
Citation: Khalid, A.; Mehmood, A.;

Alabrah, A.; Alkhamees, B.F.; Amin,

F.; AlSalman, H.; Choi, G.S. Breast

Cancer Detection and Prevention

Using Machine Learning. Diagnostics

2023, 13, 3113. https://doi.org/

10.3390/diagnostics13193113

Academic Editor: Jae-Ho Han

Received: 4 September 2023

Revised: 25 September 2023

Accepted: 28 September 2023

Published: 2 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Breast Cancer Detection and Prevention Using Machine Learning
Arslan Khalid 1, Arif Mehmood 1, Amerah Alabrah 2,* , Bader Fahad Alkhamees 2 , Farhan Amin 3,* ,
Hussain AlSalman 4 and Gyu Sang Choi 3

1 Faculty of Computing, Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan;
arslankhalid436@gmail.com (A.K.); arifnhmp@gmail.com (A.M.)

2 Department of Information Systems, College of Computer and Information Science, King Saud University,
Riyadh 11543, Saudi Arabia; balkhamees@ksu.edu.sa

3 Department of Information and Communication Engineering, Yeungnam University,
Gyeongsan 38541, Republic of Korea; castchoi@yu.ac.kr

4 Department of Computer Science, College of Computer and Information Sciences, King Saud University,
Riyadh 11543, Saudi Arabia; halsalman@ksu.edu.sa

* Correspondence: aalobrah@ksu.edu.sa (A.A.); farhanamin10@hotmail.com (F.A.)

Abstract: Breast cancer is a common cause of female mortality in developing countries. Early
detection and treatment are crucial for successful outcomes. Breast cancer develops from breast cells
and is considered a leading cause of death in women. This disease is classified into two subtypes:
invasive ductal carcinoma (IDC) and ductal carcinoma in situ (DCIS). The advancements in artificial
intelligence (AI) and machine learning (ML) techniques have made it possible to develop more
accurate and reliable models for diagnosing and treating this disease. From the literature, it is evident
that the incorporation of MRI and convolutional neural networks (CNNs) is helpful in breast cancer
detection and prevention. In addition, the detection strategies have shown promise in identifying
cancerous cells. The CNN Improvements for Breast Cancer Classification (CNNI-BCC) model helps
doctors spot breast cancer using a trained deep learning neural network system to categorize breast
cancer subtypes. However, they require significant computing power for imaging methods and
preprocessing. Therefore, in this research, we proposed an efficient deep learning model that is
capable of recognizing breast cancer in computerized mammograms of varying densities. Our
research relied on three distinct modules for feature selection: the removal of low-variance features,
univariate feature selection, and recursive feature elimination. The craniocaudally and medial-lateral
views of mammograms are incorporated. We tested it with a large dataset of 3002 merged pictures
gathered from 1501 individuals who had digital mammography performed between February 2007
and May 2015. In this paper, we applied six different categorization models for the diagnosis of breast
cancer, including the random forest (RF), decision tree (DT), k-nearest neighbors (KNN), logistic
regression (LR), support vector classifier (SVC), and linear support vector classifier (linear SVC). The
simulation results prove that our proposed model is highly efficient, as it requires less computational
power and is highly accurate.

Keywords: breast cancer; healthcare; machine learning

1. Introduction

Cancer is a worldwide epidemic that affects individuals of all ages and backgrounds.
There are many types of cancer, however, breast cancer is one of the most common cancers
in women. Due to this challenge, researchers should pay special attention to cancer
detection and prognosis. Predicting and diagnosing cancer at an early stage is an area
where machine-learning approaches may have a significant impact. Breast cancer develops
from breast cells and is a frequent malignancy in females worldwide. Breast cancer is
second only to lung cancer as a leading cause of death in women [1]. The risk of breast
cancer can be due to the following causes: age is a major factor in the development of

Diagnostics 2023, 13, 3113. https://doi.org/10.3390/diagnostics13193113 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13193113
https://doi.org/10.3390/diagnostics13193113
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-9750-3883
https://orcid.org/0000-0001-7479-7102
https://orcid.org/0000-0002-6385-5511
https://orcid.org/0000-0002-0854-768X
https://doi.org/10.3390/diagnostics13193113
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13193113?type=check_update&version=2


Diagnostics 2023, 13, 3113 2 of 21

breast cancer. Breast cancer is more prevalent in females, but males are not immune to the
disease. Having a mother, sister, or daughter who has been diagnosed with breast cancer
increases an individual’s risk. Breast cancer risk increases with the presence of certain
gene mutations, such as those in the BRCA1 and BRCA2 genes. The use of HRT (hormone
replacement therapy) for an extended period may raise the risk. Premature menstruation,
delayed menopause, and a lack of children or delayed puberty are all factors that might
affect a woman’s risk. The symptoms of breast cancer are the following: isolated swelling
of the breast or armpit; alterations in breast size, form, or appearance; breast or nipple
discomfort which cannot be explained medically; nipple discharge other than breast milk;
and discoloration or dimples in the breast skin. The microscopic appearance of breast
cancer cells is used to classify the disease into several subtypes. Ductal Carcinoma In Situ
(DCIS) is a non-invasive or pre-invasive breast cancer that originates in milk ducts and
does not invade nearby tissues. It can sometimes progress to invasive breast cancer if left
untreated. Invasive ductal carcinoma (IDC) is the most common type, accounting for 80% of
cases, and invades nearby breast tissues. IDC can be classified based on hormone receptor
status and HER2 status. Invasive lobular carcinoma (ILC) originates in the milk-producing
glands and accounts for 10–15% of breast cancer cases. It is less common than IDC and
is more difficult to detect with mammography. Triple-negative breast cancer (TNBC) is a
subtype of breast cancer that lacks hormone receptors and the HER2 protein. It is more
aggressive and less responsive to hormonal and HER2-targeted therapies. TNBC is often
treated with chemotherapy. HER2-positive breast cancer is a rare and aggressive form of
breast cancer caused by overexpression of the human epidermal growth factor receptor
2 (HER2) protein. It can be invasive or non-invasive, and it can be treated with targeted
therapies such as Herceptin. Inflammatory breast cancer (IBC) is a rare and aggressive
form characterized by redness, warmth, and swelling of the breast. It requires immediate
and aggressive treatment. Paget ’s disease of the Nipple is a rare and aggressive form
that starts in the milk ducts and spreads to the skin of the nipple and areola. Metastatic
breast cancer, also known as stage IV, is a non-curable disease that can be any subtype of
breast cancer (IDC, ILC, or HER2-positive) and is generally not curable. Treatments aim to
control and manage the disease. Invasive ductal carcinoma (IDC) and ductal carcinoma
in situ (DCIS) are the two most common forms of breast cancer, with DCIS developing
more slowly and usually without affecting patients’ everyday lives. DCIS accounts for a
very modest number of breast cancer instances (20–53%), while IDC is far more hazardous
since it spreads across the breast. About 80% of people diagnosed with breast cancer
fall into this group [2]. The majority of breast cancers are invasive, indicating that the
illness has spread to other organs or tissues beyond the breast. The two most common
types of invasive breast cancer are invasive ductal carcinoma (IDC) and invasive lobular
carcinoma (ILC). Invasive ductal carcinoma is a kind of breast cancer that develops in
the milk ducts and then metastasizes to other parts of the breast. Invasive lymphoma is
more difficult to detect using standard screening procedures. Initially developing in the
lobules that secrete milk, inflamed lobular carcinoma (ILC) may spread to other parts of
the breast [3]. Only 1–4% of women with a breast cancer diagnosis will go on to develop
invasive ductal carcinoma in situ, a type of breast Paget disease. It is an uncommon tumor
that develops in the skin surrounding the breasts and produces Paget cells. Due to its rapid
growth rate, breast angiosarcoma is often diagnosed after it has already spread to other
parts of the body. The phyllodes seldom become malignant growths, and when they do,
they mostly affect middle-aged women. The other types of invasive breast cancer include
adenocarcinoma, adenosquamous carcinoma, medullary carcinoma, mucinous carcinoma,
papillary carcinoma, and tubular carcinoma, each of which is very uncommon [4]. Cancer
cells in a noninvasive breast tumor stay localized inside the affected breast region rather
than spreading to nearby lobules or ducts. In the case of breast cancer, the disease has not
spread beyond the affected area. There are two types of in situ cancer: ductal carcinoma
in situ (DCIS) and lobular carcinoma in situ (LCIS) [5]. Cancer of the milk duct, or ductal
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carcinoma in situ (DCIS), occurs when a mass forms within the duct that carries milk from
the lobules or glands to the nipple.

Recent advances in diagnostic and treatment methods have led to a positive prognosis
for those who have been treated for DCIS, even if there is no proof that cancer has spread to
other organs [6]. However, LCIS may promote the growth of cells that resemble cancerous
ones, so it is important to treat it as if it were. Most cases of LCIS remain localized; however,
because of the increased risk of invasive breast cancer, doctors may opt to monitor their
patients anyway. Early detection of cancer is key to the successful treatment of breast cancer.
Therefore, the availability of appropriate screening technologies is crucial for spotting the
first signs of breast cancer. Screening for this condition may be performed using a variety of
imaging modalities, the most common of which are mammography, ultrasonography, and
thermography. Mammography is an important tool for detecting breast cancer in its earliest
stages. Since mammography is ineffective for women with dense breast tissue, diagnostic
ultrasound is often used instead. Radiation from radiography and thermography may
be more accurate than ultrasonography for detecting tiny malignant tumors due to these
factors. Mammography is a crucial tool in the fight against breast cancer, and thanks
to advancements in artificial intelligence, it can now automatically identify illnesses in
medical photos. Early-stage breast cancer detection faces several limitations and challenges.
Breast cancer screening methods, such as mammography, face several challenges, including
sensitivity, specificity, breast density, overdiagnosis, overtreatment, screening age and
frequency, access and equity, patient compliance, cost, and resource constraints, a false
sense of security, risk prediction, genetic and molecular factors, variability in screening
interpretation, and invasive follow-up tests. Mammography may miss early-stage tumors,
particularly in women with dense breast tissue, resulting in false negatives and unnecessary
follow-up tests. Dense breast tissue can obscure small tumors on mammograms, reducing
sensitivity and requiring additional imaging tests. Overdiagnosis and overtreatment can
occur when early-stage breast cancers are slow-growing and non-aggressive. Screening
age and frequency may vary by country and organization, leading to confusion among
patients and healthcare providers. Access to breast cancer screening can be limited by
socioeconomic factors, geographic location, and healthcare disparities, resulting in missed
opportunities for early detection. Patient compliance, cost and resource constraints, and
genetic and molecular factors also contribute to the challenges faced in breast cancer
screening. Patients anxiously anticipating biopsy findings indicating benignity may be
subjected to unnecessary follow-up workups and biopsies if the diagnostic yield is only
moderately specific. Over the last several decades, methods have been included in the
normal clinical evaluation of breast MRI tests that examine various MRI [7] sequences
alongside DCE-MRI pictures to overcome this constraint and analyze more functional
data. T2-weighted (T2w) MRI is an often-used supplementary sequence in this method,
which is known as multi-parametric magnetic resonance imaging (mpMRI). Differentiating
benign from malignant lesions may be aided by including T2W sequence interpretation,
according to studies. As an example, fibroadenomas, a benign lesion that may demonstrate
comparable contrast agent enhancement to that of malignant lesions on T1-weighted
DCE-MRI, often have higher signal intensity on T2w images compared with malignant
lesions [8]. Instruments have been produced to make and enhance image processing
because of the inherent challenges connected with a picture, such as low contrast, noise,
and underappreciation by the human eye. Convolutional neural networks (CNNs) [9],
a subfield of machine learning, and artificial intelligence (AI) are some of the healthcare
industry’s hottest new trends. Artificial intelligence (AI) [10] and machine learning (ML)
may be found in the field of study that focuses on developing better technological systems
to handle complicated tasks with less reliance on human intellect [11].

The purpose of this research is to create an efficient deep learning-based model. The
proposed model is capable of recognizing breast cancer in computerized mammograms of
varying densities and then comparing the achieved results using state-of-the-art models.
We proposed an efficient deep learning model that is capable of recognizing breast cancer
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in computerized mammograms of varying densities. Our research relied on three distinct
modules for feature selection: the removal of low-variance features, univariate feature
selection, and recursive feature elimination. The craniocaudally and medial-lateral views
of mammograms are incorporated. We suggested craniocaudally and medial-lateral views
of mammograms in our proposed model. This resulted in a total of 3002 merged pictures
from 1501 individuals who had digital mammography performed between February 2007
and May 2015. It has been observed that breast MRI is a very sensitive imaging technique
for detecting and characterizing breast cancer. We obtained excellent sensitivity and varied
specificity for breast cancer. The diagnosis was obtained using dynamic contrast-enhanced
(DCE) MRI. This provides morphological and functional lesion information.

The Table 1 gives a concise overview of different diagnostic techniques along with
both benefits and drawbacks. This serves as a fast reference for readers to comprehend the
state of breast cancer diagnosis today and the need for an enhanced diagnostic strategy.

Table 1. Existing diagnostic method, advantages, and limitations.

Existing Diagnostic Method Advantages Limitations

Mammography

Well-established Limited sensitivity in dense breast tissue

Widely accessible False positives/negatives

Detects structural changes and
calcifications False positives/negatives

Ultrasound

No radiation Limited specificity

Useful for dense breasts Operator-dependent

Differentiates cysts from solid masses Limited detection in deep tissues

MRI (Magnetic Resonance Imaging)

High sensitivity High cost

No radiation Longer exam duration

Detailed soft tissue visualization Requires specialized expertise to detect
benign lesions

Biopsy (Fine Needle Aspiration or Core
Needle Biopsy)

Provides tissue samples for definitive
diagnosis Invasive and uncomfortable

High diagnostic accuracy

Small risk of complications

Requires skilled medical staff

Sample may not be representative

Clinical Breast Examination (CBE)

No radiation Limited sensitivity

Low cost Dependent on examiner’s expertise

Can detect palpable masses May miss non-palpable masses

Genetic Testing (BRCA1/BRCA2 Testing)

Identifies genetic mutations linked to
increased risk Applicable to specific subsets of patients

Enables targeted prevention and
treatment strategies Limited to hereditary breast cancer cases

1.1. Motivation

Breast cancer diagnosis by machine learning has been motivated by the hope that it
will lead to better patient outcomes, lessen the disease’s worldwide effect, and aid in the
development of cutting-edge healthcare technology and research.

1.2. Benefits of This Research

The benefits of this research are as follows; it helps in improvement in early diagnosis
and individualized therapy. In addition, it has the potential to revolutionize breast cancer
management and save lives by influencing areas such as research, cost-effectiveness, and
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worldwide accessibility to healthcare services. It helps in reducing healthcare costs, and a
more beneficial influence on worldwide breast cancer management is all possible because
of the abilities of machine learning in breast cancer diagnosis.

The rest of the paper is organized as follows. In Section 2 we discuss the previous
research in the related work section. In Section 3 we presented our proposed methodol-
ogy. In Section 4 we discuss the achieved experimental results. Section 5 concludes the
conclusion of this study.

2. Literature Review

In recent years, several studies have used ML (machine learning) techniques in health-
care domains to detect BC. Since the algorithms provide satisfactory results, other scientists
have used them to address challenging issues [12]. A CNN algorithm was employed to
predict and diagnose invasive ductal carcinoma in breast cancer images, and it achieved
an accuracy of about 88% [13,14]. In addition, it is often used in the medical field for
forecasting and diagnosing anomalous occurrences to obtain a deeper understanding of
incurable disorders such as cancer [15]. Numerous studies have focused on breast cancer
detection strategies that use imaging and genetics. Furthermore, to our knowledge, no
studies have been conducted that use both of these approaches together. In [16], the authors
summarized the several techniques used for histological image analysis (HIA) in breast
cancer diagnosis. Different types of convolutional neural networks (CNN) serve as the
foundation for these techniques [17]. Based on the kind of dataset they used, the writers
classified their work accordingly. They organized everything in reverse chronological order,
with the most recent occurrence at the beginning. This study’s results suggest that ANNs
were first put to use in the area of HIA sometime in the middle of 2012. The most common
types of algorithms used were ANNs and PNNs [18].

However, morphological and textural characteristics were heavily used in feature
extraction. It is clear that using deep convolutional neural networks to detect and diagnose
breast cancer at an early stage improves outcomes for patients undergoing treatment.
The process of creating NCD predictions included the use of several different algorithms.
In [19], the authors investigated and evaluated several categorization strategies for their
effectiveness. The classification algorithms were tested on eight separate NCD datasets
using a 10-fold cross-validation strategy. The area under the curve is used to analyze these
results for precision. The authors state that the NCD datasets have irrelevant features and
noisy data. The resiliency of KNN, SVM, and NN in the face of this noise is impressive.
They also suggested various preprocessing processes that would raise the rate of accuracy
and remove the problem of irrelevant attributes. Several human health disorders have
been presented as candidates for which natural inspiration computing (NIC) approaches
might be useful in the diagnostic process. The authors of [20] proposed five NIC diagnostic
algorithms based on insects and addressed their potential use in diagnosing diabetes and
cancer. Breast, lung, prostate, and ovarian tumors were all successfully recognized, as
claimed by the authors. A breast cancer diagnosis is improved by integrating directed ABC
with neural networks. The authors also developed a very effective technique for identifying
diabetes and leukemia. Incorporating NICs with conventional classification techniques,
they reasoned, yields more reliable and encouraging results. They stressed the need for
further research into diabetes and illness detection at different stages. In [21], the authors
reported data suggesting NNs may be used to classify cancer diagnoses, especially in the
early stages of the illness. Their findings show that a variety of NNs have shown promise in
identifying cancerous cells. However, a significant amount of computing power is required
for the imaging method’s preprocessing of the pictures. In the following, we explore how
CNNs and AI can minimize challenges.

CNNs and AI can improve medical image quality by enhancing low-contrast features,
reducing noise, removing artifacts, and optimizing image registration. They can also assist
in image, segmentation, and ROI detection, enabling precise analysis and diagnosis of
anatomical structures or lesions. AI algorithms can adjust image contrast, brightness,
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and intensity levels and apply contrast-limited adaptive histogram equalization (CLAHE)
techniques to improve image quality. Additionally, CNNs can recognize and remove com-
mon imaging artifacts, ensuring accurate interpretation. AI algorithms optimize image
alignment, while segmentation and ROI detection enable precise analysis and diagnosis of
specific areas. Finally, CNNs can be used for super-resolution imaging, enhancing image
resolution and quality beyond the original acquisition. AI-driven super-resolution tech-
niques use deep learning models to generate high-resolution images from low-resolution
inputs, providing enhanced detail and diagnostic information.

Practical techniques in the field of smart health include computational intelligence
methods such as fuzzy systems, artificial neural networks, and swarm intelligence, or
evolutionary computing methods including genetic algorithms, classifiers, and support
vector machines (Al-Antari, Al-Masni et al., 2018) [22]. The suggested CNN Improvements
for Breast Cancer Classification (CNNI-BCC) model helps doctors spot breast cancer, as
shown in research in Khan, Khan et al., 2020) [21]. The suggested method uses a trained
deep learning neural network system to categorize breast cancer subtypes. According to
data from 221 actual patients, the findings have an accuracy of 90.50 percent. Without
needing any human intervention, this model can classify and identify breast cancer lesions.
Evaluating this model shows that it can examine the situation of impacted patients through-
out the detection phase, showing that it is an improvement over earlier techniques (Tanabe,
Ikeda et al., 2020) [23].

Sivapriya, Kumar, et al., 2019 [24], compared SVM, logistic regression, naive Bayes,
and random forest to determine their parallels and distinctions. Wisconsin’s breast cancer
dataset is used for comparative purposes (Abunasser, AL-Hiealy et al., 2022) [25]. The re-
sults of the evaluations showed that the random forest algorithm achieved the highest level
of accuracy (99.76%) with the least amount of error. The Anaconda Data Science Platforms
were used to run all the experiments in a reproducible environment [26]. The authors (Allu-
gunti 2022) proposed an approach for breast cancer that classifies the disease into its various
subgroups. Features are chosen using data from the Wisconsin Diagnosis and Analysis and
Prognostic Breast Cancer databases (Gonzalez-Angulo, Morales-Vasquez et al., 2007) [27].
The different types of breast cancer are then categorized using a neural network technique,
with special emphasis on the multilayer perceptron (MLP) and the back-propagation neural
RBF. The nine characteristics in this dataset stand for the neural network’s input layer. The
neural network will classify the input information into two types of cancer (benign and
malignant). Using the RBF neural network, the method developed and evaluated on the
database achieved a 97% repeatability of classification. Two different Bayesian classifiers,
tree-augmented naive Bayes and Markov blanket estimating networks, were evaluated and
compared by the authors (Elsayad 2010) [28] to build an ensemble model for the prediction
of the severity of breast masses.

The proposed methodology is developed to help doctors decide whether or not to
conduct a breast biopsy on a suspicious lesion after reviewing the findings of a mam-
mogram. Based on Bayesian classifiers, they have been shown by the authors to be a
competitive alternative to other approaches with medical applications. In the realm of
emergency medicine, where BN is a beneficial approach because of its potent symbol and
management of ambiguity, and where several alternatives are feasible depending on the
data that has been provided, the authors (Krizmaric and Mertik 2008) [29] have decided
to adopt Bayesian networks (BN). The symbolic representation inside Bayesian networks
is what makes them such a powerful approach. The random forest (RF) classifier is an
ensemble method that employs many different classification techniques. Every one of
them may be put into action using a decision tree. Improved classification accuracy is
achieved via the use of numerous decision trees (Dai, Chen, et al., 2018) [22]. In simple
terms, the RF is an ensemble classifier made up of many decision trees that work together to
improve efficiency and prediction accuracy. In Nguyen, Wang, et al., (2013) [30], researchers
created an RF-based classifier. The algorithm they used has been trained on two datasets,
and the findings are encouraging: it achieved high accuracy and good performance.
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Three classifiers—nearest neighbor (NB), radial basis function (RF), and k-nearest neigh-
bors (KNN)—have been compared using the WDBC. The accuracy of these classifiers in
predicting breast cancer tumors is evaluated by training and testing on the aforementioned
dataset. The authors of this study found that although all of the classifiers they tested
achieved detection accuracy rates of over 94%, KNN fared the best. Its accuracy is better
than that of both the NB and RF classifiers. In addition to its superior accuracy, the KNN
classifier also has a higher precision and F1-score (Sharma, Aggarwal, et al., 2018) [31].
According to Price and Lindquist, the ANN classifier outperforms the SVM, NB, or decision
tree classifiers when using feature selection techniques. Its efficiency saw a 51 percent boost
as a result of these changes (Kabiraj, Raihan et al., 2020) [32]. In Al-Azzam and Shatnawi
(2021) [33], the authors evaluate two machine learning classifier models, extreme gradient
boost (XGBoost) and RF, using a small dataset consisting of 275 examples. Using a limited
dataset may reflect incorrect results; hence, the authors argue that a large dataset is neces-
sary to validate their conclusions, even if their results suggest that RF has outperformed
XGBoost when it comes to accuracy in detecting breast cancer. LR, Gaussian naive Bayes,
RBF SVM, linear SVM, DT, RF, XGBoost, KNN, and gradient boosting are only some of the
nine classification models that were examined in recent research. The Wisconsin Diagnosis
Cancer Dataset is used for both training and testing the models. Based on the data, we can
conclude that KNN is the most effective method for supervised learning, while LR is the
most effective method for semi-supervised learning (Wang, Wang et al., 2020) [34]. One
of the most incomplete methods to provide a trade-off between variance and bias is the
ensemble learning technique. Classification performance may be improved by merging
individual classifiers to construct an aggregated classification model, as has been shown
in several studies. Stacking, boosting, and bagging are the three foundational methods of
ensemble classification. The stacking method involves combining the results of several
categorization models into a single one (Tang, Cai, et al., 2021) [35].

3. Proposed Methodology

In this paper, we applied six different categorization models for the diagnosis of breast
cancer, including the random forest (RF), decision tree (DT), k-nearest neighbors (KNN),
logistic regression (LR), support vector classifier (SVC), and linear support vector classifier
(linear SVC). It is important to remember that the chosen dataset and objectives may dictate
different hyperparameter values and other implementation-specific choices. Mammogra-
phy, computed tomography, magnetic resonance imaging, positron emission tomography,
blood testing, and genetic analysis all have their limitations when it comes to early diagno-
sis and prognosis. State-of-the-art techniques may require invasive treatments, incorrect
diagnoses, and specialist knowledge. Early diagnosis, improved accuracy, personalized
therapy, risk assessment, data integration, predictive prognosis, and drug development
are just some of the ways machine learning technologies might boost cancer detection and
prognosis. The existing process for identifying possible chemicals and treatments for cancer
therapy is time-consuming and prone to mistakes; these strategies assist in speeding up
the process.

Mammography is an X-ray imaging technique designed for breast tissue using differ-
ential X-ray absorption. It is primarily used for breast cancer screening, early detection,
and diagnosis, detecting small abnormalities, e.g., tumors and microcalcifications. Ultra-
sound, on the other hand, uses high-frequency sound waves to create images of breast
tissue. It is often used to complement mammography, distinguishing between solid masses
and fluid-filled cysts and providing additional information about a breast abnormality’s
characteristics. Ultrasound is also used to guide breast biopsies.

Thermography, also known as thermal imaging, captures heat patterns emitted by the
body’s surface. It uses a specialized camera to measure the temperature of the skin’s surface,
revealing temperature variations in areas with increased blood flow, such as around tumors.
Thermography has been explored as a non-invasive tool for breast cancer screening but is
not widely used as a standalone method due to concerns about accuracy and variability
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in interpreting results. It may be used as an adjunctive tool in certain cases or for breast
health monitoring.

Mammography is the gold standard for breast cancer screening and is widely recom-
mended in many countries. Ultrasound is often used as a complementary tool, particularly
for dense breast tissue. Thermography is not recommended as a primary screening tool
due to concerns about sensitivity and specificity. The choice of screening modality depends
on a patient’s age, risk factors, breast density, and clinical circumstances and is determined
by healthcare providers in consultation with patients.

Different ensemble approaches are used by the RF classifier and the KNN classifier,
both of which are ensemble classifiers. The bagging method is crucial to RF. Tree-based
classifiers make up this set. The stack classifier is a stacking-based classifier that uses
the results of other classification models as inputs. By switching between classifiers that
are predicated on various methods and use cases, we hope to improve the reliability of
our findings.

Figure 1 shows our proposed methodology. In this figure, the data is taken from
the dataset. Prepare the data to use the breast cancer dataset by loading it. Separate the
information into features (X) and labels (y). For quantitative analysis of features, ensure
each feature has the same effect on the algorithms by normalizing or standardizing them.
Separate the data into a training set and a test set. Seventy percent for instruction and
thirty percent for testing is an example of a frequent breakdown. For the evaluation and
training of models, random forest (RF), decision tree (DT), k-nearest neighbors (KNN),
logistic regression (LR) and linear support vector classifier (linear SVC) are used and
the effectiveness of each algorithm is evaluated using the criteria provided. Select the
most effective algorithm for spotting breast cancer. To determine which attributes are
most important for algorithms such as RF and DT, perform a feature importance analysis.
To better understand the algorithm’s decision-making process, decision trees may be
represented graphically.
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The objective of preprocessing is to replace duplication values in data. The data
balancing is performed by using a data balancer. Then we performed feature extraction on
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it. The achieved data has been sent to the data splitting. Here, a specific algorithm is applied
and hence the data is divided into two sets. One is training and the other is testing data.
Our data were split into 70% training data and 30% testing data, and different ML classifiers
were applied, such as DT, RF, LR, SVC, and KNN to find their individual detection and
prevention accuracy levels for breast cancer. The raw breast cancer data is processed
to resize the features with the Standard Scaler module as part of this research. Many
estimators in the field of machine learning need the standardization of datasets. Typically,
feature selection is used before any real learning is performed as a kind of preprocessing.
However, without informative and discriminative characteristics, no algorithm can produce
accurate predictions; hence, it is important to retain the most important features while
decreasing the dataset size. We have used Python’s sci-kit-learn package to construct the
feature-selection module. In addition, we have used too many criteria used by all selection
procedures, making it impossible to prioritize the most important ones.

Implementations of the IMPEL algorithm are used for picture categorization. Collect
a series of photos that will be used in the categorization process. Each picture in this
collection should have a label indicating which category it belongs to. Creating variants of
the photos by rotation, flipping, or adjusting brightness and contrast are all examples of
preprocessing that may be used to prepare the images for analysis. It may be necessary to
extract characteristics from photos to use them with common machine-learning techniques.
Histogram of Oriented Gradients (HOG), Scale-Invariant Feature Transform (SIFT), and
deep feature extraction using pre-trained convolutional neural networks (CNNs) such
as VGG, ResNet, and Inception are used. For picture categorization, choose a machine-
learning model that works well. Common alternatives are deep learning architectures:
CNNs automatically learn useful characteristics from the input, making them very effective
for image applications. If feature extraction is achieved, models such as support vector
machines (SVMs), random forests, k-nearest neighbors (KNN), or logistic regression are
used. For model instruction: evaluate the chosen model using the training data. Feed the
photos into the CNN and tweak the model’s weights until the classification error is as small
as possible. Use the validation dataset to fine-tune the model’s hyperparameters (such as
the learning rate, batch size, and number of layers) for optimal performance.

Our study relied on three distinct modules for feature selection: the removal of low-
variance features, univariate feature selection, and recursive feature elimination. Compared
to using only one model, the prediction performance of ensembles of machine learning
algorithms is often superior, as was proven by a breast cancer diagnostic model that won a
machine learning competition. The information that is given here is classified using the
following multimodal sets of machine learning algorithms: linear SVC, SVC, KNN, DT, RF,
LR, DT, and logistic regression. There are now training, validating, and testing datasets
available from the original dataset. The distribution is divided as follows: 30% to 70%.
(1) Accuracy (2), precision (3), recall (4), and F1-score; all standard metrics have been used
to evaluate the proposed model’s efficacy.

Testing the suggested model(s) created is part of evaluating an ML algorithm’s per-
formance. In this study, the assessment is carried out by contrasting model findings with
actual data values. In this step, known as the prediction phase, the performance of the
models in identifying benign and malignant tumors is evaluated using the test dataset.

Malignant tumor classification is a major hurdle in the way of its discovery. They
suggest machine learning (with SVMs) to categorize these tumors, using the Breast Cancer
Wisconsin (diagnostic) dataset. The objective of this dataset is as follows:

• Learn the dataset and clean it up (if necessary).
• Create models for classifying cancers as either malignant or benign.
• Adjust the hyperparameters and evaluate the metrics of different classifiers.

A form of evolutionary algorithm (EA) known as genetic programming (GP) gener-
alizes the genetic algorithm. GP is a model for testing and choosing the best option from
a group of outcomes. GP creates a solution based on biological evolution and its basic
process (mutation, crossover, and selection).



Diagnostics 2023, 13, 3113 10 of 21

The usage of GP accounts for its adaptability; it can model systems even when the
required models’ structure and salient characteristics are unknown. For the classification
challenge in this study, GP enabled the system to search for models from a variety of
potential model architectures while optimizing the pipelines shown as tree topologies.
Based on the aforementioned primitives, such as the features selection decomposition, GP
first constructs a certain number of pipelines. In other words, the order of operators changes
as machine learning pipelines are reviewed to generate the highest possible categorization
accuracy. A new generation is developed using the best prior pipelines after evaluating the
present machine learning pipelines. Every pipeline is regarded as a unique member of GP.
The three main operators make up the GP:

• Altering hyperparameters or adding or deleting a simple preprocessing step, such as
Standard Scaler or the number of trees in a random forest, are examples of mutation
operators.

• Crossover operator: using a 1-point crossover chosen at random, the crossover operator
estimates that 5% of people will cross paths with one another.

• The major objective of the selection operator is to choose the top 20 people and create
clones of them. The crossover or mutation operator may be used to communicate
information between population members.

Table 2 presents the metrics description of the confusion matrix. In this table, we
compare the anticipated outcomes with the actual numbers. The performance of the
classifier is calculated using the matrix. Several performance metrics, including accuracy,
an area under the precision, recall, sensitivity, and f1-score, may be used to assess the
effectiveness of the ML model.

Table 2. Description of metrics.

Metrics Description

Confusion Metrics

Positive Negative
Positive True Positive (TP) False Positive (FP)

Negative False Negative (TP) True Negative (TN)
Precision = TP

TP+FP

4. Results and Discussion

In this research, we have provided a standardized method for comparing the state-
of-the-art using the assessment measures EDA dataset. At first, we collected the source
from kaggle.com (accessed on 15April 2023). We have used Python Jupiter Notebook 6.4.12
for the simulation. Table 3 presents the first result of explanatory data analyses using
different models. EDA resources include Python extensions such as Pandas, Seaborn, Plotly,
and Bokeh. Pandas is a robust library for data analysis, offering DataFrames and Series.
Seaborn is a high-level interface for creating statistical visualizations, while Plotly is a
flexible framework for creating interactive visualizations such as dashboards and 3D plots.
Bokeh is a library for creating interactive dashboards for online use. In this graph, the
predictions are used with the subsets of the dataset. Each set consists of 70% of the training
data and 30% of the test data. The table summarized and compared with id, radius_mean
and other measures.
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Table 3. Exploratory data analysis.

(a)

id Diagnosis Radius_Mean Texture_Mean Perimeter_Mean Area_Mean Smoothness_Mean Compactness_Mean Concavity_Mean Concave
Points_Mean Radius_Worst

0 842302 M 17.99 10.38 122.80 1001.0 0.11840 0.27760 0.3001 0.14710 25.38

1 842517 M 20.57 17.77 132.90 1326.0 0.08474 0.07864 0.0869 0.07017 24.99

2 84300903 M 19.69 21.25 130.00 1203.0 0.10960 0.15990 0.1974 0.12790 23.57

3 84348301 M 11.42 20.38 77.58 386.1 0.14250 0.28390 0.2414 0.10520 14.91

4 84358402 M 20.29 14.34 135.10 1297.0 0.10030 0.13280 0.1980 0.10430 22.54

(b)

Texture_Worst Perimeter_Worst Area_Worst Smoothness_Worst Compactness_Worst Concavity_Worst Concave
Points_Worst Symmetry_Worst Fractal_Dimension_Worst Unnamed: 32

17.33 184.60 2019.0 0.1622 0.6656 0.7119 0.2654 0.4601 0.11890 NaN

23.41 158.80 1956.0 0.1238 0.1866 0.2416 0.1860 0.2750 0.08902 NaN

25.53 152.50 1709.0 0.1444 0.4245 0.4504 0.2430 0.3613 0.08758 NaN

26.50 98.87 567.7 0.2098 0.8663 0.6869 0.2575 0.6638 0.17300 NaN

16.67 152.20 1575.0 0.1374 0.2050 0.4000 0.1625 0.2364 0.07678 NaN
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Keep in mind that the variety of the individual models and their capacity to capture
various features of the data are essential to the success of an ensemble model. Throughout
the process, careful model selection, training, and assessment are crucial. The ensemble
model must be monitored and maintained when new data becomes available or the clinical
setting changes.

The above data analysis method would be incomplete without the exploratory data
analysis (EDA) phase. Analyzing data entails visualizing it to draw conclusions, recognize
trends, spot outliers, and make hypotheses. EDA is useful for gaining a grasp of the
dataset’s structure and properties before moving on to more complex statistical and machine
learning methods. Understanding the features of the dataset, spotting data quality concerns,
and identifying early patterns that might drive further analysis and modeling choices are
all accomplished using EDA, making it a crucial phase in the data analysis process. It is
also vital to the trustworthiness of the results obtained from the data.

Figure 2 presents the boxplots of the breast cancer dataset. In this figure, these boxplots
present the distribution of breast cancer detection scores. There is an anomaly in all the
graphs we acquired. If we remove them, the data’s median will go down, and that might
provide a challenge in accurately identifying cancers, particularly if a malignant tumor is
misidentified as benign. We will only remove anomalies in benign tumors, however, so as
not to interfere with the detection of dangerous cancers. After processing, the maximum
value of the area ‘worst’ is 932.7, down from 1210.0 before processing. The maximum area
of mean value has similarly decreased, from 992.1 before processing to 788.5. This might
lead to false positives, in which benign tumors are mistakenly labeled as cancerous. On the
other hand, this strategy is preferable to the alternative. This diagnosis has the potential to
save lives by detecting cancers at an early stage when treatment is most effective.
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Breast cancer screening involves mammography to detect the early stages of the
disease, identifying abnormalities such as tumors or microcalcifications. The procedure
involves gently compressing the breast between two plates, resulting in two X-ray images.
Radiologists review the images to identify suspicious findings, such as masses, abnormal
densities, microcalcifications, or architectural distortions. Mammography results are often
reported using the Breast Imaging Reporting and Data System (BI-RADS), which catego-
rizes findings into levels. If a mammogram is assigned BI-RADS 0, further evaluation, such



Diagnostics 2023, 13, 3113 13 of 21

as additional imaging or a biopsy, is needed. Follow-up tests may be recommended to
confirm or rule out cancer, such as ultrasound, MRI, or a breast biopsy, depending on the
results and BI-RADS category.

When a mammographer examines a patient’s breast, she or he will put the breast on
the mammography machine’s plate and gently compress it with a second plate to spread
out the breast tissue so that the image may be taken. Each breast is X-rayed twice, once
from the top down (cranio-caudal view) and once from the side (mediolateral oblique
view), as is common protocol. If more views are required, that option is available.

Figure 3 shows how breast cancer on mammograms can vary depending on stage,
size, and location. Radiologists examine for abnormalities and patterns to detect breast
cancer. Common findings include masses, microcalcifications, architectural distortions,
asymmetries, spiculated borders, and nodules. Masses, microcalcifications, and architec-
tural distortions are early signs of breast cancer, while microcalcifications are tiny calcium
deposits in breast tissue. Figure 4 show the architectural distortions. These may appear as
irregularities in the breast’s structure, while asymmetries indicate differences in appearance
between the left and right breasts. Speciated borders, jagged or spiky edges, and nodules
are small rounded masses that are assessed for potential malignancy.
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Figure 5 demonstrates the various types of breast cancer percentages. We have a
dataset with the following variables, cancer type (malignant or benign) and group of people
(young adults, middle-aged adults, and elders). Make a graph showing the distribution of
instances by age group, and whether they were malignant or not. We used a breast cancer
dataset including age- and diagnosis-related categories. Pandas are used to determine the
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proportion of instances in each age group for both malignant and benign diagnoses. Finally,
to prepare the data for the graph, a stacked bar graph is drawn to show the distribution
of cases by age and diagnosis. Age, gender, geography, and demographics are only a
few of the variables that might affect the breast cancer prevalence rate. Other influences
include one’s way of life, one’s genetic makeup, and one’s level of access to medical
treatment. According to the WHO, breast cancer is the most frequent cancer among women
worldwide. Case rates of breast cancer differ significantly across geographic locations. The
proportion is often greater in affluent nations due to widespread screening programs and
public education efforts than in underdeveloped countries due to scarcer resources and
less awareness. For accurate and up-to-date data on breast cancer, the American Cancer
Society (ACS), the National Cancer Institute (NCI), the World Health Organization (WHO),
or other respected organizations are excellent resources.
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A dataset is partitioned into K equal-sized subgroups as part of the breast cancer
detection technique known as K-fold cross-validation. One of the K subsets is used as the
test set, while the other K-1 subsets are used for training. The model is trained and assessed
K times. To evaluate the model’s generalization to new data, performance measures are
computed on the test set. The performance indicators from each fold are averaged after
all K iterations to obtain a thorough analysis. Robustness, overfitting detection, optimum
hyperparameter tuning, bias and variance evaluation, and realistic performance estimates
all depend on K-fold cross-validation. It ensures that the assessment is more reliable and
less reliant on a certain data split, enabling more precise and accurate forecasts of the
model’s performance on new unseen data.

Breast cancer detection using machine learning: K-fold cross-validation ensures that
the chosen model’s performance is thoroughly assessed, helping one to build a reliable
and robust diagnostic tool. It is an essential step in the model development process to
ensure that the chosen system can provide accurate and consistent results on a variety of
patient data.

Figure 6 presents the best-ten correlation results between all variables. The values
on the y-axis include diagnosis, radius_mean testure_mean, perimeter_mean, area_mean,
smoothness_mean, etc. A correlation coefficient between −1 and 1 indicates no association



Diagnostics 2023, 13, 3113 15 of 21

at all, whereas a positive or negative number indicates a strong relationship between the
two variables. It is important to note that the linear connection between variables is all that
can be measured using correlation. There is a link of 69% or higher between each of these
factors and the outlook for the patient.
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Figure 7 presents the calculated correlations of diagnosis, radius_mean, texture_mean,
etc. by absolute value. The diagnostic relationship between features will be studied to test
this idea. The vast majority of data is right-skewed, meaning that its right-hand tail is much
longer or fatter than its left-hand tail. This indicates that the mean is higher than the median
and that there are more observations of high values than low ones. If the breast cancer
dataset has a right-skewed distribution of characteristics, then the majority of patients will
have smaller values for certain aspects, while a small percentage will have larger values.
This may suggest that the importance of some characteristics varies with the kind of tumor
being studied.
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Figure 7. Calculated correlations by absolute value.

Figure 8 presents the breast cancer diagnosis. In this figure, the color area indicates the
most that the most patients have lower values in some features and only a few have very
high values. The majority of the traits are strong concerning each other, as demonstrated
in the graphs. Additionally, compared to benign tumors, malignant tumors have larger
values for the same characteristics. Additionally, malignant tumor outliers exhibit higher
variation than benign tumor outliers and are better represented in clusters after they have
not been treated.
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Most of the characteristics are rather robust in comparison to the other traits, as
illustrated by the graphs. For the same characteristic, malignant tumors tend to have
higher values. In addition, after the extreme cases have been removed, data from malignant
tumors show higher variation than data for benign tumors. Most of the characteristics are
rather robust in comparison to the other traits, as illustrated. When comparing benign
and malignant tumors, the malignant tumor always has greater values for the same trait.
Additionally, data from malignant tumors, which are better represented in clusters due to
the absence of outliers, show higher variation.

Figure 9 shows 0 to 100%, and our highest accuracy is 96.49% by random forest. ML has
the potential to greatly improve the identification and diagnosis of breast cancer. However,
to successfully integrate technology into clinical practice, there are technological, moral,
and legal obstacles to overcome. The objective is to develop a more precise, approachable,
and patient-centric approach to breast cancer diagnosis and care as research progresses and
technology advances.
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Figure 9 shows the accurate results of all classifiers that we used. This figure shows
the random forest as the best result which achieved 96.49% accuracy. The description of
others is given below.

• Random forest models have the highest accuracy values, indicating better performance
in predicting the target variable compared to other models.

• Decision tree and KNN have higher values than LG and SVC and are comparable to
other models, indicating that they may not be the best models for predicting the target
variable.

• Logistic regression and SVC have similar values, indicating they have comparable
performance in predicting the target variable.

When it comes to detecting cancer, random forest may be a viable alternative because
of its versatility, ease of interpretation, and ability to determine which traits are most crucial
to the categorization decision-making process.

Figure 10 shows the graphical accuracy result of all classifiers. In this graph, we used
RF, DT, KNN SVC, LR, and linear SVC.
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A large number of true positives and true negatives in the confusion matrix indicates
that the model has successfully predicted both groups. The model’s success may be seen in
its low rate of false positives and false negatives.

5. Conclusions and Future Work

This study examines six different categorization models for breast cancer classification
using the Breast Cancer Wisconsin (diagnostic) dataset. The data is processed using the
Standard Scaler module and feature selection is performed using Python’s scikit-learn pack-
age. The models were developed using multimodal sets of machine learning algorithms,
including linear SVC, SVC, KNN, DT, RF, LR, DT, and logistic regression. The study used
a confusion matrix to compare anticipated outcomes with actual numbers and assessed
performance metrics such as accuracy, area under the precision, recall, sensitivity, and
f1-score. The results were summarized and compared using exploratory data analysis.
The study found that maximum area worst and maximum area_mean values decreased
after processing, potentially leading to false positives. The correlation between variables
in breast cancer diagnosis is crucial for understanding the relationship between features
and patient outlook. Random forest models have the highest accuracy values, followed by
decision tree and KNN. Logistic regression and SVC have similar performance in predicting
target variables. Random forest may be a viable alternative for detecting cancer due to
its versatility, ease of interpretation, and ability to identify crucial traits for categorization
decision-making. Breast cancer is a prevalent disease affecting women worldwide, with
machine-learning approaches potentially impacting early detection and prognosis. The
disease is classified into two subtypes: invasive ductal carcinoma (IDC) and ductal carci-
noma in situ (DCIS). Early detection is crucial for successful treatment, and appropriate
screening technologies are essential. Mammography, ultrasonography, and thermography
are common imaging modalities for detecting breast cancer. Advancements in artificial
intelligence have made mammography more accurate, and deep learning models are being
developed to recognize breast cancer in computerized mammograms. Breast MRI is a
sensitive imaging technique with excellent sensitivity and specificity, and convolutional
neural networks and AI are emerging in healthcare to improve image processing and
reduce human eye recognition.

Future research on breast cancer diagnosis using ML might explore these and other
possibilities. To make substantial strides forward in the detection and treatment of breast
cancer, continued research and cooperation between data scientists, medical experts, and
researchers is essential.

Author Contributions: Conceptualization, A.K.; Methodology, G.S.C.; Software, A.M., H.A. and
G.S.C.; Formal analysis, G.S.C.; Resources, H.A. and G.S.C.; Data curation, B.F.A.; Writing—review &
editing, H.A. and G.S.C.; Project administration, F.A.; Funding acquisition, A.A. and H.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Researchers Supporting Project number (RSP2023R244),
King Saud University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bayrak, E.A.; Kırcı, P.; Ensari, T. Comparison of machine learning methods for breast cancer diagnosis. In Proceedings of the 2019

Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey, 24–26
April 2019.

2. Loomans-Kropp, H.A.; Umar, A. Increasing Incidence of Colorectal Cancer in Young Adults. J. Cancer Epidemiol. 2019,
2019, 9841295. [CrossRef] [PubMed]

https://doi.org/10.1155/2019/9841295
https://www.ncbi.nlm.nih.gov/pubmed/31827515


Diagnostics 2023, 13, 3113 20 of 21
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