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Abstract: Diabetic retinopathy (DR) is an eye disease associated with diabetes that can lead to
blindness. Early diagnosis is critical to ensure that patients with diabetes are not affected by blindness.
Deep learning plays an important role in diagnosing diabetes, reducing the human effort to diagnose
and classify diabetic and non-diabetic patients. The main objective of this study was to provide an
improved convolution neural network (CNN) model for automatic DR diagnosis from fundus images.
The pooling function increases the receptive field of convolution kernels over layers. It reduces
computational complexity and memory requirements because it reduces the resolution of feature
maps while preserving the essential characteristics required for subsequent layer processing. In this
study, an improved pooling function combined with an activation function in the ResNet-50 model
was applied to the retina images in autonomous lesion detection with reduced loss and processing
time. The improved ResNet-50 model was trained and tested over the two datasets (i.e., APTOS and
Kaggle). The proposed model achieved an accuracy of 98.32% for APTOS and 98.71% for Kaggle
datasets. It is proven that the proposed model has produced greater accuracy when compared to
their state-of-the-art work in diagnosing DR with retinal fundus images.

Keywords: CNN; diabetic retinopathy; fundus image; pooling function

1. Introduction

Glucose in the body is converted into energy, which helps with everyday tasks. Dia-
betes is caused by obesity, poor nutrition, and limited physical activity. However, elevated
blood glucose can build up in the blood vessels of several human organs, including the
eye. People who have had diabetes for over a decade have the chance of getting diabetic
retinopathy (DR) [1]. Globally, the population suffering from diabetes is expected to reach
552 million by 2030 [2]. Preventing visual loss is possible with early detection and sufficient
treatment [3]. DR consists of five classes—no DR, mild, moderate, severe, and proliferative.

DR can affect blood vessels, in severe cases damaging, enlarging, or blocking them,
or causing leaks; the abnormal growth of blood vessels can cause total blindness. Micro-
aneurysms, haemorrhages, and exudates are the major signs of retinal DR. The level of the
disease can be identified based on the shape, size, and overall appearance of the lesions.
The main benefits of DR screening are its high effectiveness, low cost and minimal reliance
on clinicians (i.e., ophthalmologists). The global eye screening tool for DR is the fundus
photograph [4]. To prevent diabetes-related blindness, automated screening allows for
clinically convenient and cost-effective detection [5].

From the field of computer science, deep learning can be a practical approach to
automatic DR detection [6]. A deep learning system automatically identifies the DR with
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an accuracy that is equal to or better than that of ophthalmologists. The core deep learning
model for medical image diagnosis prediction, and classification is the convolution neural
network (CNN). However, there is the possibility to improve the performance of the model
by tuning the hyperparameters in these deep learning-based models.

CNN models AlexNet and VGGNet-16 have been implemented for this purpose
and the results suggest that VGG-19 performs best; however, the DR stages have not been
explicitly ranked [7]. A hybrid technique incorporating image processing and deep learning
was proposed for the detection and classification of DR in the publicly available dataset
MESSIDOR, and Histogram Equalization (HE) and Contrast Limited Adaptive Histogram
Equalization (CLAHE) were implemented to improve the contrast of the image [8]. Other
CNN models, like Inception V3, Dense 121, Xception, Dense 169, and ResNet 50, have been
explored for the enhanced classification of different DR phases [9].

In another study, the authors proposed a framework with a new loss function by
implementing mid-level representations to improve DR detection performance [10]. An-
other report proved that VGGNet produced higher accuracy compared with other CNN
models such as AlexNet, GoogleNet, and ResNet for DR classification [11]. A CNN model
implementation with data augmentation for DR image classification was presented in [12].

Other frameworks for the early diagnosis and classification of DR were presented
for Grampian [13], MESSIDOR [14], and EYEPACS datasets [15]. In [16], the authors men-
tioned that 90% of accuracy was achieved in diagnosing microaneurysms and extracting
and classifying the candidate lesions. All of these existing studies have implemented
built-in hyperparameters. However, model performance can be improved by adjusting
hyperparameters within deep learning models. To counter the self-strengthening trend
and ensure that as many candidate component models as possible have been properly
trained, we have added balance loss to our model. The proposed approach could extract
key features from the fundus images that can help make an accurate DR diagnosis.

2. Materials and Methods

The objective of the current study was to accurately categorize DR fundus images into
different severities. We discussed an automated system for assessing the seriousness of
diabetic retinopathy. The classification accuracy for diabetic retinopathy was improved
in the current research using a modified CNN architecture. Figure 1 illustrates the pro-
posed framework.

2.1. Dataset Collection

We collected the dataset from two publicly available fundus image datasets, i.e., AP-
TOS [17] and Kaggle [18]. Table 1 tabulates the count for five categories in APTOS and
Kaggle datasets. Figure 2 shows the sample fundus images from the two datasets. The
first-row fundus images are from APTOS and the second-row fundus images are from the
Kaggle dataset.

Table 1. Dataset distribution.

Dataset NODR Mild DR Moderate DR Severe DR PDR Count

APTOS 1805 370 999 193 295 3662
Kaggle 25,810 2443 5292 873 708 35,126

We employed data augmentation to increase the number of images throughout the
training sample. Once provided with more DR to learn from, DL approaches generally
improve their performance. Overfitting is avoided and the imbalance in the dataset is
corrected by the application of data augmentation. Horizontal shift augmentation was one
of the transformations considered for this study; it involves horizontally shifting an image’s
pixels while maintaining the original image’s perspective. The dimension of this transition
is specified by a number ranging from 0 to 1 and the viewing angle of the original image is
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preserved. The image can also be rotated with an additional type of transformation by a
random amount between 0 and 180 degrees. By employing data augmentation methods,
we were able to fix the problem of varying sample sizes and convoluted categorizations.
After augmentation, the APTOS dataset classes were evenly distributed for the training
set—1805 for NODR, 1850 for Mid, 1988 for Moderate, 1737 for Severe, and 1770 for PDR.
After augmentation, the Kaggle dataset classes were evenly distributed for the training
set—25,810 for NODR, 24,430 for Mid, 26,460 for Moderate, 25,317 for Severe, and 25,488 for
PDR. Figure 3 shows some of the augmentation operations followed in this study. Table 2
tabulates the statistics of the data augmentation operations and the final augmented fundus
images of each dataset.
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Figure 3. Augmentation (a) Original image, (b) rotation, (c) horizontal flip, (d) brightness, (e) contrast.

Table 2. Dataset augmentation operations.

Class
APTOS Kaggle

Original Operations Augmented Original Operations Augmented

NoDR 1805 0 1805 25,810 0 25,810

MildDR 370 5 1850 2443 10 24,430

Moderate DR 999 2 1998 5292 5 26,460

Severe DR 193 9 1737 873 29 25,317

PDR 295 6 1770 708 36 25,488

Total 3662 9160 35,126 127,505

2.2. Pre-Processing

In this study, we implemented the enhanced artificial bee colony (ABC) algorithm to
improve the lesions’ visual contents. Consider ξ(i, j)εD with dimensions PXQ, where the
values of P, Q are taken as 512 for every image in the database D.

The mathematical representation of the transformation function,

Ξf =
1∫ 1

0 x(c−1)(1− x)d−1dx
X
∫ v

0
x(c−1)(1− x)d−1dx, (1)

where x is an integration variable and c and d are adjustable parameters of a given function
where the maximum value of c is compared with d.

We evaluated the fitness function to adjust the values of c and d and also to measure
the complete lesion image.

F(ξH (i, j))= log( log
(
∑ j=1(Ψ)

))
MΨE(ξH)Y(ξH), (2)

where ∑ j=1(Ψ) represents the total edge intensities of an image evaluated through a canny
edge detector. Y(ξH) represents the contrast of the image ξH(i, j), MΨ represents the
total edge pixels of the processed image, and E(ξH) represents the image entropy ξH(i, j),
represented as:

E(ξH) = ∑m
j=0 qilog2(qi), (3)

where qi represents the ith pixel intensity probability; the max value is 255.
The contrast of the image is represented as:

Y(ξH) = ∑mI
j=0 Y(ξH)(Ii), (4)

where Ii represents the image blocks and mI represents the mth image block.
The contrasted local band of each block is represented as:

ξHy(Ii) = ∑ (p,q)εIY(ξH) (p, q)
= ∑ (p,q)∈I

ξH(p,q)⊗φb
ξH(p,q)⊗φc

,
(5)
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where p, q represents the pixels of the rows and columns of each block, φb represents the
bandpass filter, and φc represents the low pass filter.

2.3. Enhanced ResNet-50

The proposed model consists of convolution blocks and includes the improved pooling
function, a drop-out layer, dense layers, and a SoftMax classification layer; Figure 4 presents
the improved ResNet-50 model.
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Convolution Layer: The convolutional block is the fundamental building component,
and each convolution block contains a convolution 2D, an improved activation function,
and improved pooling with the average value. The vanishing gradient issue is solved using
the improved activation function, simplifying the process so the network can understand
and carry out its tasks promptly.

Kernel: The model’s initial layer is the convolution layer. This layer initiates the
process by applying the filters, also known as the kernel. The kernel size depends on two
values—the width and height of the filter. In this study, we set the size of the filter as 3.
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This filter enables and identifies the features that help understand low-level visual aspects
like edges and curves.

Flattened layer: The flattened layer is located among the convolution and the dense
layers. Tensor datatypes are used as inputs for the convolution layers, whereas dense
layers demand a one-dimensional layout. The flattened layer was applied to translate the
two-dimensional image representation into a one-dimensional input.

Dropout Layer: A dropout value of 0.2 was used in this study, which helps to avoid
overfitting. This layer’s function was to turn various components on and off to reduce
the model’s complexity and training time. The model thus acquires all the features that
are required.

Dense Layer: A single matrix is accepted as input by the dense layer, which produces
output based on the characteristics of the matrix. The identification and class labelling of
fundus images occurs in these layers. The model’s output is produced by a dense layer
with five neurons and an improved activation function, and it assigns the image to one
of five categories of diabetes: NoDR, Mild, Moderate, Severe, or Proliferative. After a
few layers, the proposed activation is applied; this probability-based activation function
measures the number of neurons by the entire number of classes.

Pooling function: The pooling function in the CNN is primarily used to downsam-
ple the feature maps and learn deeper image features that are resilient to subtle local
alterations. The features from each spatial region are aggregated in this process. Pool-
ing not only expands the receptive field of convolutional kernels across layers but also
reduces memory needs and computational complexity by lowering the resolution of the
feature maps while keeping critical features required for processing by the following layers.
Pooling can be used in medical image analysis to manage variations in lesion sizes and
positions [19,20]. Fundus images frequently have many lesions or parts, which causes their
distributions of convolutional activations to be exceedingly complex since unimodal distri-
butions cannot adequately capture statistics of convolutional activations, which limits the
CNN performance.

We first pass Y throughout a group of prediction layers with parameters θp, i.e.,
c
(
θp; Y

)
. The weights are outputted throughout by using a fully connected layer with

additional noise.
The improved pooling function is presented as:

Fk
(
c
(
θp; Y

))
= Th

k C
(
θp; Y

)
+
√

δ.log
(
1 + exp

(
Tm

k C
(
θp; Y

)))
, (6)

where Th
k and Tm

k are the fully connected layers, the kth parameter and additional noise, δ
is the random variable, C

(
θp; Y

)
are the learned weights, and the weight function can be

represented as:

wk(Y) =

√
exp
(
TOP−Q

(
Fk
(
c
(
θp; Y

))))
∑m

k=1 exp
(
TOP−Q

(
Fk
(
c
(
θp; Y

)))) , (7)

where TOP-Q are the Q largest weights.
To make learned weights sparse, we maintained the TOP-Q weights and set the

remaining ones as negative infinity and we used the improved activation function to
normalize all the weights.

We added extra loss using the learned weights:

Ls = 3

√√√√√β

 S
(

∑N
s=1 wk(Ys)

)
M
(

∑N
s=1 wk(Ys)

)
, (8)

where Ys is the mini-batch training sample, S and M are the standard deviation and the
mean, and β is the parameter.
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The improved activation function, which was recommended as a replacement for the
activation function ReLU, is represented as:

f(x) =


x/2; i f − 2 ≤ x < 2
−1; i f x < −2

1; i f x > 2
. (9)

2.4. Classification

We applied the improved SVM in this study to improve classification accuracy. Initially,
the SVM calculates the score for all the extracted features by using linear mapping on feature
vectors and uses this to evaluate the loss. The improved SVM uses the linear mapping on
extracted features to calculate the feature score for the parts of the region of interest used to
differentiate the lesion types, which helps in the evaluation of loss function, which helps to
obtain the classification results. Algorithm 1 for the improved SVM is presented below.

Algorithm 1 Improved SVM

• Initialize the values in the training set.
• Repeat for j = 1 to M.

Calculate the loss using the enhanced optimization for all values of j.
Compare the extracted regions in the liver images.
end

• Repeat for every score vector j − 1 to M.
Compute the SVM
argmax((w × p j) + b)
end

• Compute for all weights and finally evaluate the output.

3. Results

All experiments were implemented on Keras. The data split was performed based on
an 80:20 ratio, where 80% of the data were used for training and 20% for testing. We imple-
mented the proposed pooling function and activation function in the base models VGG-16,
DenseNet, ResNet-50, Xception, and AlexNet for the fundus images. Table 3 tabulates the
splitting of training and testing sets of fundus images for two augmented datasets.

Table 3. Augmented dataset image distribution.

Class
APTOS Kaggle

Training Testing Training Testing

NoDR 1444 361 20,648 5162

MildDR 1480 370 19,544 4886

Moderate DR 1598 400 21,166 5292

Severe DR 1390 347 20,254 5063

PDR 1416 354 20,390 5098

Total 7328 1832 102,004 25,501

3.1. Image Enhancement Evaluation

Image enhancement is a vital concept that changes the intensities of the original image
to improve the image’s perceptual quality. Figure 5 shows the contrast enhancement
results for the APTOS dataset fundus image. Figure 5 compares the proposed model
with some other existing enhancement models. Contrast-limited adaptive histogram
equalization (CLAHE) models show insufficient image enhancement. The histogram
modification framework (HMF) model enhances the image well; however, the hazy look is
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not adequately removed. The heuristic adaptive histogram equalization (HAHE) model
produces an enhanced image with unwanted artefacts visible in the fundus image. The
artificial bee colony algorithm (ABC) yields better results than the other existing models;
still, it has some viewable artifacts in the fundus image. The proposed model generates an
outstanding result compared to all other existing models and successfully improves every
minor detail present in the fundus image.
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Evaluation and assessment are important for analysing the proposed model perfor-
mance quantitatively. The proposed image enhancement model is accessed with perfor-
mance measures such as entropy, peak signal-to-noise ratio (PSNR), the structural similarity
index measure (SSIM), gradient magnitude similarity deviation (GMSD), and the patch-
based contrast quality index (PCQI) [21–23].

Entropy defines the amount of information contained in the processed image.

Entropy = ∑255
y=0 P(n)log2(P(n)); (10)

where P(n) represents the probability of the nth level of the image.
PSNR computes the amount of noise content in the processed image.

PSNR = 20log10
2

1
AB , ∑A−1

x=0 ∑B−1
y=0 |I0(x, y)− Ii(x− y)|2

, (11)

where A, B denotes the image size.

SSIM =

(
2µIi

µIo + A1
)(

2σIi σIo + A2
)

(µ 2
Ii
+ µ2

Io
+ A1

)(
σ2

Ii
+ σ2

Io
+ A2

) , (12)

where µIi , µIo
represents the input and the output intensity values, σIi , σIo represent the

input and the output standard deviation values, and A1, A2 represent the constant to limit
the instability problem.

Table 4 tabulates the average scores for the augmented APTOS dataset. The perfor-
mance of the proposed model was demonstrated by comparing six state-of-the-art existing
models such as Clahe [24], exposure-based sub-image histogram equalization (ESIHE) [25],
HAHE [26], BIMEF [27], HMF [28], and ABC. From Table 4, it is clear that the proposed
model achieves a higher SSIM value, and its similarity level is up to the mark when com-
pared with the original fundus image. The proposed enhanced model attains a lesser
GMSD value for the images and holds more excellent visual quality compared to the other
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methods. The proposed model gains a higher PSNR value and the noise suppression
level is very good compared with that of the other models. The proposed model holds a
higher entropy value to the original image and the amount of information preserved is high
compared with the state-of-the-art models. The proposed model obtains a more significant
PCQI value compared with the other models, and generates a good quality image with
minimum structural distortions. The proposed enhanced model offers less running time
when compared to the state-of-the-art contrast enhancement models. The running time
of the CLAHE and ESIHE models is approximately equal to that of the proposed model.
But these models suffer from noise and distortion. From Table 4, we can recognise that
the proposed enhanced model is superior in enriching content, maintaining similarity, and
suppressing the noise and distortion. The proposed enhanced image enhancement model
generated a crisp and clear output.

Table 4. Average scores for the augmented APTOS dataset.

Model PSNR GMSD Entropy SSIM PCQI Processing Time (s)

Clahe [24] 30.83 0.163 7.263 0.634 1.139 0.155

ESIHE [25] 31.93 0.074 7.316 0.635 1.282 0.153

HAHE [26] 32.82 0.125 7.226 0.693 1.001 0.373

BIMEF [27] 31.68 0.199 7.269 0.736 1.007 0.364

HMF [28] 32.63 0.085 7.283 0.636 1.103 0.218

ABC 34.83 0.048 7.834 0.877 1.378 0.173

Proposed 35.56 0.037 7.935 0.983 1.484 0.151

3.2. Segmentation Comparison

The proposed model obtains more accurate and robust segmentation results. From
Figure 6 it can be noticed that the proposed model obtains more accurate results.
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Table 5 tabulates the performance of the proposed enhanced ResNet-50 compared to
the state-of-the-art models. The proposed system performed very accurately compared
with the other lesion segmentation methods in the state-of-the-art models. It saves the
obtained accuracy of abnormal fundus images. It achieves accurate, detailed segmentation
results with small lesions, so it is the perfect choice for automatic computer-aided diagnosis
(CAD) systems that depend on lesion segmentation results as it exceeds the estimations of
the alternative models in terms of overall accuracy.

Table 5. Comparison of segmentation results for the APTOS dataset with the state-of-the-art models.

Model Pool + Act Accuracy Precision Recall

DenseNet [29] Max + Relu 0.9484 0.8364 0.9584
Inception [12] Max + Relu 0.9847 0.8578 0.9848
VGG-19 [30] Max + Relu 0.9795 0.8479 0.9483
AlexNet [31] Max + Relu 0.9858 0.9378 0.9847

ResNet-50 Proposed 0.9986 1.0000 1.0000
AlexNet Proposed 0.9986 1.0000 0.9864

DenseNet Proposed 0.9959 1.0000 0.9916
Inception Proposed 0.9972 0.9864 0.9864
VGG-19 Proposed 0.9986 0.9866 1.0000

3.3. Evaluation of the APTOS Dataset

Figure 7 illustrates the confusion matrix for the APTOS dataset. We implemented five
baseline models—VGG-16, DenseNet, ResNet-50, Xception, and AlexNet—and compared
their performances on the APTOS dataset. From these five models, ResNet-50 showed the
highest performance.

According to the 5-class confusion matrix mentioned above, the performance of each
model was evaluated based on accuracy, recall, precision, and F1-score. Table 6 tabulates
the APTOS fundus classification test set results. The improved SVM model achieved
the highest accuracy of the remaining classification models. The results show that the
augmented APTOS fundus classification for the ResNet-50 model achieves the highest
accuracy for the improved SVM model.

Table 6. Performance metrics for APTOS augmented dataset.

CNN Model Classifier Accuracy Precision Recall F1-Score Class

DenseNet

0.99781659 0.99445983 0.99445983 0.99445983 Normal
0.99672489 0.98924731 0.99459459 0.99191375 Mild

ISVM 0.99617904 0.99002494 0.99250000 0.99126092 Moderate
0.99727074 0.99137931 0.99423631 0.99280576 Severe
0.99781659 1.0000000 0.98870056 0.99431818 PDR
0.99617904 0.98895028 0.99168975 0.99031812 Normal
0.99617904 0.98921833 0.99189189 0.99055331 Mild

SVM 0.99508734 0.98753117 0.99000000 0.98876404 Moderate
0.99617904 0.98850575 0.99135447 0.98992806 Severe
0.99563319 0.99428571 0.98305085 0.98863636 PDR
0.99563319 0.98891967 0.98891967 0.98891967 Normal
0.99290393 0.98113208 0.98378378 0.98245614 Mild

RF 0.99344978 0.98258706 0.98750000 0.98503741 Moderate
0.99508734 0.98563218 0.98847262 0.98705036 Severe
0.99344978 0.98857143 0.97740113 0.98295455 PDR
0.99454148 0.98347107 0.98891967 0.98618785 Normal
0.99072052 0.97319035 0.98108108 0.97711978 Mild

NB 0.99399563 0.98503741 0.98750000 0.98626717 Moderate
0.99290393 0.98265896 0.97982709 0.98124098 Severe
0.99290393 0.98853868 0.97457627 0.98150782 PDR
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Table 6. Cont.

CNN Model Classifier Accuracy Precision Recall F1-Score Class

ResNet-50

0.99781659 0.99173554 0.99722992 0.99447514 Normal
0.99836245 0.99460916 0.9972973 0.99595142 Mild

ISVM 0.99836245 0.99749373 0.9950000 0.99624531 Moderate
0.99945415 1.00000000 0.99711816 0.99855700 Severe
0.99945415 1.00000000 0.99717514 0.99858557 PDR
0.99727074 0.99171271 0.99445983 0.99308437 Normal
0.99727074 0.99191375 0.99459459 0.99325236 Mild

SVM 0.99563319 0.98756219 0.99250000 0.99002494 Moderate
0.99727074 0.99421965 0.99135447 0.99278499 Severe
0.99836245 1.00000000 0.99152542 0.99574468 PDR
0.99617904 0.98895028 0.99168975 0.99031812 Normal
0.99563319 0.98655914 0.99189189 0.98921833 Mild

RF 0.99563319 0.99000000 0.99000000 0.99000000 Moderate
0.99617904 0.99132948 0.98847262 0.98989899 Severe
0.99672489 0.99431818 0.98870056 0.99150142 PDR
0.99508734 0.98351648 0.99168975 0.98758621 Normal
0.99399563 0.98123324 0.98918919 0.98519515 Mild

NB 0.99508734 0.98997494 0.98750000 0.98873592 Moderate
0.99344978 0.98550725 0.97982709 0.98265896 Severe
0.99508734 0.99145299 0.98305085 0.98723404 PDR

AlexNet

0.99617904 0.98895028 0.99168975 0.99031812 Normal
0.99454148 0.98648649 0.98648649 0.98648649 Mild

ISVM 0.99235808 0.98250000 0.98250000 0.98250000 Moderate
0.99672489 0.99135447 0.99135447 0.99135447 Severe
0.99727074 0.99433428 0.99152542 0.99292786 PDR
0.99454148 0.98347107 0.98891967 0.98618785 Normal
0.99454148 0.98913043 0.98378378 0.98644986 Mild

SVM 0.99290393 0.98740554 0.98000000 0.98368883 Moderate
0.99454148 0.98280802 0.98847262 0.98563218 Severe
0.99508734 0.98591549 0.98870056 0.98730606 PDR
0.99344978 0.98071625 0.98614958 0.98342541 Normal
0.99126638 0.97580645 0.98108108 0.97843666 Mild

RF 0.99126638 0.98484848 0.97500000 0.97989950 Moderate
0.99235808 0.97982709 0.97982709 0.97982709 Severe
0.99454148 0.98587571 0.98587571 0.98587571 PDR
0.99290393 0.97802198 0.98614958 0.98206897 Normal
0.98962882 0.97050938 0.97837838 0.97442799 Mild

NB 0.99017467 0.98232323 0.97250000 0.97738693 Moderate
0.99235808 0.9826087 0.97694524 0.97976879 Severe
0.99235808 0.98022599 0.98022599 0.98022599 PDR

Inception

0.99399563 0.97814208 0.99168975 0.98486933 Normal
0.99126638 0.97326203 0.98378378 0.97849462 Mild

ISVM 0.99290393 0.99236641 0.97500000 0.98360656 Moderate
0.99399563 0.98275862 0.98559078 0.98417266 Severe
0.99508734 0.99145299 0.98305085 0.98723404 PDR
0.99344978 0.97808219 0.98891967 0.98347107 Normal
0.99181223 0.98102981 0.97837838 0.97970230 Mild

SVM 0.98962882 0.97984887 0.97250000 0.97616060 Moderate
0.99181223 0.97701149 0.97982709 0.97841727 Severe
0.99290393 0.98300283 0.98022599 0.98161245 PDR
0.99181223 0.97527473 0.98337950 0.97931034 Normal
0.98908297 0.97297297 0.97297297 0.97297297 Mild

RF 0.98744541 0.97243108 0.9700000 0.97121402 Moderate
0.99126638 0.97971014 0.9740634 0.97687861 Severe
0.99126638 0.97740113 0.97740113 0.97740113 PDR
0.99072052 0.96994536 0.98337950 0.97661623 Normal
0.98962882 0.97820163 0.97027027 0.97421981 Mild

NB 0.98635371 0.97229219 0.96500000 0.96863237 Moderate
0.98744541 0.96285714 0.97118156 0.96700143 Severe
0.99126638 0.98011364 0.97457627 0.97733711 PDR
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Table 6. Cont.

CNN Model Classifier Accuracy Precision Recall F1-Score Class

VGG-19

0.99290393 0.97540984 0.98891967 0.98211829 Normal
0.98908297 0.96791444 0.97837838 0.97311828 Mild

ISVM 0.99017467 0.98477157 0.97000000 0.97732997 Moderate
0.99454148 0.98840580 0.98270893 0.98554913 Severe
0.99290393 0.98300283 0.98022599 0.98161245 PDR
0.99181223 0.97267760 0.98614958 0.97936726 Normal
0.99072052 0.98092643 0.97297297 0.97693351 Mild

SVM 0.98744541 0.97721519 0.96500000 0.97106918 Moderate
0.99126638 0.97421203 0.97982709 0.97701149 Severe
0.98962882 0.97183099 0.97457627 0.97320169 PDR
0.99126638 0.97260274 0.98337950 0.97796143 Normal
0.98853712 0.97289973 0.97027027 0.97158322 Mild

RF 0.98689956 0.97474747 0.96500000 0.96984925 Moderate
0.98962882 0.97126437 0.97406340 0.97266187 Severe
0.98799127 0.96892655 0.96892655 0.96892655 PDR
0.98853712 0.96195652 0.98060942 0.97119342 Normal
0.98635371 0.96495957 0.96756757 0.96626181 Mild

NB 0.98580786 0.97222222 0.96250000 0.96733668 Moderate
0.98799127 0.96829971 0.96829971 0.96829971 Severe
0.98689956 0.97142857 0.96045198 0.96590909 PDRDiagnostics 2023, 13, 2606 11 of 22 
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3.4. Evaluation of the Kaggle Dataset

Figure 8 illustrates the confusion matrix for the Kaggle dataset. We implemented five
baseline models-VGG-16, DenseNet, ResNet-50, Xception, and AlexNet-and compared
their performances on the Kaggle dataset. From these five models, ResNet-50 showed the
highest performance. In 203 NODR fundus images, the proposed ISVM classifier accurately
classified 202 fundus images for the ResNet-50 model. In 54 Mild images, the ISVM classifier
accurately classified 54. Out of 69 moderate fundus images, ISVM accurately identified
68. Out of 15 images, ISVM accurately identified 14 for severe, and out of 7 images, ISVM
accurately identified 6 for PDR for the ResNet-152 model. For the ResNet-50 model, the
SVM classifier accurately identified 201 NODR images, 53 mild and 67 moderate, 14 severe,
and 5 for PDR. For the ResNet-152 model, the RF classifier accurately identified 201 NODR
images, 53 mild and 66 moderate, 13 severe, and 5 for PDR. For the ResNet-50 model, the
NB classifier accurately identified 201 NODR images, 52 mild and 65 for moderate, 12 for
severe, and 5 for PDR. Table 6 tabulated the Kaggle classification test set results.
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From Table 7, we can see that the improved SVM model achieved the highest accuracy
compared to the remaining classification models. The achieved results revealed that the
overall testing accuracy and the performance metrics for the improved ResNet-50 with the
improved SVM are the most appropriate for diabetic retinopathy detection, with a testing
accuracy of 99.9% for fundus images.

Table 7. Performance metrics for Kaggle augmented dataset.

CNN Model Classifier Accuracy Precision Recall F1-Score Class

DenseNet

0.99976472 0.99922541 0.99961255 0.99941894 Normal
0.99980393 0.99959058 0.99938600 0.99948828 Mild

ISVM 0.99968629 0.99905553 0.99943311 0.99924428 Moderate
0.99960786 0.99901244 0.99901244 0.99901244 Severe
0.99956864 0.99921492 0.99862691 0.99892083 PDR
0.99964707 0.99903157 0.99922511 0.99912833 Normal
0.99960786 0.99897667 0.99897667 0.99897667 Mild

SVM 0.99952943 0.99886621 0.99886621 0.99886621 Moderate
0.99956864 0.99881517 0.99901244 0.99891379 Severe
0.99952943 0.99901884 0.99862691 0.99882284 PDR
0.99956864 0.99903120 0.99883766 0.99893442 Normal
0.99949022 0.99836367 0.99897667 0.99867008 Mild

RF 0.99949022 0.99886600 0.99867725 0.99877161 Moderate
0.99941179 0.99881423 0.9982224 0.99851823 Severe
0.99929415 0.99803922 0.99843076 0.99823495 PDR
0.99929415 0.99806352 0.99845021 0.99825683 Normal
0.99913729 0.99774867 0.99774867 0.99774867 Mild

NB 0.99921572 0.99792218 0.99829932 0.99811071 Moderate
0.99921572 0.99802489 0.99802489 0.99802489 Severe
0.99913729 0.99823322 0.99744998 0.99784144 PDR

ResNet-50

0.99992157 0.99980628 0.99980628 0.99980628 Normal
0.99984314 0.99959067 0.99959067 0.99959067 Mild

ISVM 0.99992157 0.99981104 0.99981104 0.99981104 Moderate
0.99984314 0.99960498 0.99960498 0.99960498 Severe
0.99984314 0.99960769 0.99960769 0.99960769 PDR
0.99972550 0.99903195 0.99961255 0.99932217 Normal
0.99972550 0.99938588 0.99918133 0.99928359 Mild

SVM 0.99976472 0.99924443 0.99962207 0.99943321 Moderate
0.99972550 0.99940735 0.99920995 0.99930864 Severe
0.99972550 0.99960746 0.99901922 0.99931325 PDR
0.99960786 0.99864499 0.99941883 0.99903176 Normal
0.99956864 0.99877225 0.99897667 0.99887445 Mild

RF 0.99968629 0.99924414 0.99924414 0.99924414 Moderate
0.99964707 0.99920980 0.99901244 0.99911111 Severe
0.99960786 0.99941107 0.99862691 0.99901884 PDR
0.99952943 0.99864446 0.99903138 0.99883788 Normal
0.99925493 0.99775005 0.99836267 0.99805627 Mild

NB 0.99941179 0.99848857 0.99867725 0.99858290 Moderate
0.99945100 0.99881446 0.99841991 0.99861715 Severe
0.99937257 0.99882214 0.99803845 0.99843014 PDR

AlexNet

0.99988236 0.99980624 0.99961255 0.99970939 Normal
0.99984314 0.99979525 0.99938600 0.99959058 Mild

ISVM 0.99976472 0.99924443 0.99962207 0.99943321 Moderate
0.99980393 0.99960490 0.99940747 0.99950617 Severe
0.99968629 0.99901961 0.99941153 0.99921553 PDR
0.99949022 0.99845111 0.99903138 0.99874116 Normal
0.99952943 0.99877200 0.99877200 0.99877200 Mild

SVM 0.99933336 0.99829964 0.99848828 0.99839395 Moderate
0.99949022 0.99901186 0.99841991 0.99871580 Severe
0.99941179 0.99862664 0.99843076 0.99852869 PDR
0.99964707 0.99903157 0.99922511 0.99912833 Normal
0.99949022 0.99856763 0.99877200 0.99866980 Mild

RF 0.99952943 0.99867775 0.99905518 0.99886643 Moderate
0.99949022 0.99881470 0.99861742 0.99871605 Severe
0.99949022 0.99901865 0.99843076 0.99872461 PDR
0.99909807 0.99748306 0.99806277 0.99777283 Normal
0.99917650 0.99836099 0.99733934 0.99784990 Mild

NB 0.99905886 0.99754439 0.99792139 0.99773285 Moderate
0.99909807 0.99782695 0.99762986 0.99772840 Severe
0.99894122 0.99725436 0.99744998 0.99735216 PDR
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Table 7. Cont.

CNN Model Classifier Accuracy Precision Recall F1-Score Class

Inception

0.99980393 0.99961248 0.99941883 0.99951564 Normal
0.99972550 0.99938588 0.99918133 0.99928359 Mild

ISVM 0.99984314 0.99962207 0.99962207 0.99962207 Moderate
0.99960786 0.99861851 0.99940747 0.99901283 Severe
0.99976472 0.99960754 0.99921538 0.99941142 PDR
0.99941179 0.99825750 0.99883766 0.99854750 Normal
0.99937257 0.99795501 0.99877200 0.99836334 Mild

SVM 0.99937257 0.99867675 0.99829932 0.99848800 Moderate
0.99933336 0.99861660 0.99802489 0.99832066 Severe
0.99937257 0.99862637 0.99823460 0.99843045 PDR
0.99945100 0.99864394 0.99864394 0.99864394 Normal
0.99937257 0.99795501 0.99877200 0.99836334 Mild

RF 0.99925493 0.99848743 0.99792139 0.99820433 Moderate
0.99929415 0.99822240 0.9982224 0.99822240 Severe
0.99933336 0.99843045 0.9982346 0.99833252 PDR
0.99898043 0.99728892 0.99767532 0.99748208 Normal
0.99890200 0.99733825 0.99693000 0.99713408 Mild

NB 0.99890200 0.99716660 0.99754346 0.99735500 Moderate
0.99898043 0.99743235 0.99743235 0.99743235 Severe
0.99905886 0.99784144 0.99744998 0.99764567 PDR

VGG-19

0.99980393 0.99980616 0.99922511 0.99951555 Normal
0.99964707 0.99897688 0.99918133 0.99907910 Mild

ISVM 0.99984314 0.99981096 0.99943311 0.99962200 Moderate
0.99945100 0.99802722 0.99920995 0.99861824 Severe
0.99968629 0.99941130 0.99901922 0.99921522 PDR
0.99937257 0.99825716 0.99864394 0.99845051 Normal
0.99933336 0.99795459 0.99856734 0.99826087 Mild

SVM 0.99933336 0.99867650 0.99811036 0.99839335 Moderate
0.99921572 0.99822170 0.99782738 0.99802450 Severe
0.99921572 0.99803845 0.99803845 0.99803845 PDR
0.99925493 0.99787028 0.99845021 0.99816016 Normal
0.99929415 0.99795417 0.99836267 0.99815838 Mild

RF 0.99917650 0.99829836 0.99773243 0.99801531 Moderate
0.99909807 0.99782695 0.99762986 0.99772840 Severe
0.99925493 0.99823426 0.99803845 0.99813634 PDR
0.99890200 0.99709527 0.99748160 0.99728840 Normal
0.99878436 0.99692938 0.99672534 0.99682735 Mild

NB 0.99886279 0.99716607 0.99735450 0.99726027 Moderate
0.99886279 0.99703791 0.99723484 0.99713637 Severe
0.99909807 0.99803729 0.99744998 0.99774355 PDR

Figure 9 presents the evaluation of the performance metrics for the different models.
According to the achieved results, overall testing accuracy, and performance metrics, the
proposed model is appropriate for detecting and classifying DR with a testing accuracy of
98.32% on the APTOS dataset.

Table 8 tabulates the varying sizes of the training and testing sets and the correspond-
ing mean and standard deviation.

Table 8. Varying training and test size.

Dataset Training Testing Accuracy Mean Standard
Deviation

70 30 0.981225

APTOS 75 25 0.983202 0.982543 0.0011409

80 20 0.983202

70 30 0.971344

Kaggle 75 25 0.982213 0.980237 0.0080882

80 20 0.987154
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4. Discussion

This study aimed to identify and classify DR based on fundus images from two
different datasets. Initially, all the images in the dataset were of different sizes; the images
were resized to 225 × 225 using the RGB colour. The hyperparameters were tuned to
optimize the proposed model. Model training can be accelerated, and the possibility of
performance improved using the pooling function. There is no ideal batch size, and we
implemented the experiments with various batch sizes. If we find the suitable batch size in
addition to the suitable kernel and hidden layers, the model will yield a high performance.
Batch size 64 produces better results than batch sizes 16 or 32. The batch size was 64 for the
fundus images because this study’s dataset was large. From previous studies, we observed
that the batch sizes, in conjunction with a suitable kernel and hidden layer, will yield a high
performance. The parameters (i.e., a batch size of 64, epochs of 1000, and a learning rate of
0.001) were adjusted to achieve a high performance.

After extracting the features, the improved SVM classifies the lesions. In [15], the
authors implemented AdaBoost to extract the features and the Gaussian mixture model,
KNN, and SVM to classify the lesions and analyse the retina fundus images with different
illuminations and views. A new unsupervised approach based on PCA for detecting
microaneurysms was presented in [16]. The manual identification and differentiation of
diabetic retinopathy from fundus images is time-consuming. Table 9 presents the processing
time analysis of the existing techniques for the Kaggle and APTOS datasets to calculate the
computation overhead. The achieved results revealed that the overall processing time for
the improved SVM classifier is the most appropriate for diabetic retinopathy classification,
with a minimum of 14 ms for Kaggle and 15 ms for APTOS datasets.
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Table 9. DR classification comparison of the processing time for the proposed model with different
optimizations.

Classifier Kaggle (s) APTOS (s)

Logistic regression [32] 21 29
DT [33] 15 21

KNN [34] 23 30
NB [35] 20 25
RF [36] 20 23

SVM [37] 22 31
Improved SVM 14 15

A study based on feature extraction using the RF model produced 74% accuracy in DR
image classification [38]. Another two proposed hybrid models are based on combining
the Gaussian mixture model and SVM to diagnose microaneurysms [18] and using KNN
for the detection and classification of DR [39]. All the above-discussed studies used the
existing classifiers to classify the DR lesions.

Some studies implemented CNN models to perform the binary classification of DR
datasets [40,41]. Dropout regularization, augmentation, and pre-processing were per-
formed manually by using the image editing tools in [42]. A deep CNN was proposed
by [43] to classify normal and NPDR with two neural networks (i.e., the global and the
local) and model performance was evaluated by the kappa score. The main disadvantage
of this work is that it classifies only normal and NPPR, but it only works to detect the PDR.

To overcome those issues, the diagnostic results of the proposed model proved that
it can achieve a satisfactory diagnostic performance, which can significantly assist the
medical professional in the decision-making process in the early stages of detecting the
infection, and timely treatment can decrease risk. Automatic screening and differentiation
of diabetic retinopathy from fundus images will significantly reduce the effort of the
medical professional and accelerate the diagnosis process.

Five class classifications are realized in the model, providing feasibility for the diag-
nosis of DR and its severity levels. The proposed model for the feature extraction and
classification of DR performs better than the state-of-the-art models with high accuracy
and less complexity. We will further optimize the model to model the accuracy of DR
diagnosis and try to develop a more powerful DR detection model to assist doctors in
clinical examinations.

The limitation of this model is that it is trained with only fundus image-level supervi-
sion, making it very challenging to accurately locate some minute lesion regions. Next, we
need to specify the coarse location of the lesion along with the DR grading, which will help
from the perspective of clinical application.

5. Conclusions

High blood pressure leads to DR, which causes retinal damage. Retinal vascularization
is damaged by DR and can lead to blindness and potentially death. Fundoscopy exami-
nations, which are time-consuming and expensive, allow ophthalmologists to see retinal
vascular swelling. There is a need to automatically identify diabetic retinopathy by examin-
ing retinal fundus images. This study proposed an enhanced pooling function technique
to minimize the loss to detect retina lesions, and an improved SVM classifier to classify
the lesions using linear mapping. Five pre-trained deep learning models were recognized
during the selection of the implementation, namely VGG-16, DenseNet, ResNet-50, Incep-
tion, and AlexNet. The proposed pooling and activation function results outperformed
all the existing models. This study’s proposed model provided efficient accuracy results
compared to the existing models.
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