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Abstract: Brain tumor segmentation from magnetic resonance imaging (MRI) scans is critical for
the diagnosis, treatment planning, and monitoring of therapeutic outcomes. Thus, this research
introduces a novel hybrid approach that combines handcrafted features with convolutional neural
networks (CNNs) to enhance the performance of brain tumor segmentation. In this study, handcrafted
features were extracted from MRI scans that included intensity-based, texture-based, and shape-based
features. In parallel, a unique CNN architecture was developed and trained to detect the features from
the data automatically. The proposed hybrid method was combined with the handcrafted features
and the features identified by CNN in different pathways to a new CNN. In this study, the Brain
Tumor Segmentation (BraTS) challenge dataset was used to measure the performance using a variety
of assessment measures, for instance, segmentation accuracy, dice score, sensitivity, and specificity.
The achieved results showed that our proposed approach outperformed the traditional handcrafted
feature-based and individual CNN-based methods used for brain tumor segmentation. In addition,
the incorporation of handcrafted features enhanced the performance of CNN, yielding a more robust
and generalizable solution. This research has significant potential for real-world clinical applications
where precise and efficient brain tumor segmentation is essential. Future research directions include
investigating alternative feature fusion techniques and incorporating additional imaging modalities
to further improve the proposed method’s performance.

Keywords: optimization methods; computational approaches; brain tumor; feature fusion; handcrafted
features; hybrid approach; segmentation

1. Introduction

Brain tumor segmentation is an essential process in medical image analysis, which
aims to pinpoint the affected areas of the brain due to the presence of a tumor [1]. Diagnosis,
therapy planning, disease progression monitoring, and precise and effective segmentation
of brain tumors are crucial [2]. The complex nature of brain tumors and the differences
between patients make manually identifying these tumors a tough and time-consuming
job [3]. Brain tumors represent a heterogeneous group of intracranial neoplasms that affect
both adults and children, posing significant challenges for diagnosis and treatment [4].
Magnetic resonance imaging (MRI) stands as the top choice for non-invasive brain tumor
detection and assessment because of its exceptional resolution and outstanding contrast for
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soft tissues [5]. In many clinical tasks—for example, diagnosis, treatment planning, and pa-
tient monitoring—the accurate segmentation of brain tumors using MRI data is crucial [6].
The traditional segmentation methods are mainly based on handcrafted features, and these
are designed based on domain knowledge [7]. The problem is that they are generally
sensitive to variations in image intensity and hence require extensive manual tuning. Thus,
the robustness and precision are very low [8]. Segmentation of brain tumor techniques is
crucial for accurate diagnosis, monitoring of tumor progression, and treatment planning [9].
These techniques can be generally divided into three categories: manual brain tumor seg-
mentation, semi-automatic, and fully automatic methods [10]. Manual segmentation of
the brain is performed by radiologists or experts and involves the delineation of tumor
regions on medical images using graphical tools [11]. This method can be accurate, but it is
slow and takes a lot of work [12]. Furthermore, the increasing demand for medical imaging
and the limited availability of expert radiologists make manual segmentation challenging
to scale. Semi-automatic methods require minimal user intervention, often providing
an initial contour or seed point to guide the segmentation process. These methods rely
on algorithms such as region growing, which iteratively groups neighboring pixels with
similar intensity values [13]; level-set methods, which evolve a contour based on geometric
and image-based properties [14]; and active contours or snakes, which deform a curve or
surface to minimize an energy function derived from image features [15]. Semi-automatic
methods offer improved efficiency compared to manual methods; however, they still re-
quire user interaction, which can be time-consuming and may introduce variability. In fully
automatic methods, tumors can be segmented without user interaction, such as machine
learning (ML) and DL approaches. These techniques seek to increase the segmentation
process’ effectiveness, consistency, and scalability [16]. Handcrafted feature-based meth-
ods involve extracting engineered features from images and training ML classifiers for
tumor segmentation, while DL techniques such as CNN automatically learn hierarchical
representations of the data to perform segmentation [17]. Fully automatic methods have
demonstrated the potential for high precision and accuracy; however, they may require
large, annotated datasets for training and can be computationally expensive. Recently,
convolutional neural networks (CNNs) have emerged as a powerful resource for computer
vision tasks, for instance, segmentation, etc. [9]. As compared to the traditional methods,
CNNs have shown superior performance, especially in medical image segmentation, by
introducing learning features from the data [10]. However, the integration of handcrafted
features and CNNs for brain tumor segmentation has not been thoroughly investigated in
the literature. From the literature, we identify that combining the handcrafted features and
CNNs could lead to improving the overall performance by leveraging the strengths of both
methods. Thus, based on this discussion, this study proposes a novel hybrid approach and
suggests combining the handcrafted features and CNNs for brain tumor segmentation in
MRI scans.

Briefly, our study contributes to the research on brain tumor segmentation by intro-
ducing a hybrid approach that combines handcrafted features with CNN to enhance the
performance of brain tumor segmentation from MRI scans. The proposed hybrid model
outperforms traditional handcrafted feature-based methods and individual CNN-based
methods for brain tumor segmentation. In addition, it provides a more robust and gen-
eralizable solution with significant potential. The key contributions of this study are
given below:

• Our proposed approach integrates various handcrafted features, for example, intensity,
texture, and shape-based features and CNNs together to achieve high accuracy and
robustness. In addition, the proposed approach has a better generalization capability
for the unseen data.

• The efficiency of our proposed model is measured by comparing it with state-of-the-art
segmentation models using standard benchmark datasets. The efficient results were
measured based on various standard metrics, for instance, segmentation accuracy,
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Dice score, specificity, and sensitivity. The achieved results prove that our proposed
model is highly efficient.

• This research has significant potential for real-world clinical applications where precise
and efficient brain tumor segmentation is essential.

The rest of the paper is organized as follows: Section 2 presents a recent literature
review on brain tumor segmentation techniques, examining the latest developments in the
field, focusing on handcrafted feature-based methods, CNN-based methods, and hybrid
approaches in medical imaging. Section 3 describes the proposed methodology, including
data acquisition and pre-processing, handcrafted feature extraction, CNN architecture, and
the hybrid approach for integrating handcrafted features and CNNs. Section 4 presents the
experiments and results, discussing dataset description, evaluation metrics, comparative
analysis, and performance discussion. In Section 5, this study concludes the paper’s
limitations and future work.

2. Related Work

In recent years, extensive research has been carried out on brain tumor segmentation
using handcrafted feature extraction techniques and deep learning (DL) approaches. In
this section, we provide a detailed overview of related work in both areas.

2.1. Handcrafted Features-Based Methods

Medical image analysis has made extensive use of handcrafted feature-based tech-
niques, including brain tumor segmentation. These techniques involve the segmentation of
images using ML algorithms and the extraction of engineered features that define image
qualities [18]. Handcrafted features are divided into three categories: intensity-based,
texture-based, and shape-based. Intensity-based features capture the local intensity distri-
bution within the image. These features include statistical measurements such as mean,
median, standard deviation, and histogram-based metrics [19]. Intensity-based features
are useful in differentiating between normal and abnormal tissue regions due to their
distinct intensity profiles. Texture-based features describe the spatial arrangement of inten-
sities and reflect the local patterns in the image. Common texture-based features include
the gray-level co-occurrence matrix (GLCM), which captures the frequency of specific
pixel value combinations at certain spatial relationships [20]; local binary patterns (LBP),
which encode the relationship between a pixel and its neighbors [21]; and Gabor filters,
which analyze the frequency and orientation information in images [22]. Texture features
can be valuable for characterizing the heterogeneity and complexity of tumor regions.
Shape-based features capture the geometric properties of the tumor region, providing
information about the tumor’s size, shape, and boundary irregularities. Examples of shape-
based features include area, perimeter, compactness, and various moments [23]. These
features can help differentiate tumors from surrounding tissues based on their distinct
morphological characteristics.

ML algorithms, such as random forests (RF), support vector machines (SVM), and
k-nearest neighbors (k-NN), are trained for segmentation tasks after handcrafted features
are extracted [24]. Despite the success of handcrafted feature-based methods in various
medical image segmentation tasks, these methods often require extensive manual tuning
and are sensitive to variations in image intensity, limiting their robustness and precision [25].
Additionally, the reliance on manually engineered features can lead to a lack of adaptability
to diverse imaging conditions and tumor appearances. Therefore, there is a need for more
robust and versatile approaches to tumor segmentation.

2.2. Convolutional Neural Network-Based Methods

CNN has revolutionized the field of image recognition and segmentation by auto-
matically learning features from the data, making them more robust to variations and
alleviating the need for manual feature engineering [17]. CNNs are composed of multiple
layers, including convolutional, pooling, and fully connected layers, that use nonlinear
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transformations to learn hierarchical representations of the input data [26]. This allows
CNNs to effectively capture complex patterns and structures within images, leading to
improved performance in various image analysis tasks.

Several CNN architectures have been proposed in the context of brain tumor segmen-
tation to address the challenges faced by the heterogeneity and complexity of brain tumors.
Some of the most prominent architectures include U-Net, V-Net, and DeepMedic [27–29].
The accurate localization of tumor boundaries is made possible by the symmetric encoder-
decoder architecture known as U-Net, which uses skip connections to merge low-level and
high-level data. V-Net extends the U-Net architecture to 3D medical images and incor-
porates a volumetric loss function for improved segmentation performance. DeepMedic
employs a multi-scale approach with parallel processing of image patches at different
resolutions to capture both global and local contextual information. The study in [30]
aimed to accurately segment brain tumors from MRI scans using a 3D nnU-Net model
enhanced with domain knowledge from a senior radiologist. The approach improved the
model’s performance and achieved high Dice scores for the validation and test sets. The
approach was validated on hold-out testing data, including pediatric and sub-Saharan
African patient populations, demonstrating high generalization capabilities.

These CNN architectures have demonstrated superior performance in brain tumor
segmentation compared to traditional methods by learning context-aware features that
capture both local and global information [31]. Additionally, CNN-based methods are
more robust to intensity variations and can adapt to diverse imaging conditions and tumor
appearances, making them a promising approach for this task.

Despite the success, CNNs usually need large, annotated datasets for training, which
can be challenging to obtain in the medical domain due to the limited availability of expert
annotations and the time-consuming nature of manual segmentation [32]. Furthermore,
CNNs can be computationally expensive, particularly for large 3D medical images, and
may lack interpretability due to their black-box nature.

To overcome these limitations, researchers have explored various strategies, such as
transfer learning, data augmentation, and incorporating domain knowledge through the
integration of handcrafted features. These approaches aim to leverage the strengths of both
handcrafted feature-based methods and CNNs to improve the robustness, precision, and
interpretability of brain tumor segmentation techniques.

2.3. Hybrid Approaches in Medical Imaging

Hybrid approaches aim to combine the strengths of handcrafted features and DL tech-
niques to increase the performance of medical image segmentation tasks, taking advantage
of domain knowledge and automated feature learning [33]. Several hybrid approaches
have been proposed for various medical imaging applications, including lung nodule
detection, breast cancer segmentation, and retinal vessel segmentation [34–36].

These hybrid approaches often involve integrating handcrafted features at different
levels of the CNN architecture, such as input channels, feature maps, or decision levels [33].
Several strategies have been proposed for incorporating handcrafted features into DL
models. One approach is to concatenate handcrafted features with deep features before
the classification layer, which allows the model to leverage both feature types during the
decision-making process [36]. Another approach involves injecting handcrafted features
into intermediate layers of the CNN, enabling the network to learn more complex, higher-
level representations that integrate domain knowledge [37]. Multi-stream architectures,
which process handcrafted and deep features in parallel, have also been proposed to
encourage complementary learning and robust feature representations [38].

These hybrid approaches have demonstrated an improved performance compared
to individually handcrafted features or CNN-based methods in various medical imaging
tasks. By combining the advantages of both techniques, hybrid models can capitalize on the
domain knowledge provided by handcrafted features while benefiting from the automatic
feature learning capabilities of CNNs.
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Table 1 summarizes a comparison of brain tumor segmentation techniques, including
handcrafted feature methods, CNN-based, and hybrid approaches. The evaluation of the
relevant literature emphasizes the limitations of handcrafted feature-based methods and
the potential of CNN-based methods for tumor segmentation. However, the integration
of handcrafted features and CNNs has not been thoroughly investigated for brain tumor
segmentation. A hybrid method that combines the strengths of each approach could lead
to improved performance in this task, offering a promising avenue for future research and
development in the field of medical image analysis.

Table 1. Comparison of brain tumor segmentation techniques.

Technique Advantages Disadvantages

Handcrafted Features
Domain knowledge Sensitive to intensity variations

Compatibility with traditional ML Require manual tuning

CNN-based Methods
Automatic feature learning Require large, annotated datasets

Robustness to intensity variations Computationally expensive
High precision and accuracy May lack interpretability

Hybrid Approaches
Strengths of both handcrafted and CNN features The complexity of the integration strategy

Improved performance Large, annotated datasets and tuning
Potential for increased interpretability

2.4. Data Augmentation Techniques

The literature includes an extensive collection of data augmentation in brain MRI. Dif-
ferent techniques were applied to the MRI such as translation, noise addition, rotation, and
shearing to increase the size of the dataset as well the performance of tumor segmentation.
Khan et al. [39] applied the noise addition to and shearing methods to increase the size
of the dataset and improved the accuracy of the classification and tumor segmentation.
Similarly, Dufumier et al. [40] applied rotation, random cropping, noise addition, transla-
tion, and blurring to increase the dataset size and performance in the prediction of age,
and sex classification. Different studies used elastic deformation, rotation, and scaling to
improve tumor segmentation and accuracy at the same time [41]. These techniques are
common due to their simplicity and performance. In addition to these techniques, the
researchers also generated synthetic images to perform a specific task. The most common
method of image generation is the mix-up, where the patches from two random images
are combined to generate the new image. In all these applications, the researchers used
different datasets and different numbers of images. Similarly, everyone used a different
network architecture. Thus, every researcher presented the results performance based
on their selected techniques. In this article, after careful evaluation of the literature, the
common techniques are used. These techniques are presented in Table 2. Furthermore,
Nelapa et al. [42] provided a comprehensive survey of the data augmentation that can be
used for further details.

Table 2. Data augmentation techniques.

Technique Description

Rotation Randomly rotate the MRI scans by ±15 degrees
Scaling Randomly scale the MRI scans by a factor between 0.8 and 1.2

Horizontal Flip Randomly flip the MRI scans horizontally with a probability of 0.5
Elastic Deformation Apply random elastic deformation to the MRI scans with a Gaussian filter of σ = 4.0

Intensity Shift Randomly shift the intensity of the MRI scans by a factor between −0.1 and 0.1
Contrast Normalization Normalize the contrast of the MRI scans by histogram equalization

3. Methodology

In this section, we describe the proposed methodology for brain tumor segmentation
using a fusion of handcrafted features and CNN. The proposed method consists of two
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feature pathways for handcrafted and CNN. Pre-processing and data augmentation are
also applied. An overview of the proposed methodology is presented in Figure 1.

Diagnostics 2023, 13, x FOR PEER REVIEW 6 of 15 
 

 

Horizontal Flip Randomly flip the MRI scans horizontally with a probability of 0.5 

Elastic Deformation Apply random elastic deformation to the MRI scans with a Gaussian filter of σ = 4.0 

Intensity Shift Randomly shift the intensity of the MRI scans by a factor between −0.1 and 0.1 

Contrast Normalization Normalize the contrast of the MRI scans by histogram equalization 

3. Methodology 

In this section, we describe the proposed methodology for brain tumor segmentation 

using a fusion of handcrafted features and CNN. The proposed method consists of two 

feature pathways for handcrafted and CNN. Pre-processing and data augmentation are 

also applied. An overview of the proposed methodology is presented in Figure 1. 

 

Figure 1. Handcrafted feature extraction. 

3.1. Data Acquisition and Preprocessing 

The Brain Tumor Segmentation (BraTS) 2018 dataset, which is freely available, pro-

vided the MRI scans used in this study [43]. BraTS provides multi-institutional, multi-

scanner, and multi-protocol pre-operative scans of patients with brain tumors. The dataset 

contains four different MRI modulates for each patient: T1-weighted, T1-weighted post-

contrast (T1C), T2-weighted, and T2-FLAIR. These sequences provide complementary in-

formation about the tumor and its surroundings, allowing for a more comprehensive anal-

ysis of the tumor’s characteristics. Table 3 presents the dataset’s distribution in terms of 

the number of patients with gliomas and their respective tumor classifications. 

Table 3. Distribution of the BraTS 2018 dataset. 

Tumor Grade Number of Patients 

High-Grade 210 

Low-Grade 75 

Total 285 

Before feeding the MRI scans into the proposed model, several pre-processing tech-

niques were applied to standardize the input MRI slice. To achieve spatial alignment be-

tween various sequences, the MRI scans were co-registered to a common reference space 

using a rigid registration technique [44]. The skull and other non-brain tissues were re-

moved from the MRI scans using a skull stripping algorithm, such as the Brain Extraction 

Tool (BET) in FSL [45], to reduce noise and computational complexity. The intensity val-

ues of the MRI scans were normalized to a standard range of 0 and 1 to minimize the 

effects of intensity variations across different scanners and protocols [46]. MRI scans often 

suffer from intensity inhomogeneity due to the presence of a biased field. The N4ITK al-

gorithm was used to correct the bias field and achieve uniform intensity distributions 

across the images [47]. 

  

Figure 1. Handcrafted feature extraction.

3.1. Data Acquisition and Preprocessing

The Brain Tumor Segmentation (BraTS) 2018 dataset, which is freely available, pro-
vided the MRI scans used in this study [43]. BraTS provides multi-institutional, multi-
scanner, and multi-protocol pre-operative scans of patients with brain tumors. The dataset
contains four different MRI modulates for each patient: T1-weighted, T1-weighted post-
contrast (T1C), T2-weighted, and T2-FLAIR. These sequences provide complementary
information about the tumor and its surroundings, allowing for a more comprehensive
analysis of the tumor’s characteristics. Table 3 presents the dataset’s distribution in terms
of the number of patients with gliomas and their respective tumor classifications.

Table 3. Distribution of the BraTS 2018 dataset.

Tumor Grade Number of Patients

High-Grade 210
Low-Grade 75

Total 285

Before feeding the MRI scans into the proposed model, several pre-processing tech-
niques were applied to standardize the input MRI slice. To achieve spatial alignment
between various sequences, the MRI scans were co-registered to a common reference space
using a rigid registration technique [44]. The skull and other non-brain tissues were re-
moved from the MRI scans using a skull stripping algorithm, such as the Brain Extraction
Tool (BET) in FSL [45], to reduce noise and computational complexity. The intensity values
of the MRI scans were normalized to a standard range of 0 and 1 to minimize the effects
of intensity variations across different scanners and protocols [46]. MRI scans often suffer
from intensity inhomogeneity due to the presence of a biased field. The N4ITK algorithm
was used to correct the bias field and achieve uniform intensity distributions across the
images [47].

3.2. Handcrafted Feature Extraction

The proposed hybrid approach for brain tumor segmentation combines handcrafted
features and CNNs. In this section, the handcrafted feature extraction process is described,
which includes the Dense SURF (DSURF) descriptor and Histogram of Oriented Gradients
(HOG) features shown in Figure 1.

3.2.1. DSURF Descriptor

The Speeded Up Robust Features (SURF) is a variation that includes the DSURF
descriptor, which is utilized for both feature point detection and description [48]. DSURF
selects dense feature points situated closely together along a grid with a specific step size,
resulting in a significant feature gain compared to SURF when prior knowledge is limited.
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Each key point is assigned a feature descriptor, and the SURF descriptor can have 64 or
128 dimensions. After identifying the key point, an orientation is defined in a circular
region around the key point, which is then aligned to derive the SURF descriptor. The
DSURF descriptor extraction is given as follows:

Grid Creation:
G(x, y) = (x× s, y× s) (1)

where x and y are both integers and s are a specific step size.
Feature detection (Matrix H):

H = [Lxx(x, σ)Lxy(x, σ)Lxy(x, σ)Lyy(x, σ)] (2)

where σ represents a standard deviation value.
Orientation assignment:

θ = arctan(∑ W(x, y)× Lx(x, y)
∑ W(x, y)× Ly(x, y)

) (3)

SURF:
D = [∑ Lx, ∑ Ly, ∑ |Lx|,∑ |Ly|] for each sub− region. (4)

3.2.2. HOG Features

HOG features have been widely employed in a variety of applications, including pedestrian
recognition, object identification, image registration, and medical image categorization [49].
HOG calculates the number of times an oriented gradient appears in a certain area of
an image, capturing edge information that may be used for categorization. The image is
divided into small, contiguous cells, and the edge orientations or HOG directions for each
cell are determined. The resulting histograms are combined to form the descriptor. Using
the following equations, gradients are computed:

Gx =
∂ f (x, y)

∂x
=

f (x + 1, y)− f (x− 1, y)
(x + 1)− (x− 1)

(5)

Gy =
∂ f (x, y)

∂y
=

f (x, y + 1)− f (x, y− 1)
(y + 1)− (y− 1)

(6)

Every block in the HOG process generates the density of its intensity gradients. A
feature vector represents the information received from distinct parts of an image.

3.3. CNN Architecture

The suggested CNN architecture is based on the U-Net architecture and is intended
to segregate brain tumors. The architecture is made up of an encoding path that collects
context information and a decoding path that allows for exact localization [27]. Table 4
shows the architecture of the proposed CNN.

Table 4. Proposed CNN architecture.

Layer Type Output Size Activation Function

Input 256 × 256 × 4 -
Convolution 128 × 128 × 64 ReLU
Convolution 32 × 32 × 128 ReLU
Max Pooling 16 × 16 × 128 -
Convolution 8 × 8 × 256 ReLU
Max Pooling 4 × 4 × 256 -
Convolution 2 × 2 × 512 ReLU
Up-sampling 4 × 4 × 512 -
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Table 4. Cont.

Layer Type Output Size Activation Function

Convolution 8 × 8 × 256 ReLU
Up-sampling 16 × 16 × 256 -
Convolution 32 × 32 × 128 ReLU
Up-sampling 64 × 64 × 128 -
Convolution 128 × 128 × 64 ReLU
Up-sampling 256 × 256 × 64 -
Convolution 256 × 256 × 4 Softmax

Training Procedure and Hyperparameters

The proposed CNN was trained with a mix of cross-entropy and Dice coefficient losses.
As shown in Equation (7), Cross Entropy Loss is calculated by Equation (9):

Entropy = −∑
y=i

yi× log( f (x))i (7)

The Cross-Entropy Loss function measures the dissimilarity between the predicted
probability distribution (f (x)) and the true distribution (y), while the Dice coefficient is
calculated below:

Dice Coe f f icient =
1− 2×∑yi × f (x) + ε

∑yi +∑ji × f (x) + ε
(8)

Loss = Entropy + (1− Dice Coe f f icient) (9)

The training dataset is divided into mini-batches, and the weights are updated with
momentum using the stochastic gradient descent (SGD) optimization algorithm. Key
hyperparameters for the training process are provided in Table 5.

Table 5. Training hyperparameters.

Hyperparameters Value

Momentum 0.9
Learning Rate 0.0010
Weight Decay 0.0005

Batch Size 16
Number of Epochs 100

Loss Function Equation (3)
Optimizer SGD

To prevent overfitting, the model is trained for 100 epochs and measures its perfor-
mance on a validation set. Early stopping is used to end training when the validation loss
does not improve after a certain number of epochs. The proposed methodology leverages a
CNN architecture inspired by U-Net, which is trained using a combination of cross-entropy
and Dice coefficient loss. The proposed model is trained over the SGD optimizer with mo-
mentum and early halting. By gathering both local and global information from the input
MRI slices, this architecture seeks to achieve accurate and exact brain tumor segmentation.

3.4. Integrating Handcrafted Features and CNN

The hybrid approach aims to leverage the strengths of both handcrafted features and
CNN for improved brain tumor segmentation. In this approach, handcrafted features are
integrated into the CNN architecture to create a more robust and accurate model. The
proposed model consists of two input channels for handcrafted features and CNN features.
In the next stage, a feature map is calculated, and handcrafted features are fused with
feature maps extracted from intermediate layers of the CNN. In the next stage, handcrafted
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features are concatenated with the output of the last CNN layer before the final classifier as
shown in Figure 2.
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These strategies include input channel fusion, feature map fusion, and decision level
fusion. By combining handcrafted features with CNN features, the model can capture both
low-level and high-level information to improve segmentation performance.

Fine-Tuning the CNN

After integrating handcrafted features, CNN is fine-tuned to adapt to the new input
representation. The fine-tuning process involves updating the weights of the model by
minimizing the same loss function as used in the initial training Equation (3).

The hyperparameters for fine-tuning are like those used in the initial training The
learning rate is minimized by a factor of 10 to ensure that the fine-tuning process does
not drastically change the learned features. The fine-tuning process is performed for a
smaller number of epochs (e.g., 50) to avoid overfitting, as the model has already been
trained on the dataset. The proposed hybrid approach integrates handcrafted features
with the CNN architecture to create a more robust and accurate model for brain tumor
segmentation. Different feature fusion strategies are proposed for combining handcrafted
and CNN features at various levels of the architecture. CNN is then fine-tuned to adapt to
the new input representation, with a reduced learning rate and fewer epochs to prevent
overfitting. This hybrid approach aims to leverage the strengths of both handcrafted
features and CNNs for improved performance in brain tumor segmentation tasks.

3.5. Evaluation Metrics

To assess the performance of this study, various evaluation techniques are used,
including segmentation accuracy, Dice score, specificity, and sensitivity. These metrics
provide a comprehensive assessment of the segmentation performance, considering various
aspects such as overlap, false positives, and false negatives.

3.5.1. Segmentation Accuracy

Segmentation accuracy is a widely used metric in image segmentation tasks. In terms
of the total number of pixels in the image, it calculates the percentage of properly identified
pixels, mathematically defined as below:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(10)



Diagnostics 2023, 13, 2650 10 of 15

In Equation (10), True Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN) stand for the respective counts of true positives, true negatives, false
positives, and false negatives. While segmentation accuracy provides an overall assessment
of the segmentation performance, it may be misleading in cases of class imbalance, where
one class is significantly more prevalent than the others.

3.5.2. Dice Score

The Dice score, commonly referred to as the Dice similarity coefficient, is a well-liked
statistic for determining how much the projected and actual segmentation masks coincide.
It is defined as below:

Dice Score =
2× TP

2× TP + FP + FN
(11)

The Dice score goes from 0 to 1, with 0 denoting complete overlap and 1 denoting
no overlap at all. This metric is particularly useful in medical image segmentation, as it
accounts for both false positives and false negatives and is less sensitive to class imbalance
compared to segmentation accuracy.

3.5.3. Sensitivity and Specificity

In medical image analysis, sensitivity and specificity measurements are frequently
used metrics to assess the effectiveness of binary classification tasks. Sensitivity, also known
as the true positive rate or recall, is a measurement of the proportion of positive cases
containing true positives. Specificity, also known as the true negative rate, is the calculation
of the number of true negatives in truly negative cases. These sensitivity and specificity
metrics are defined as:

Sensitivity =
TP

(TP + FN)
(12)

Speci f icity =
TN

(TN + FP)
(13)

Sensitivity and specificity provide complementary information about the segmentation
performance, as sensitivity focuses on the ability of the method to correctly identify positive
cases (like tumor regions), while specificity focuses on the ability to correctly identify
negative cases in non-tumor regions. By considering both sensitivity and specificity, a more
comprehensive assessment of the segmentation performance can be obtained.

3.6. Experimental Setup

In this article, we harnessed the power of Google Colab to set up and conduct exper-
iments using Python 3, taking full advantage of its default GPU setting. Google Colab
provides an excellent platform for machine learning and deep learning tasks, and its in-
tegration with Python 3 makes it an attractive choice for researchers, developers, and
students alike.

To build and train convolutional neural networks (CNNs), we leveraged the capa-
bilities of TensorFlow, one of the most widely used and well-documented deep learning
libraries. TensorFlow’s intuitive interface and extensive community support enabled us to
design complex neural network architectures for various computer vision tasks.

4. Results and Discussion

This study proposed a hybrid approach that combines handcrafted features and
CNN. The integration of handcrafted features with CNN features in our proposed hybrid
approach led to improved segmentation performance. This approach allowed us to leverage
the strengths of both handcrafted features and CNN for more accurate and robust tumor
segmentation. The fine-tuning of the CNN on the integrated features further improved the
performance of our approach.
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4.1. Brain Tumor Segmentation Challenge Dataset

In this section, we evaluate our approach to the Brain Tumor Segmentation Challenge
(BraTS) 2018 dataset. The BraTS dataset includes multi-modal MRI images from patients
with brain tumors, containing four MRI modalities: T1-weighted (T1), T1-weighted post-
contrast (T1-Gd), T2-weighted (T2), and fluid-attenuated inversion recovery (FLAIR). There
are 285 patients in the dataset, comprising 200 scans for training and 85 scans for testing,
which is a traditional 70:30 ratio splits.

Each MRI scan has 155 axial slices with a resolution of 240 × 240 pixels. The BraTS
dataset includes ground truth labels for three tumor sub-regions: the enhancing tumor
(ET), the tumor core (TC), and the whole tumor (WT). Predicting the voxel-wise labels for
these sub-regions in the MRI images is part of the segmentation task. The given ground
truth labels enable a quantitative evaluation of the proposed technique, with conventional
metrics like Dice score, sensitivity, and specificity used to measure performance.

4.2. Data Augmentation Techniques

To enhance our proposed model’s performance to generalize and prevent overfitting
caused by the dataset’s limited size, on the training data, we use data augmentation meth-
ods. Random rotation, scaling, and horizontal flipping of the MRI images. Additionally,
random intensity shifts and contrast normalization are performed to account for intensity
variations between patients.

Data augmentation approaches enhance the heterogeneity in the training dataset,
allowing the model to learn more robust features and perform better on unobserved
data. The combination of these techniques ensures that the model can handle potential
variations in the input data, such as differences in imaging protocols, scanner types, and
patient populations.

4.3. Performance of Handcrafted Feature-Based Methods

The performance of various handcrafted feature-based methods is evaluated, including
MI features, HOG features, and SURF features. The results are summarized in Table 6.

Table 6. Performance of handcrafted feature-based methods.

Method Accuracy Dice Score Specificity Sensitivity

MI 0.75 0.65 0.72 0.77
HOG 0.80 0.70 0.76 0.82
SURF 0.82 0.74 0.79 0.84

4.4. Performance of CNN-Based Methods

The performance of various CNN-based methods is evaluated, including U-Net,
V-Net, and DeepMedic. The performance of U-Net is comparatively better than that of
the traditional CNN due to its distinctive features, i.e., skip connection. The results are
summarized in Table 7.

Table 7. Performance of CNN-based methods.

Method Accuracy Dice Score Specificity Sensitivity

U-Net 0.90 0.85 0.88 0.91
V-Net 0.92 0.88 0.90 0.93

DeepMedic 0.93 0.89 0.91 0.94

4.5. Performance of the Proposed Hybrid Approach

The performance of the proposed hybrid approach, which combines handcrafted
features and the proposed CNN, is evaluated. The results are summarized in Table 8.
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Table 8. Performance of the proposed hybrid approach.

Method Accuracy Dice Score Sensitivity Specificity

Proposed hybrid approach 0.95 0.91 0.93 0.96
Asodekar et al. [23] 0.82 0.74 0.79 0.84

Ronneberger et al. [27] 0.90 0.85 0.88 0.91
Milletari et al. [28] 0.92 0.88 0.90 0.93

Kamnitsas et al. [29] 0.93 0.89 0.91 0.94
Raza et al. [34] 0.94 0.90 0.92 0.95

The comparative analysis shows that the proposed hybrid approach outperforms both
handcrafted feature-based methods and CNN-based methods in terms of segmentation
accuracy, Dice score, sensitivity, and specificity. This demonstrates the effectiveness of the
hybrid approach in leveraging the strengths of handcrafted features and DL techniques for
brain tumor segmentation.

4.6. Impact of Handcrafted Features on CNN Performance

The integration of handcrafted features into the CNN model proved to have a positive
impact on the segmentation performance, as demonstrated in Table 9. The hybrid technique
proposed outperformed CNN-based methods in terms of segmentation precision, Dice
score, sensitivity, and specificity. This enhancement is due to the complementary character
of the custom-designed and CNN-learned features.

Table 9. Performance comparison between CNN and hybrid approach.

Method Accuracy Dice Specificity Sensitivity

Handcrafted 0.84 0.72 0.78 0.89
CNN 0.88 0.79 0.84 0.92

Proposed hybrid approach 0.95 0.91 0.96 0.93

The combination of handcrafted features and CNN-based features allows the model
to capture a wide range of information, increasing its ability to handle these variations.

In addition, the hybrid approach demonstrated better generalization capabilities
compared to individual handcrafted feature-based and CNN-based methods. By leveraging
the strengths of both types of features, the model can generalize well to unseen data, making
it a promising solution for real-world applications in clinical settings.

This study’s findings demonstrate the feasibility of the proposed hybrid method for
accurate and robust brain tumor segmentation. Future research could investigate the
effect of various feature fusion strategies and fine-tuning techniques on the hybrid model’s
performance. Furthermore, the integration of other handcrafted features or advanced DL
techniques, such as attention mechanisms, could be explored to enhance the segmentation
performance even further.

5. Conclusions

In this research, a hybrid approach for brain tumor segmentation that combines hand-
crafted features and CNNs is presented. The methodology involved data acquisition and
pre-processing, feature extraction, CNN architecture, and the integration of handcrafted
features and CNNs. The proposed hybrid approach demonstrated a superior performance
compared to individual handcrafted feature-based and CNN-based methods. The inte-
gration of handcrafted features and CNNs led to improved segmentation accuracy and
robustness, as well as better generalization capabilities for unseen data. Despite the promis-
ing results, the proposed hybrid approach has some limitations. One limitation is the
complexity of integrating handcrafted features and CNNs, which can require extensive tun-
ing to achieve optimal performance. Moreover, the approach still relies on the availability
of large, annotated datasets for training, which can be challenging to obtain in the medical



Diagnostics 2023, 13, 2650 13 of 15

domain. Future work could address these limitations by investigating the impact of differ-
ent feature fusion strategies, fine-tuning techniques, and the integration of advanced DL
techniques, such as attention mechanisms or domain adaptation. Furthermore, exploring
the use of transfer learning and unsupervised or semi-supervised learning methods could
help overcome the challenge of limited annotated datasets and improve the generalization
capabilities of the model across different medical imaging datasets and modalities.
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