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Abstract: Differentiation of left atrial appendage thrombus (LAAT) and left atrial appendage (LAA)
circulatory stasis is difficult when based only on single-phase computed tomography angiography
(CTA) in routine clinical practice. Radiomics provides a promising tool for their identification. We
retrospectively enrolled 204 (training set: 144; test set: 60) atrial fibrillation patients before ablation,
including 102 LAAT and 102 circulatory stasis patients. Radiomics software was used to segment
whole LAA on single-phase CTA images and extract features. Models were built and compared via
a multivariable logistic regression algorithm and area under of the receiver operating characteristic
curves (AUCs), respectively. For the radiomics model, radiomics clinical model, radiomics radio-
logical model, and combined model, the AUCs were 0.82, 0.86, 0.90, 0.93 and 0.82, 0.82, 0.84, 0.85 in
the training set and the test set, respectively (p < 0.05). One clinical feature (rheumatic heart disease)
and four radiological features (transverse diameter of left atrium, volume of left atrium, location of
LAA, shape of LAA) were added to the combined model. The combined model exhibited excellent
differential diagnostic performances between LAAT and circulatory stasis without increasing extra
radiation exposure. The single-phase, CTA-based radiomics analysis shows potential as an effective
tool for accurately detecting LAAT in patients with atrial fibrillation before ablation.

Keywords: radiomics; atrial fibrillation; left atrial appendage; thrombus; filling defect

1. Introduction

Atrial fibrillation (AF), the most common tachyarrhythmia, has a lifetime risk of
approximately 25% at the age of 40 and its prevalence increases with advancing age [1,2].
It was reported in 2008 that patients with AF incurred incremental healthcare costs of USD
26 billion [3]. Moreover, AF is related to increased risks of cardiovascular diseases, ischemic
stroke, and all-cause mortality [4]. The most serious AF-related complication is ischemic
stroke, primarily resulting from embolism of left atrial appendage thrombus (LAAT) [5].
Left atrial appendage (LAA), with its long and curved blind-end structure, is usually in
a state of slow blood flow, circulatory stasis, and even thrombosis (further aggravation
of circulatory stasis can form a thrombus) due to a decrease in LAA contractility and
function when AF occurs [6]. LAA was reported as the source of an estimated 57% thrombi
in rheumatic AF and 91% thrombi in nonrheumatic AF, respectively [5]. Transcatheter
radiofrequency ablation is increasingly performed for AF patients who are drug-refractory
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or not eligible for medication. However, LAAT is an absolute contraindication [7]. Thus,
accurate detection of LAAT is important for treatment planning and risk stratification.

Transesophageal echocardiography is the gold standard for detecting LAAT; however,
as a semi-invasive technique requiring anesthesia, it is operator-dependent, uncomfortable,
and can cause fatal complications such as gastrointestinal laceration or perforation [8,9].
Before routine clinical AF ablation, electrocardiogram-gated pulmonary venography is
performed to assess the size of pulmonary vein ostium, the size of the left atrium, and the
LAAT. But this is based on single-phase computed tomography angiography (CTA) with
a reported poor positive predictive value [10]. This is because filling defects on single-phase
CTA makes it difficult to differentiate between LAAT and circulatory stasis. A delayed
scanning protocol is a reasonable alternative to transesophageal echocardiography, but
it results in additional radiation exposure [10]. Hur et al. [11] reported that dual-energy
computed tomography (CT) would be helpful for detecting LAAT, but the unavailability
in most hospitals hinders its wide application. Recently, radiomics with machine learning
algorithms has been used as a tool to convert invisible, qualitative, radiological image infor-
mation into mineable, high-dimensional, quantitative, mathematical data for analysis, in
the hope of improving diagnostic performance and conducting prognostic evaluation [12].
These quantitative data analyzed from biomedical images including intensity, shape, size
or volume, and texture features may reflect underlying pathophysiology information (the
basic concept of the radiomics process) different from conventional clinical and labora-
tory results [12]. As for radiomics based on cardiac CT images, it has been gradually
reported to be valuable in the identification of high-risk atherosclerotic lesions, assess-
ment of plaque microenvironments or vulnerability, detection of myocardial ischemia, and
differentiation of cardiac mass [13]. Several radiomics studies involving thrombi were
carried out to investigate abdominal aortic aneurysms’ growth status, predict aggressive
type 2 endoleaks after endovascular aneurysm repair, and identify cardioembolic stroke
before recanalization [14–16]. So, radiomics has shown great application prospects in many
fields and we have speculated that radiomics based on single-phase CTA could identify
this potential pathological change between LAAT and circulatory stasis. Previous studies
have confirmed that radiomics based on single-phase CTA could be used for detecting
LAAT from circulatory stasis [17,18]. But these studies are limited to a small sample size
and valvular heart disease. In this study, we aimed to evaluate the diagnostic efficacy of
radiomics based on single-phase CTA in the differentiation of LAAT from circulatory stasis
in AF patients.

2. Materials and Methods
2.1. Patients

The study was approved by the ethics committee of our institute. The informed
consent was waived due to the retrospective nature of this study. A total of 640 patients
with AF who were identified as having LAA filling defects via single-phase CTA in our
hospital from January 2010 to August 2021 were retrospectively included. The inclusion
criteria were as follows: (1) all subjects were hospitalized patients with AF before ablation
and underwent routine preoperative CTA examination; (2) adequate image quality for
analysis; (3) filling defect found on CTA images; (4) filling defect without calcification.
The exclusion criteria were as follows: (1) absence of corresponding reference standard
(transesophageal echocardiography results); (2) the interval time between CT and reference
standard was greater than 7 days; (3) indecisive transesophageal echocardiography results;
(4) incomplete clinical records. The patient recruitment workflow was shown in Figure 1.
The clinical parameters were retrieved from the electronic medical records. The flowchart
of this study was shown in Figure 2.
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Figure 2. Radiomics workflow. 3D-VOI, 3-dimensional volume of interest.

2.2. CT Image Acquisition and Analysis

The scanning range was from pulmonary trunk to the bottom of heart. All patients
were injected with a total of about 50 mL of non-ionic iodinated contrast medium (400 mg
I/mL) via the right median cubital vein at a flow rate of 5.0 mL/s via a power injector
followed by 30 mL saline injection at the same rate. Subsequent enhanced scan with
a retrospective electrocardiogram-gated acquisition was triggered by placing the region of
interest in the descending aorta at a threshold of 200 Hounsfield units. CT images were
reconstructed and stored in DICOM format. No β-blockers were used, and all patients
were in the supine position.
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The specific scanning parameters were shown in Table 1. Without knowing all patient
identifiers and clinical information, two chest radiologists (with 5 and 15 years of experience,
respectively) cooperated in collecting the radiological features. Any disagreement was
solved by the final consensus. The assessed radiological features were as follows: CT
attenuation value of filling defect, transverse diameter of LA (TD-LA), vertical diameter of
LA (VD-LA), anteroposterior diameter of LA (AD-LA), volume of left atrium, position of
LAA, and shape of LAA.

Table 1. Computed tomography scanning parameters.

Manufacturer SIEMENS (Munich, Germany), n = 120; GE, n = 71; UIH, n = 13

Image Extent (pixels) 512 × 512

Voxel Spacing (mm) Mean ± SD: 0.640 ± 0.125; Median (P25–P75): 0.625 (0.625–0.700)

Slice Thickness (mm) 0.5, n = 4; 0.6, n = 3; 0.625, n = 71; 0.75, n = 38; 1.0, n = 88

Reconstruction diameter (mm) Mean ± SD: 243.7 ± 48.9; Median (P25–P75): 231 (215–264)

Reconstruction Kernel STANDARD, n = 90; I26f, n = 64; B26f, n = 23; DETALL, n = 14; C_SOFT_AA, n = 13

Tube voltage (kV) 80, n = 18; 100, n = 124; 120, n = 62

Tube Current (mA) Mean ± SD: 887.8 ± 368.5; (P25–P75): 793 (582.5–1283)

Abbreviations: SD, standard deviation.

Using three-dimensional reconstruction technique, we measured the TD-LA on the
coronal plane, the VD-LA and AD-LA on the sagittal plane, while the LA volume was
calculated according to the formula [Volume = 4/3π (TD-LA/2) (VD-LA/2) (AD-LA/2)] [19].
This study divided the shapes of LAA into chicken wing and non-chicken-wing according
to previous literature [20]. The patient with ostium of LAA located between left superior
pulmonary vein and left inferior pulmonary vein was recorded. Round region of interest of
approximately 10 mm2 was drawn at the middle area of filling defect to calculate the CT
attenuation value.

2.3. Transesophageal Echocardiography

The LAA filling defect was identified as thrombus or stasis (spontaneous echo contrast)
via transesophageal echocardiography (iE33, Philips Healthcare, Best, The Netherlands).
The LAA was assessed for thrombus or spontaneous echo contrast at the mid-esophageal
level using 0-, 45-, 90-, and 135-degree views with Omni III 5 MHz probe. For a trans-
esophageal echocardiography finding, LAAT was defined as a solid, well-circumscribed
mass that was visible throughout the cardiac cycle, while spontaneous echo contrast was
defined as dynamic, precipitous, viscid echo-density without a discrete mass [21]. Within
the LAA, low-flow states were quantified via spectral Doppler. Each transesophageal
echocardiography procedure was performed by one board-certified expert cardiologist
with at least 5 years of experience, and the results were evaluated by two independent
investigators. Any disagreement between them was solved by the final consensus.

2.4. VOI Segmentation for Radiomics

For all the CTA images of the enrolled patients exported in DICOM format on the
PACS, a radiologist performed manual segmentation of the whole LAA, slice-by-slice, on
prototype software called “Radiomics” (Syngo. via Frontier, Vision 1.0.0, Siemens, Munich,
Germany) to obtain three-dimensional volume of interest, as shown in Figure 3 [22]. The
segmentation details were as follows: firstly, we located and marked the ostium of the
LAA on the oblique coronal plane after multiplanar reconstruction. (For more details
on evaluating the ostium, please refer to the article by Kasper et al. [23].) Subsequently,
returning to the standard cross-sectional view, we noted the existence of the marked
boundary between LAA and left atrium. Then, manual segmentation was performed along
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the clear margin of LAA, avoiding adjacent vessels and surrounding fat. Lastly, the top and
bottom layers of the LAA were excluded to avoid the interference of partial volume effect.
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2.5. Extraction and Selection of Radiomics Features

Our “Radiomics” prototype software (Syngo. via Frontier, Vision 1.0.0, Siemens, Ger-
many) is a commercialized imaging research workstation of Siemens company, which is
used to carry out generic radiomics research studies for clinicians. The software has both
segmentation and radiomics feature extraction functions. Its radiomic feature computa-
tion relies on the de facto standard library, PyRadiomics (prototype interfaces with the
PyRadiomics library in a similar manner to 3D Slicer’s Radiomics plugin) [22]. So, after seg-
mentation on “radiomics”, the radiomics features were automatically extracted by using the
PyRadiomics package (version 3.0, https://pyradiomics.readthedocs.io/en/latest accessed
on 15 June 2023) [24]. Information on the three-dimensional volumes of interest was resam-
pled to the equivalent points of voxel set in a normalized 1 × 1 × 1 mm3 template space to
create an isotropic dataset (reducing the impact of pixel size and thickness) that were repro-
ducible and comparable before feature calculations. Through “bin the feature,” “radiomics”
automatically transformed the grayscale of the image into discrete integer values, which
were recognizable by a computer. Then, “Radiomics” proceeded to the extraction process
where different filters and image transformation methods were employed in the resampled
volumes of interest. Except for shape features, which are intensity-independent and there-
fore unfiltered, first- and higher-order features were also calculated from the processed
images via the filters available on the software platform. These filters include wavelet of

https://pyradiomics.readthedocs.io/en/latest
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different decomposition levels (levels: LLL, LLH, LHL, LHH, HLL, HLH, HHH, HHL), log,
exponent, square, and square root functions. The radiomics features computation in our
study is based on the plug-in from Pyradiamics [22]. Finally, four categories of radiomics
features with 1226 were extracted from the original and post-processed three-dimensional
volumes of interest: (1) 17 shape-based features, (2) 18 first-order features, (3) 65 texture
features, (4) 1116 high-order and transformative features.

To ensure the reliability of radiomics features, the regions of interest were re-segmented
in 20 random instances (10 LAAT and 10 stasis) by another radiologist for inter-observer
reproducibility analysis. Only the radiomics features with intraclass correlation coefficient
greater than 0.75 were considered as having good reliability and selected for subsequent
analysis [25]. The least absolute shrinkage and selection operator method, with penalty
parameter tuning conducted with 5 repeats and 10-fold cross-validation, was used for
feature selection. The detailed feature selection method was as follows. We first randomly
allocated all enrolled patients to training set (n = 144) and test set (n = 60) at a ratio
of 7:3 with the stratified random sampling technique. Then, we proceeded to train the
model in the training set with 5 repeats and 10-fold cross-validation (50 resamples in total)
using the least absolute shrinkage and selection operator regression. With tuning penalty
parameter λ between 0.01–0.20, irrelevant variables were compressed, and those features
with nonzero coefficients would be selected. The optimal λ was identified when the model
achieved the highest average area under of the receiver operating characteristic curve on
50 resamples. We recorded this performance as optimal setting and derived the feature
importance ranking list. Finally, to construct simplified radiomics model, appropriate
number of features were selected based on the acceptable performance relative to the
optimal setting.

The statistically significant clinical and radiological features (corrected p < 0.05) with
our aim of study in univariate regression were entered into the multivariate regression
to construct the radiomics clinical model and radiomics radiological model, respectively.
Same step was taken to establish the combined model by integrating clinical, radiological,
and radiomics features. During the above modeling process, the features with insignificant
correlation in the multiple regression model were deleted to ease the redundancy of
the model.

2.6. Model Development and Evaluation

Based on the selected radiomics, clinical, and radiological features, 4 models were
constructed: (1) the radiomics model using only radiomics features, (2) the radiomics clini-
cal model using both radiomics and clinical features, (3) the radiomics radiological model
using both radiomics and radiological features, and (4) the combined model integrating the
radiomics, clinical and radiological features.

The performance of all four prediction models was compared via the area under of
the receiver operating characteristic curve (AUC). Differences in the AUC values between
different models were compared using DeLong’s test. A calibration curve plotted graph-
ically was used to evaluate the actual LAAT probability against the predicted of LAAT
probability. Decision curve analysis was a tool to assess the clinical utility by calculating
the net benefits at different threshold probabilities.

2.7. Statistical Analysis

R software (version 1.1.453), MedCalc® Statistical Software version 20 (MedCalc Soft-
ware Ltd., Ostend, Belgium; https://www.medcalc.org (accessed on 10 May 2021)) and
SPSS (version 26, SPSS Chicago, IL, USA) were used for performing all statistical descriptive
analyses, with a two-tailed p < 0.05 being considered statistically significant. Shapiro–Wilk
test, visual histogram, and Q-Q chart were used to check the normality of continuous
variables. Continuous variables were assessed by using independent sample t-test (for
those with normal distribution) and Mann–Whitney U test (for those with non-normal dis-
tribution), whereas categorical variables were calculated via the chi-square or Fisher exact

https://www.medcalc.org
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tests. Normally and non-normally distributed data were expressed as mean ± standard
deviation and median (P25–P75), respectively, whereas categorical variables were depicted
as frequencies. Odds ratios (OR) with 95% confidence intervals (CI) were output as results
of multiple regression analysis.

3. Results
3.1. Clinical and Radiological Features

In this study, 102 cases with LAAT (mean age: 63.50 ± 11.07 years, range: 33–89 years)
and 102 cases with LAA circulatory stasis (mean age: 68.70 ± 9.43 years, range: 40–89 years)
were retrospectively enrolled, and the 204 cases were randomly assigned to training set
(n = 144, 72 were LAAT) and test set (n = 60, 30 were LAAT). The mean time between stan-
dard references and CT scans was 1.72 ± 1.94 days (range: 0–7 days). Detailed comparisons
of clinical and radiological features were summarized in Tables 2 and 3. All parameters
between the training and test sets showed no significant intra-group difference (all p > 0.05).
The clinical characteristics between the LAAT group and stasis group were significantly
different except for age, prothrombin time, international normalized ratio, activated partial
thromboplastin time and thrombin time (all p > 0.05). In terms of radiological characteris-
tics, the LAAT group had lower CT attenuation value, increased TD-LA, increased VD-LA,
increased AD-LA, increased volume, more-chicken-wing-shaped LAAs, more LAAs located
between left superior pulmonary vein and left inferior pulmonary vein (all p < 0.05) than
the stasis group.

Table 2. Clinical characteristics in the training and test set.

Characteristics LAAT Group
(n = 102)

Stasis Group
(n = 102)

p
Value

Training Set
(n = 144)

Test Set
(n = 60)

p
Value

Age (years) 63.50 ± 11.07 68.74 ± 9.43 <0.001 66.17 ± 11.09 65.98 ± 9.36 0.907

Sex (male/female) 48/54 57/45 0.207 70/74 35/25 0.206

NYHA (≥3/<3) 37/65 10/92 <0.001 33/111 14/46 0.949

CRI (±) 10/92 1/101 0.005 9/135 2/58 0.514

RHD (±) 34/68 3/99 <0.001 26/118 11/49 0.963

SUC (umol/L) 400.07 ± 128.43 363.61 ± 83.83 0.017 381.57 ± 108.73 382.49 ± 112.96 0.957

SC (±) 14/88 5/97 0.048 14/130 4/56 0.483

Albumin (g/L) 41.14 ± 4.15 42.20 ± 2.92 0.037 41.68 ± 3.86 41.65 ± 3.01 0.961

PT (s)
13.15 13.00

0.332
13.05 12.80

0.304(11.80–18.03) (11.78–16.48) (11.80–18.08) (11.63–15.63)

INR
1.15 1.11

0.242
1.14 1.11

0.122(1.04–1.60) (1.03–1.42) (1.04–1.56) (1.01–1.41)

APTT (s)
30.00 30.95

0.307
30.50 30.35

0.627(26.88–35.20) (27.98–35.63) (27.23–35.60) (26.90–35.35)

TT (s)
19.05 19.40

0.057
19.45 19.10

0.529(18.28–20.20) (18.60–20.73) (18.43–20.60) (18.40–20.65)

Fibrinogen (g/L) 3.06 ± 0.78 2.82 ± 0.62 0.016 2.98 ± 0.74 2.84 ± 0.64 0.215

WBC (109/L) 6.70 ± 2.25 5.92 ± 1.59 0.005 6.17 ± 1.79 6.64 ± 2.37 0.120

RDWsd (fL) 48.04 ± 4.73 46.62 ± 4.39 0.028 47.45 ± 4.64 47.04 ± 4.55 0.561

RDWcd (%) 14.34 ± 2.13 13.84 ± 1.34 0.042 14.19 ± 1.96 13.85 ± 1.27 0.218

Abbreviations: NYHA, New York Heart Association functional class; CRI, chronic renal insufficiency; RHD,
rheumatic heart disease; SUC, serum uric acid; SC (±), increased/normal serum creatinine; PT, prothrombin
time; INR, international normalized ratio; APTT, activated partial thromboplastin time; TT, thrombin time; WBC,
white blood cell; RDWsd, standard deviation of red blood cell volume distribution width; RDWcd, coefficient of
variation of red blood cell volume distribution width.
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Table 3. Radiological characteristics in the training and test set.

Characteristics LAAT Group
(n = 102)

Stasis Group
(n = 102) p Value Training Set

(n = 144)
Test Set
(n = 60) p Value

CT value (Hu)
54.00 78.50

<0.001
65.50 65.00

0.653(41.75–86.25) (54.75–126.00) (42.50–116.00) (52.00–96.75)

TD-LA (cm) 8.61 ± 1.47 8.06 ± 0.93 0.002 8.38 ± 1.30 8.23 ± 1.14 0.461

VD-LA (cm) 7.74 ± 1.36 7.22 ± 0.89 0.002 7.46 ± 1.18 7.52 ± 1.17 0.749

AD-LA (cm) 5.32 ± 1.25 4.86 ± 0.78 0.002 5.11 ± 1.13 5.06 ± 0.91 0.770

Volume (cm3)
172.19 144.57

0.001
153.58 156.33

0.656(131.33–214.69) (120.27–181.35) (125.60–198.24) (120.74–185.88)

Position (±) 48/54 13/89 <0.001 41/103 20/40 0.490

Shape (±) 51/51 9/93 <0.001 39/105 21/39 0.258

Abbreviations: CT value indicates round region of interest of approximately 10 mm2 was drawn at the middle
area of filling defect to calculate the CT value; Hu, Hounsfield unit; TD-LA, transverse diameter of left atrium;
VD-LA, vertical diameter of left atrium; AD-LA, anteroposterior diameter of left atrium; Volume, volume of left
atrium was calculated according to the formula [Volume = 4/3π (TD-LA/2) (VD-LA/2) (AD-LA/2)]; Position (±),
ostium of LAA was located between left superior pulmonary vein and left inferior pulmonary vein/adjacent to
left superior pulmonary vein or left inferior pulmonary vein; and Shape (±), chicken-wing-shaped LAA/non
chicken-wing-shaped LAA.

Univariate regression analysis using a Bonferroni correction demonstrated that NYHA
(≥3/<3), rheumatoid heart disease (RHD) (±), CT value, TD-LA, VD-LA, AD-LA, volume,
location (±) and shape (±) were associated with an increased risk of LAAT (all corrected
p < 0.05). These features were then included in the stepwise multivariate analysis. At the
multivariable analysis, the presence of RHD, increased TD-LA, increased volume of left
atrium, LAA located between left superior pulmonary vein and left inferior pulmonary
vein, and chicken-wing-shaped LAAs were screened out to be significantly predictive for
the presence of LAAT [OR = 37.80, 0.36, 1.02, 7.90, and 11.80; p < 0.001, =0.024, =0.002,
<0.001, and <0.001]. More comprehensive information of the univariate and the multivariate
analysis was shown in Table 4.

Table 4. Univariable and multivariable logistic regression of LAAT.

Characteristics
Univariable Multivariable

OR 95%CI p Value Corrected-p OR 95%CI p Value

NYHA 4.26 1.83–10.90 0.001 0.019

CFI 8.87 1.57–167.00 0.042 0.798

RHD 37.80 7.60–686.00 <0.001 0.019 37.80 4.95–288.07 <0.001

BUC 1.00 1.00–1.01 0.033 0.627

SC 4.15 1.23–19.00 0.035 0.665

Albumin 0.90 0.82–0.99 0.030 0.570

PT 1.05 0.99–1.12 0.140 1

INR 1.79 0.92–3.75 0.100 1

APTT 1.01 0.97–1.06 0.600 1

TT 0.99 0.98–1.00 0.200 1

Fibrinogen 1.80 1.12–2.99 0.019 0.361

WBC 1.27 1.04–1.58 0.022 0.418
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Table 4. Cont.

Characteristics
Univariable Multivariable

OR 95%CI p Value Corrected-p OR 95%CI p Value

RDWsd 1.11 1.02–1.21 0.016 0.304

RDWcv 1.22 0.99–1.56 0.093 1

CT value 0.99 0.98–0.99 <0.001 0.009

TD-LA 1.57 1.17–2.20 0.005 0.045 0.36 0.15–0.87 0.024

VD-LA 1.74 1.22–2.59 0.004 0.036

AD-LA 2.47 1.56–4.16 <0.001 0.009

Volume 1.01 1.01–1.02 <0.001 0.009 1.02 1.01–1.04 0.002

Location 8.31 3.53–22.10 <0.001 0.009 7.90 2.64–23.65 <0.001

Shape 9.31 3.81–26.50 <0.001 0.009 11.80 4.01–34.72 <0.001

Abbreviations: See Tables 2 and 3. for abbreviations of characteristics. OR, odds ratio; CI, confidence interval;
Corrected-p, p value was corrected via Bonferroni correction.

3.2. Radiomics Analysis and Model Development

In this study, a total of 693 radiomics features with an inter-class correlation coefficient
> 0.75 were entered into least absolute shrinkage and selection operator regression. The
best tuned regularization parameter λ (λ = 0.01) we finally chose occurring when the model
achieved the highest average AUC, corresponded to an optimal subset of four features for
constructing the radiomics model. The specific features and their respective coefficients
were shown in Table 5. The radiomics–clinical model was constructed by integrating RHD
with radiomics features and radiomics–radiologic model was built by integrating TD-LA,
volume, location, shape with radiomics features, respectively. Finally, we developed the
combined model which was composed of three radiomics features (B, C, D, E), one clinical
feature (RHD), and four radiological features (TD-LA, volume, location, shape). During the
modeling process, to reduce feature redundancy in multivariate logistic regression model,
variable A was removed from radiomics features for establishing the radiomics–clinical
model, radiomics–radiologic model, and combined model, respectively.

Table 5. Optimal radiomics features and their respective coefficients.

Variables Radiomics Feature Name Coefficient

A wavelet.HHL_glszm_ZoneEntropy −0.2842
B wavelet.LLL_glcm_IMC1 1.3021
C wavelet.LLH_glszm_SmallAreaLowGrayLevelEmphasis −0.4753
D wavelet.LHL_firstorder_Median 0.5513
E logarithm_glcm_inverseVariance −1.1622

Abbreviations: glszm indicates gray-level size zone matrix; glcm, gray-level co-occurrence matrix; IMC1, informa-
tional measure of correlation 1.

Radiomics scores based on four models were calculated from linear combinations of
features weighted by their respective coefficients as follows: Rad-score based on radiomics
model = 0.3003 − (0.2842 × A) + (1.3021 × B) − (0.4753 × C) + (0.5513 × D) − (1.1622 × E);
Rad-clinic score based on radiomics–clinical model = −0.0389 + (1.1738 × B) − (0.2570 ×
C) + (0.6109 × D) − (1.0678 × E) + (3.2506 × RHD); Rad-radio score based on radiomics
–radiological model = 5.9174 + (1.0871 × B) − (0.4312 × C) + (0.8865 × D) − (0.7409 ×
E) + (0.0220 × Volume) + (2.1819 × Location) + (2.8035 × Shape) − (1.4159 × TD-LA);
Nomo-score based on combined model = 6.8991 + (1.1407 × B) − (0.4924 × C) + (1.0289 ×
D) − (0.8492 × E) + (0.0200 × Volume) + (2.3051 × Location) + (3.0992 × Shape) − (1.5481 ×
TD-LA) + (4.0192 × RHD).
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3.3. Model Comparison

The ROC results of four models in the training and test sets are shown in Table 6
and Figure 4. The Rad-score achieved a discriminatory capacity with an AUC of
0.82 (95%CI: 0.75–0.89) in the training set and good performance was confirmed in the test
set with an AUC of 0.82 (95%CI: 0.72–0.93). When adding RHD with radiomics features,
the Rad-clinic score showed slightly better results than the Rad-score in the training set,
which had an AUC of 0.86 (95%CI: 0.80–0.92) and was nearly equal in the test set, with
an AUC of 0.82 (95%CI: 0.71–0.93). Improved predictive capacity was achieved in the
Rad-radio score with an AUC of 0.90 (95%CI: 0.85–0.95) in training set and an AUC of
0.84 (95%CI: 0.75–0.94) in test set. Finally, of 4 models, the Nomo-score yielded the highest
performance with an AUC of 0.93 (95%CI: 0.89–0.97) and an AUC of 0.85 (95%CI: 0.76–0.95)
in the training and test sets, respectively. Delong test was performed on both training
and test sets, and the results showed that there were significant differences between the
Nomo-score and the Rad-score, the Nomo-score and the Rad-clinic score, the Rad-score
and the Rad-radio score, the Rad-clinic score and the Rad-radio score in distinguishing
LAAT from circulatory stasis in the training set (all p < 0.05). There were no significant
differences found in the comparison of other models on both training and test sets (all
p > 0.05) (Table 7).

The calibration curve of the nomogram (Figure 5A,B) illustrated good consistency
between the predicted and actual probabilities of distinguishing LAAT from circulatory
stasis. The decision curve is used to assess the clinical utility by calculating the net benefits
at different threshold probabilities. It showed that the net benefit of the Nomo-score is
better than the other cases when the threshold is not within the range of 78–91% in the
training set (Figure 5C). Figure 5D shows that if the threshold probability is less than 82%,
the Nomo-score and Rad-radio score demonstrated more benefits than “LAAT all”, “Stasis
all”, Rad-score, and the Rad-clinic score at almost all threshold probabilities in the test set.

Table 6. Performance of all four prediction models.

Group AUC
Sensitivity Specificity Accuracy Precision

(%) (%) (%) (%)

Rad-score

training set 0.82
70.8 80.6 75.7 78.5(95%CI: 0.75–0.89)

test set
0.82

76.7 63.3 70.0 67.6(95%CI: 0.72–0.93)

Rad-clinic score

training set 0.86
72.2 80.6 76.4 78.8(95%CI: 0.80–0.92)

test set
0.82

80.0 66.7 73.3 70.6(95%CI: 0.71–0.93)

Rad-radio score

training set 0.90
75.0 80.6 77.8 79.4(95%CI: 0.85–0.95)

test set
0.84

86.7 63.3 75.0 70.3(95%CI: 0.75–0.94)

Nomo-score

training set 0.93
76.4 87.5 81.9 85.9(95%CI: 0.89–0.97)

test set
0.85

90.0 66.7 78.3 73.0(95%CI: 0.76–0.95)

Abbreviations: Rad-score was calculated based on radiomics model; Rad-clinic score was calculated based
on radiomics-clinical model; Rad-radio score was calculated based on radiomics-radiological model; Nomo-
score was calculated based on combined model; AUC, area under the receiver operating characteristic curve;
CI, confidence interval.
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Table 7. The DeLong test results of the four models.

Group Model A Model B AUC of Model A AUC of Model B p-Value

training set Nomo-score Rad-score 0.93 0.82 0.002
Nomo-score Rad-clinic score 0.93 0.86 0.006
Nomo-score Rad-radio score 0.93 0.90 0.204

Rad-score Rad-clinic score 0.82 0.86 0.989
Rad-score Rad-radio score 0.82 0.90 0.006

Rad-clinic score Rad-radio score 0.86 0.90 0.049
test set Nomo-score Rad-score 0.85 0.82 0.147

Nomo-score Rad-clinic score 0.85 0.82 0.079
Nomo-score Rad-radio score 0.85 0.84 0.743

Rad-score Rad-clinic score 0.82 0.82 0.710
Rad-score Rad-radio score 0.82 0.84 0.183

Rad-clinic score Rad-radio score 0.82 0.84 0.179

Abbreviations: AUC, area under the receiver operating characteristic curve.
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Figure 5. The calibration curves (training set: A; test set: B) and decision curves (training set: C;
test set: D) of the combined nomogram. The calibration curves (A,B) depict the agreement of the
combined model between the predicted risk and actual probability. The 45◦ gray line represents the
ideal prediction, and the solid black line represents the actual probability of the model. The closer the
solid line is to the ideal line, the better the predictive performance of the nomogram is. The decision
curve (C,D) is used to assess the clinical utility by calculating the net benefits at different threshold
probabilities. The x axis corresponds to the threshold probability while the y axis corresponds to the
net benefit. The blue line, red line, green line, and yellow line represents net benefit of the Rad-score,
Rad-clinic score, Rad-radio score, and Nomo-score, respectively. The grey line is made with the
assumption that all patients are with LAAT. The black line is made with the assumption that no
patients are with LAAT. (C) shows that the net benefit of the Nomo-score is better than the other
cases when the threshold is not within the range of 78–91% in the training set. (D) Shows that if
the threshold probability is less than 82%, the Nomo-score and Rad-radio score demonstrated more
benefit than “LAAT all”, “Stasis all”, Rad-score, and the Rad-clinic score at almost all threshold
probabilities in the test set.

4. Discussion

LAA has become an attractive research hotspot as an important, treatable source of
cardiovascular embolic stroke [8]. A review demonstrated that single-phase CTA had
a promising negative predictive value of 99% for distinguishing LAAT from circulatory
stasis, whereas its mean positive predictive value was only 41% [10]. Emerging CT modal-
ities have been proposed to increase the diagnostic performance. Dual-phase CT using
a double-injection scan protocol is viewed as a reliable alternative to transesophageal
echocardiography, with its positive predictive value increased to 92%, while dual-enhanced
CT implementing a double-contrast agent scan protocol could achieve a positive predic-
tive value of 100% [10,26]. However, they can result in additional radiation exposure or
increased contrast agents, even contrast-induced nephropathy. Hur et al. [11] reported that
dual-energy CT based on rapidly switching tube voltage would be helpful for detecting
LAAT, but the unavailability in most hospitals hinders its wide application. Compared
with routine (supine position) CT, prone position CT is a promising tool for assessing in-
tracardiac thrombi, but early prone position CT is still a challenge in excluding all thrombi
from the filling defect [27]. For cardiac magnetic resonance (CMR), Kitkungvan et al. [28]
showed that the delayed enhancement with a long-inversion-time CMR, less subject to the
impact of artifact, had a superior accuracy (99.2%) to other CMR components. However, its
time-consuming and costly nature is its biggest drawback.

In addition to the above qualitative methods, there are some quantitative methods
such as calculating the LAA/ascending aorta (AA), the Hounsfield unit ratio, controlling
the delay time of delayed scanning, and assessing the enhancement pattern based on
dual-phase CT [17,29,30]. It is worth mentioning that, referring to the LAA/AA ratio,
Chun et al. [17] confirmed that single-phase, CTA-based radiomics was superior to the
early LAA/AA ratios and similar to the delayed LAA/AA ratios for identifying LAAT.
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Recently, previous studies based on single-phase CTA radiomics have shown potential
in distinguishing LAAT from circulatory stasis [17,18]. But these studies were limited to
a small sample size and valvular heart disease.

Our 204 enrolled patients included a larger sample size, with a 1:1 match (LAAT group:
circulatory stasis group = 102:102), than previous studies Chun et al. (25:70); Ebrahimian
et al. (44:33), reducing selection bias and ensuring that our results possessed sufficient rep-
resentativeness [17,18]. Previous studies have not incorporated inter-observer analysis, and
the reproducibility of features may be open to doubt, while our inter-class correlation coef-
ficient results show good reliability between radiologists [17,18]. In line with Ebrahimian
et al. [18], considering the difficulty of delineating the ill-defined filling defect, we took the
whole LAA as the volume of interest and achieved higher performance (AUC = 0.82) than
Chun et al. [17], who used the filling defect as the volume of interest (AUC = 0.78), slightly
inferior to Ebrahimian et al. [18] (AUC = 0.85). The higher performance than Chun et al. [17]
may be explained by our lager sample size and manual segmentation method being differ-
ent from their semi-automatic method. The slightly inferior performance to Ebrahimian
et al. [18] may be due to different scanners, population heterogeneity, and different refer-
ence standards. Additionally, late-phase CT rather than gold-standard transesophageal
echocardiography was used as the standard of reference in their study [18].

In our study, the first-order feature (Variable D), gray-level co-occurrence matrix
features (Variable B, E) and gray-level size zone matrix features (Variable A, C) provided
greater contributions to the radiomics model for distinguishing LAAT from circulatory
stasis. These features consider number, distance, angle, etc. (refer to https://pyradiomics.
readthedocs.io/en/latest/index.html accessed on 15 June 2023). Wavelet of different
decomposition levels and logarithm were filters that used to help emphasize different
aspect of the underlying image for radiomic analysis. Variable D means median gray level
intensity within the region of interest. Variable C measures the proportion in the image
of the joint distribution of smaller size zones with lower gray-level values. Variable A,
Variable B, and Variable E measure the uncertainty/randomness, and the complexity and
homogeneity of the texture (https://pyradiomics.readthedocs.io/en/latest/index.html
accessed on 15 June 2023). Higher values in Variables A and B, and lower value in Variable
E indicate more heterogeneneity in the texture patterns. In our study, higher variable A
and B values and lower E value were found in the LAAT group, which may explain the
potential pathological change that further aggravation of circulatory stasis forms thrombus.

Clinical and radiological information was easy to obtain, and the information we
collected was meaningful in detecting LAAT. Chun et al. [17] compared radiomics results
with the early and delayed LAA/AA ratio without building any combined models. Al-
though a combined model was constructed in the study of Ebrahimian et al. [18] with
an AUC = 0.92 basically identical to ours, it was only based on the integration of subjective
radiologist assessment with radiomics features and did not include more reliable objective
indicators than our study. With RHD (+), TD-LA, volume, shape (−), and location (+) being
added, the combined model showed excellent performance (AUC = 0.93) in distinguish-
ing LAAT from circulatory stasis, with robust results in the test set (AUC = 0.85). It was
reported that the global prevalence of AF in RHD patients was 32.8%, and that AF patients
with RHD have a 17-fold increased risk of stroke compared with an only 5-fold risk in AF
patients alone [31,32]. Chicken-wing-shaped LAA appears to be a protective factor against
LAAT, with the highest LAA ejection velocity compared to other morphologies [33]. The
increased left atrium volume added in our model revealed a higher risk of LAAT, consistent
with previous studies [34]. Fang et al. [35] reported that the lowest contractibility was
found when the ostia of a LAA located between the left superior pulmonary veins and the
left inferior pulmonary veins, rather than adjacent to the left superior pulmonary veins or
the left inferior pulmonary veins, indicating a higher risk of LAAT.

There were several limitations in our study. Firstly, all samples were retrospectively
collected from a single center and lacked external validation. A comprehensive and prospec-
tive multicenter survey is still needed. Secondly, we did not perform reference standards

https://pyradiomics.readthedocs.io/en/latest/index.html
https://pyradiomics.readthedocs.io/en/latest/index.html
https://pyradiomics.readthedocs.io/en/latest/index.html
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and corresponding CT scans on the same day, but the mean interval between them was
1.72 ± 1.94 days. Last but most important, the CT scanning parameters and reconstruction
protocol (i.e., slice thickness and the field of view and reconstruction kernels) can influence
the results of radiomics model features. In our study, image standardization was not per-
formed when scanning and reconstructing images. However, this is unavoidable in clinical
practice as different scanners are installed in an institution. This is the reason that, before
feature calculation, we used different image pre-processing methods on the segmented
volume, to emphasize the edges, smooth (overview emphasis), or sharpen (detail emphasis)
the image with different degrees. Although standardizing scanning protocols is difficult
to achieve, our combined model based on single-phase CTA exhibited an excellent perfor-
mance for differentiating LAAT from circulatory stasis, which could help to provide more
accurate diagnostic information to clinicians and avoid unnecessary radiation exposure
and use of contrast agents.

5. Conclusions

The combined model exhibits excellent differential diagnostic performances between
LAAT and LAA circulatory stasis without increasing radiation exposure. The single-
phase, CTA-based radiomics analysis shows potentiality as an effective tool for accurately
detecting LAAT in patients with AF, before ablation.
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