Saltz, J.H. Dataset of segmented nuclei in
hematoxylin and eosin stained histopathology images of ten cancer types. Sci. Data 2020, 7, 185. [CrossRef]

63. Haroske, G.; Zwönitzer, R.; Hufnagl, P.; Haroske, G.; Bürrig, K.F.; Füzesi, L.; Hofstädter, F.; Mörz, M.; Schrader, J.; Kayser, G.; et al.
Leitfaden, Digitale Pathologie in der Diagnostik. Der Pathol. 2018, 39, 216–221. [CrossRef]

64. Bentaieb, A.; Hamarneh, G. Adversarial Stain Transfer for Histopathology Image Analysis. IEEE Trans. Med. Imaging 2018, 37,
792–802. [CrossRef]

65. Reinhard, E.; Adhikhmin, M.; Gooch, B.; Shirley, P. Color transfer between images. IEEE Comput. Graph. Appl. 2001, 21, 34–41.
[CrossRef]

66. Cheng, J.; Han, Z.; Mehra, R.; Shao, W.; Cheng, M.; Feng, Q.; Ni, D.; Huang, K.; Cheng, L.; Zhang, J. Computational analysis of
pathological images enables a better diagnosis of TFE3 Xp11.2 translocation renal cell carcinoma. Nat. Commun. 2020, 11, 1778.
[CrossRef] [PubMed]

67. Roy, S.; Jain, A.K.; Lal, S.; Kini, J. A study about color normalization methods for histopathology images. Micron 2018, 114, 42–61.
[CrossRef] [PubMed]

68. Zarella, M.D.; Yeoh, C.; Breen, D.E.; Garcia, F.U. An alternative reference space for H&E color normalization. PLoS ONE 2017,
12, e0174489. [CrossRef]

https://doi.org/10.1016/j.media.2022.102487
https://doi.org/10.1038/s41598-021-94781-6
https://www.ncbi.nlm.nih.gov/pubmed/34330946
https://doi.org/10.1038/s41598-021-90444-8
https://doi.org/10.1038/s41598-021-95747-4
https://doi.org/10.1038/s41598-021-87644-7
http://www.cac.gov.cn/2018-09/15/c_1123432498.htm
https://www.investopedia.com/terms/h/hipaa.asp
https://www.investopedia.com/terms/h/hipaa.asp
https://doi.org/10.1109/TMI.2018.2868333
https://doi.org/10.1109/TMI.2019.2919722
https://doi.org/10.1155/2016/9084909
https://doi.org/10.1111/his.13691
https://www.ncbi.nlm.nih.gov/pubmed/29924891
https://doi.org/10.3109/10520295.2015.1044566
https://www.ncbi.nlm.nih.gov/pubmed/25978139
https://doi.org/10.4103/2153-3539.197205
https://www.ncbi.nlm.nih.gov/pubmed/28197359
https://doi.org/10.1038/s41598-020-71420-0
https://www.ncbi.nlm.nih.gov/pubmed/32873856
https://doi.org/10.1038/s41586-021-03512-4
https://doi.org/10.1038/s41598-019-40041-7
https://doi.org/10.1038/s41597-020-0528-1
https://doi.org/10.1007/s00292-018-0433-y
https://doi.org/10.1109/TMI.2017.2781228
https://doi.org/10.1109/38.946629
https://doi.org/10.1038/s41467-020-15671-5
https://www.ncbi.nlm.nih.gov/pubmed/32286325
https://doi.org/10.1016/j.micron.2018.07.005
https://www.ncbi.nlm.nih.gov/pubmed/30096632
https://doi.org/10.1371/journal.pone.0174489


Diagnostics 2023, 13, 3115 20 of 22

69. Janowczyk, A.; Basavanhally, A.; Madabhushi, A. Stain Normalization using Sparse AutoEncoders (StaNoSA): Application to
digital pathology. Comput. Med. Imaging Graph. 2017, 57, 50–61. [CrossRef]

70. Tosta, T.A.A.; de Faria, P.R.; Servato, J.P.S.; Neves, L.A.; Roberto, G.F.; Martins, A.S.; Nascimento, M.Z.D. Unsupervised method
for normalization of hematoxylin-eosin stain in histological images. Comput. Med. Imaging Graph. 2019, 77, 101646. [CrossRef]

71. Anghel, A.; Stanisavljevic, M.; Andani, S.; Papandreou, N.; Rüschoff, J.H.; Wild, P.; Gabrani, M.; Pozidis, H. A High-Performance
System for Robust Stain Normalization of Whole-Slide Images in Histopathology. Front. Med. 2019, 6, 193. [CrossRef]

72. Zheng, Y.; Jiang, Z.; Zhang, H.; Xie, F.; Hu, D.; Sun, S.; Shi, J.; Xue, C. Stain Standardization Capsule for Application-Driven
Histopathological Image Normalization. IEEE J. Biomed. Health Inform. 2021, 25, 337–347. [CrossRef]

73. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Nets; MIT Press: Cambridge, MA, USA, 2014; pp. 2672–2680.

74. Ke, J.; Shen, Y.; Lu, Y. Style Normalization In Histology With Federated Learning. In Proceedings of the 2021 IEEE 18th
International Symposium on Biomedical Imaging (ISBI), Nice, France, 13–16 April 2021; pp. 953–956.
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