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Abstract: Osteosarcoma is a common type of bone tumor, particularly prevalent in children and
adolescents between the ages of 5 and 25 who are experiencing growth spurts during puberty.
Manual delineation of tumor regions in MRI images can be laborious and time-consuming, and
results may be subjective and difficult to replicate. Therefore, a convolutional neural network (CNN)
was developed to automatically segment osteosarcoma cancerous cells in three types of MRI images.
The study consisted of five main stages. First, 3692 DICOM format MRI images were acquired from
46 patients, including T1-weighted, T2-weighted, and T1-weighted with injection of Gadolinium
(TIW + Gd) images. Contrast stretching and median filter were applied to enhance image intensity
and remove noise, and the pre-processed images were reconstructed into NIfTT format files for
deep learning. The MRI images were then transformed to fit the CNN'’s requirements. A 3D U-Net
architecture was proposed with optimized parameters to build an automatic segmentation model
capable of segmenting osteosarcoma from the MRI images. The 3D U-Net segmentation model
achieved excellent results, with mean dice similarity coefficients (DSC) of 83.75%, 85.45%, and 87.62%
for TIW, T2W, and T1IW + Gd images, respectively. However, the study found that the proposed
method had some limitations, including poorly defined borders, missing lesion portions, and other
confounding factors. In summary, an automatic segmentation method based on a CNN has been
developed to address the challenge of manually segmenting osteosarcoma cancerous cells in MRI
images. While the proposed method showed promise, the study revealed limitations that need to be
addressed to improve its efficacy.

Keywords: osteosarcoma; bone cancerous cell; deep learning; convolutional neural network; 3D
U-Net; MRI; tumor segmentation

1. Introduction

Osteosarcoma is one of the most prevalent bone tumors, affecting mostly children and
adolescents, typically those between 5 and 25 years of age who are experiencing puberty
growth spurts [1]. Osteosarcoma usually develops from osteoblasts, which are the cells
that make bones, and most commonly affects the distal femur, proximal tibia, and proximal
humerus. The American Cancer Society relies on information from the SEER (Surveillance,
Epidemiology, and End Results Program) database maintained by the National Cancer
Institute (NCI) to provide 5-year relative survival rates statistics for people diagnosed with
osteosarcoma between 2010 and 2016 with localized (74%), regional (66%), and distant
(27%). If all SEER stages were combined, the 5-year relative survival rate was 60% [2].
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Normal, active children and adolescents frequently experience pain and swelling in their
limbs, which is more likely to be caused by normal bumps and bruises. Despite the fact
that osteosarcoma weakens developing bones, fractures are uncommon, with the exception
of the rare telangiectatic osteosarcomas, which weaken bones more than other types of
osteosarcoma and are more likely to produce fractures where the osteosarcoma tumor is
present [3].

Magnetic resonance imaging (MRI) provides more accurate anatomical information for
medical examinations than other medical imaging techniques such as X-rays, ultrasound,
and CT images [4]. MRI is an advanced medical imaging technique that provides a wealth
of information about the anatomy of human soft tissues. The accuracy of osteosarcoma
tumor segmentation in MRI images is important not only for treatment planning for
neoadjuvant chemotherapy but also for evaluating subsequent treatment effects. However,
the manual method of radiologists outlining malignant tissue from each slice is time-
consuming, subjective, and often produces non-repeatable findings. Additionally, the
difficulty in identifying osteosarcoma is high due to aspects such as size, location, shape,
and texture features. Therefore, this study aims to develop an automatic segmentation
algorithm for osteosarcoma tumor cells using convolutional neural networks (CNN) to
segment the 3D model for osteosarcoma tumor cells. After the osteosarcoma cancerous cells
are segmented automatically, the performance of the auto-segmentation algorithm will be
compared to manual segmentation of the region of interest (ROI) of the 3D osteosarcoma
tumor cells.

This paper is organized as follows. Section 2 focuses on the literature review of
image processing for medical images such as MRI and CT images to review current trends
in image processing techniques. Section 3 focuses on the methods used for segmenting
the osteosarcoma cancerous cells, which include image pre-processing, image quality
assessment (IQA), and segmentation. Section 4 presents the experimental results and
discussions of the image pre-processing, IQA, image segmentation, and validation of the
proposed model. A conclusion is drawn in Section 5.

2. Related Works

This paper presents a deep learning method for segmenting osteosarcoma bone can-
cerous cells from MRI images. Prior to analysis, the MRI images undergo image processing.
Raw images that contain unwanted noise are processed to extract useful information. This
image processing involves pre-processing and image segmentation.

2.1. Image Pre-Processing

In this paper, a method is introduced to segment osteosarcoma bone cancerous cells
using deep learning. Prior to processing the MRI images, image pre-processing is performed
to eliminate artifacts and improve signal quality without losing information. Artifacts can
significantly affect the MRI image of the osteosarcoma, making it more difficult to analyze
and interpret.

Rajeshwari and Sharmila (2013) [5] described a two-phase pre-processing method.
In the first phase, a median filter was used to remove film artifacts. In the second phase,
an algorithm was introduced to remove unwanted parts using morphological operations.
This reduced false positive results in subsequent processing stages and improved results
over tracking algorithms that preserve regions of interest and remove film artifacts. This
pre-processing method also helps to prevent over-segmentation, which could retain the
tumor during further processing.

Suhas and Venugopal (2017) [6] evaluated the performance of MRI image denoising
techniques. They applied various filters, including median, Gaussian, max, min, and
arithmetic mean filters, to MRI brain and spinal cord images. A new strategy for modifying
the existing median filter by adding features is proposed. Experimental results showed
that the proposed method, along with the other three image filtering algorithms, improved
the root mean square error (RMSE), signal-to-noise ratio (SNR), peak signal-to-noise ratio
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(PSNR), and other statistical characteristics used to assess output image quality. The
proposed method successfully preserved the structural characteristics of the medical image
while reducing the majority of the noise.

Intensity normalization is an important preprocessing step for MRI images. In the
paper by Mohan and Subashini (2018) [7], six intensity normalization techniques were
proposed, including contrast stretching, histogram stretching, histogram equalization,
histogram normalization, intensity scaling, and Gaussian kernel normalization. However,
according to Loizou et al. (2009) [8], histogram equalization has limited success on medical
images due to the removal of minor details. In contrast, Mohan and Subashini (2018) [7]
state that histogram equalization is successful, but only when applied to certain types
of medical images. To address the limitations of histogram equalization, adaptive and
spatially variable processing techniques have been developed. The Wiener filter is an
example of such a technique, which can handle spatial and local changes in the image
with flexibility.

2.2. Segmentation Technique Using CNN in Deep Learning

Deep learning (DL) is a sub-category of machine learning that utilizes multilayer
networks to analyze complex patterns in raw image input data. In recent years, DL has
proven to be a beneficial tool in various imaging applications.

Singh et al. (2020) [9] reviewed the current applications of interpretable deep learning
in different medical imaging tasks. This review discusses various methods, challenges, and
areas that require further research in clinical deployment from the practical perspective of
deep learning researchers designing systems for clinical end-users.

Debelee et al. (2020) [10] surveyed several deep learning-based techniques for identi-
fying and segmenting tumors in breast cancer, cervical cancer, brain tumors, colon cancer,
and lung cancer. Deep learning approaches were found to be the most advanced in tu-
mor identification, segmentation, feature extraction, and classification as a result of the
evaluation process.

Cigek et al. (2016) [11] suggested a volume-to-volume segmentation network called
the 3D U-Net, which is a 2D U-Net extension. The 3D U-Net uses dual paths: an analysis
path to extract features and a synthesis path for up-sampling to generate full-resolution
segmentation. Additionally, the 3D U-Net developed a shortcut link between layers with
the same resolution in the early and late stages of the analysis and synthesis path.

Chen et al. (2018) [12] introduced a voxel-wise residual network (VoxResNet), a 3D
deep network extension of 2D deep residual learning. VoxResNet provides a skip connec-
tion to transfer features from one layer to the next. Although 3D U-Net and VoxResNet
provide multiple skip connections to facilitate training, their presence generates a short
path from the first layer to the last layer, potentially reducing the network to a relatively
simple configuration.

Holbrook et al. (2020) [13] proposed using TensorFlow to segregate soft tissue sarcomas
in mice and perform radiomics studies on the obtained MRI datasets using a 3D fully
convolutional U-Net network. The cross-entropy loss function was used to achieve the best
overall segmentation performance. The dice score for T2-weighted images is 0.861, and the
dice score for multi-contrast data is 0.863.

Vaidyanathan et al. (2021) [14] proposed a 3D U-Net to build a deep-learning method
for automatic segmentation of the inner ear in MRI by using manually segmented inner ear
images as a reference standard. A clinical validation set of eight MRI scans in which the
labyrinth’s morphology had changed substantially was also used to validate the model.
Across images from three different centers, the 3D U-Net model displayed an accurate
mean DSC of 0.8790, a high true positive rate (91.5%), and low false discovery rates and
false negative rates (14.8% and 8.49%, respectively).

Feng Liu et al. (2022) [15] proposed OSTransnet, a method for segmenting osteosar-
coma MRI images. It combines transformer and U-Net models to address challenges related
to fuzzy tumor edge segmentation and overfitting. The technique optimizes the dataset
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by altering the spatial distribution of noise and applying image rotation. By incorporat-
ing channel-based transformers, OSTransnet improves upon the limitations of U-Net and
achieves a DSC (dice similarity coefficient) of 0.949, resulting in better segmentation results
for osteosarcoma MRI images with blurred tumor borders.

Jia Wu et al. (2022) [16] presented a deep CNN system for osteosarcoma MRI image
segmentation. It addresses overfitting due to noisy data and improves generalization.
The method involves dataset optimization using Mean Teacher and training with noisy
data to enhance robustness. Segmentation utilizes a deep separable U-shaped network
(SepUNet) and a conditional random field (CRF). SepUNet effectively segments lesions of
different sizes at multiple scales, while CRF refines boundaries. This proposed method was
evaluated on 80,000 MRI images from three Chinese hospitals, demonstrating an improved
DSC of 0.914.

2.3. Summary of Previous Studies

Throughout the research from the previous studies, in the pre-processing process, the
contrastivity of MRI images can be enhanced by using histogram equalization or histogram
normalization, which are non-linear operations and linear operations, respectively. Other
than that, there will be some noise in the MRI images. These noises can be removed by a
median filter, which is a non-linear filter, or a Gaussian filter, which is a linear filter. Then,
the quality of the processed images can be evaluated by using the peak signal-to-noise
ratio (PSNR), mean square error (MSE), and absolute mean brightness error (AMBE). After
pre-processing, the segmentation technique by using CNN that was frequently used in
previous research is 3D U-Net, which is better at segmenting the 3D model of the region of
interest (ROI) as compared to 2D U-Net. Lastly, the accuracy of the automatic segmented
ROI can be verified through the dice similarity coefficient (DSC) by comparing it with the
manual segmented ROL.

3. Results

This section outlines the process flow for carrying out this study. The Python program-
ming language and software used in this study were Google Colaboratory and PyCharm
version 2021.2.3 software for simulation using the K80 graphical processing unit with 12 GB
of RAM.

Figure 1 shows the overview flow chart that outlines the events in this study. It started
acquiring three types of MRI images of the patients who were diagnosed with osteosarcoma.
After that, the MRI images were processed with a series of image enhancement methods
to improve the quality of the images, so as to increase the accuracy of the segmentation
result later on. Then, a convolutional neural network was built by using 3D U-Net archi-
tecture to segment the osteosarcoma cancerous cell. Next, the 3D model of the segmented
osteosarcoma was visualized to better observe the location and size of the tumor. Lastly,
the comparison between manual segmentation and automatic segmentation was carried
out using the dice similarity coefficient (DSC) as evaluation criteria.

3.1. Image Acquisition

Image acquisition is the initial step in every image processing system, which aims
to transform an optical image into an array of numerical data that can be modified on a
computer. The information was gathered from the records of the Department of Radiology,
Hospital Universiti Sains Malaysia (HUSM), picture archiving and communication sys-
tem (PACS), and radiology information system using a Philips 3 Tesla Achieva Magnetic
Resonance Imaging (MRI) scanner (RIS). The MRI scanner was utilized to collect the MRI
images of patients who were diagnosed with osteosarcoma, which are T1IW, T2W, and
TIW + Gd in the Digital Imaging and Communications in Medicine (DICOM) file type.
DICOM is a standard for handling, storing, printing, and transferring medical imaging
data [17], and it includes the file format description as well as the network communications
protocol. The example MRI images collected are shown in Figure 2.
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Figure 1. Overview flow chart.
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Figure 2. Types of MRI images. (a) T1-weighted MRI image (T1W); (b) T2-weighted MRI image

(T2W); (c) T1-weighted MRI image with an injection of gadolinium (T1W + Gd).
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3.2. Image Enhancement

Contrast enhancement techniques are commonly used in medical imaging to improve
the visual quality of low-contrast images by emphasizing crucial characteristics or those that
are not visible. Contrast enhancement techniques in medical imaging improve the visual
quality of low-contrast images by emphasizing important features or invisible details.
In this study, contrast-limited adaptive histogram equalization (CLAHE) and contrast
stretching (CS) were applied to the MRI images to enhance their contrast, and the best
contrast technique was chosen among these two techniques by using the IQA.

CLAHE is a technique used for enhancing local image contrast. CLAHE employed
small tiles in the MRI image to compute numerous histograms, each of which compared
to a specific area of the image, and then used them to redistribute the image’s brightness
or contrast estimation. CLAHE improved the contrast better than normal histogram
equalization, which added more detail but amplified noise [18]. A clip limit was then
determined for clipping histograms. Each histogram’s height was then redistributed to
ensure that it did not exceed the clip limit. The clip limit was calculated as 3 which can be
written in the form as (1) [19], where M x N is the number of pixels in each region, L is the
number of grayscales, « is a clip factor (0-100), and s,y is the maximum allowable slope.

p= @(1+%(Smm¢*1)) 1

Contrast stretching is known as normalization, which is a linear operation, meaning
the value of the new pixel changes linearly as the value of the original pixel changes [20].
It is a straightforward image enhancement method that involves stretching the range of
intensity values to improve image quality. To stretch the image, the higher and lower pixel
value limitations over which the image was normalized must be defined, and the existing
lowest and highest pixel values should also be identified. As in (2) [21], it was then scaling
each pixel in the MRI image, where Pin is the input pixel and Pout is the resulting pixel,
a represents the lower limit and b represents the upper limit, and c and d are the current
lowest and maximum pixel values, respectively.

Pout:(PinC)<Z:i>+a )

3.3. Image Denoising

Image quality can be troublesome and poor when acquiring, processing, and storing
MRI images. Researchers are still grappling with how to remove noise from original MRI
images since noise removal generates artifacts and blurs the images [22]. Different filters
can effectively remove different types of noise. In this study, the denoising filters applied
include the Gaussian filter and Median filter. The most suitable filter was selected for
denoising the MRI images.

The Gaussian filter is a type of linear smoothing filter whose weights are determined
by the form of the Gaussian function [23]. The Gaussian filter helps reduce visual noise
and minor features drawn from a normal distribution [23]. For image processing, the
two-dimensional zero-mean discrete Gaussian function is expressed as (3) [24], where o is
the standard deviation of the distribution, and x and y are the location indices. The value of
o controls the extent of the blurring effect around a pixel by adjusting the variance around
the mean value of the Gaussian distribution [24]. It is commonly performed by using a
Gaussian kernel to convolve the image. The Gaussian filter is especially useful for filtering
images with a lot of noise because the results showed relative independence on the noise
features and a significant dependence on the variance value of the Gaussian kernel [25]. The
MRI image was denoised using the Gaussian filter by adjusting the standard deviation of
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the intensity distribution in order to control the blurring effect of the filter, which depends
on the effectiveness of the noise to be removed in the MRI image.

1 _ x2+y2

e 27 3)

Gan(%,y,7) = 27102

The median filter is a sliding window spatial filter that substitutes the median value of
all pixel values in the window for the window’s center value [26]. It is a non-linear filtering
technique that helps to remove noise and is capable of removing “impulse” noise from
either high or low outliers. The standard median filter was given by (4) [26], where X;
and Y; are the input and output at location i of the filter, and W, is the #"th order statistic
of the samples inside the window. The MRI image was applied with the median filter to
replace the particular pixel with the median value of the sample of its particular window
throughout the MRI image.

Y; = med{W;} = med{X; +r:r e W} 4)

3.4. Image Quality Assessment (IQA)

In this study, different techniques were applied for calculating the values of separate
parameters such as mean square error (MSE), peak signal-to-noise ratio (PSNR), and
absolute mean brightness error (AMBE).

MSE is the most widely used error sensitivity-based image quality assessment, as
shown in (5) [23], where M and N are the width and the height of the images, respectively,
and x;; and y;; are the image gray values of reference image x and distorted image y. An
average of squared intensity differences in every pixel of a reference image and a distorted
image was used to calculate it. The lower value of MSE indicates there is less error in the
image [27].

1 M N 2
MSE = mzi:1 Zj:l (xij — vij) ©)

The PSNR is a quality metric for lossy compressed images. The PSNR is the ratio of
the original image’s maximum power to the deformed image’s noisy power. Due to the fact
that signals frequently have a wide dynamic range, they are represented in the logarithmic
domain. The formula is given as (6), where MAX is the maximum possible pixel value of
the MRI image [22] and MSE is the mean square error. A higher PSNR value indicates that
the image quality is better.

2
PSNR = 10 logw% ©)

AMBE is an assessment for determining brightness preservation. It assesses the
effectiveness of contrast enhancement approaches to maintain the original image’s mean
brightness [28]. AMBE uses (7) [28] to calculate the absolute mean brightness difference
between the acquired image, I;;, and the pre-processed image, I,,;. The lower AMBE value
indicates a good performance technique with a high-quality image, and the brightness is
better preserved.

AMBE = |Liy — Lout| @)

3.5. Reconstruct MRRI Images into 3D Volumes

Before the images passed to the segmentation process, all the DICOM-format images
were converted to NIfTI format. The fundamental distinction between DICOM and NIfTI
is that NIfTI saves raw image data as a 3D image, whereas DICOM saves raw image data
as 2D image slices ([29], p. 4). In addition, NIfTI is modeled as a three-dimensional image,
so it is better than DICOM for several deep learning applications as it is easier to manage a
single NIfTI file rather than hundreds of DICOM files. For this study, Pycharm software
was used for converting DICOM to NIfTI by using the command “dem2nii” [30]. All input
images were rescaled to the same size before training to maintain optimal image features.
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3.6. Segmentation Model for 3D Volumes

The Python programming language was used to create the 3D U-Net model using the
open-source deep learning framework Medical Open Network for AI (MONAI), which was
combined with the PyTorch Lightning framework and the PyTorch, Numpy, and Matplotlib
libraries. The whole segmentation process in this project is shown in Figure 3.

Cm D

Transformation of 3D Volume
Loadlmaged
AddChanneld
Orientationd
Spacingd
CropForegroundd
RandCropByPosNeglLabeld
RandAffined
EnsureTyped
.
l Dataset & DataLoader I
v
3D U-Net model
Loss function - Convolution layer 3 x 3 x 3 (+ Batch
(Dice loss) Normalization) + PReLu

Max pooling layer 2 x 2 x 2
Convolutional transpose layer 2 x 2 x 2
Convolution layer 1 x 1 x 1

Optumazer - Concatenate layer
(Adam) l
Evaluation
Quantitative
Qualitative (Dice cocfficient metrics)

!

Plot statistics curves
Display 2D and 3D images

o>

Figure 3. Flow chart of the segmentation model for 3D volume.

Visualization

It started with the transformation of the MRI image to enable the image to be better
fitted into the convolutional neural network that will be trained for automatic segmentation
later. The MONAI's “compose” function was used to apply several transforms to the
same dataset, which allowed for combining any transformations needed. First, use the
“Loadlmaged” command to load the MRI images and labels from NIfTI format files. Second,
the “AddChanneld” command added a channel to the MRI image and label. When it came to
tumor segmentation, a channel that played the role of background or tumor was required.
Third, the “Orientationd” command unified the data orientation based on the affine matrix.
Fourth, based on the affine matrix, the “Spacingd” command was used to adjust the spacing
by pixel dimension, “pixdim” = (1.5, 1.5, 2.0). This function assisted in changing the voxel
dimensions because the dataset of medical images had different voxel dimensions, which
were width, height, and depth. Therefore, it is necessary to generalize all of them to the
same dimensions. Moreover, the “CropForegroundd” command helped to remove all zero
borders, allowing the focus to be placed on the valid area of the images and labels. Also, the
“RandCropByPosNegLabeld” command was included, which helped to randomly crop patch
samples from the big image based on the positive-to-negative ratio. The “RandAffined”
command followed, which efficiently performed rotation, scaling, shearing, translating,
and other operations based on the PyTorch affine transform, which was also applied in



Diagnostics 2023, 13, 2377

9 of 25

this pre-processing. Lastly, the command “EnsureTyped” converted the Numpy array to
PyTorch Tensor, which might be used in subsequent phases.

After the transformation, the data loader was applied to speed up the training process
and reduce the memory usage of the graphic processing unit since the MRI datasets used
to train were in voxel, which required a longer time in the training process of the neural
network. For the purpose of doing so, there were two functions employed, “CacheDataset”
and “DataLoader”, in MONALI dataset managers. Before the first epoch, “CacheDataset”
performed non-random transforms and prepared cache material in the main process, and
then all “Dataloader” subprocesses read the same cache content in the main process during
training. According to the extent of predicted cache data, preparing cache material may
take a long time. In this project, there were two datasets to be built: one to combine the
training data with its transforms and the other to combine the validation data with its
transforms because there were training and validation sets.

Once the preparation data was performed, the MRI images were ready to train in
the 3D U-Net model. A 3D U-Net by MONAI was used in the model design as shown
in Figure 4, and the arrows displayed the various operations; the blue boxes showed the
feature map at each layer, and the grey boxes described the cropped feature maps from
the contracting route. The architecture of the 3D U-Net was roughly divided into two
parts, which were the encoder network and decoder network, where each layer had its
own encode and decode paths as well as a skip connection between them. Data were
down-sampled using strided convolutions in the encoder path, then up-sampled using
strided transpose convolutions in the decode path. For the encoder part, it is made up of
four blocks, each of which has 3 x 3 x 3 convolutional layers with a PReLU activation
function and 2 x 2 x 2 max-pooling layers with strides of two in each dimension. The
PReLU activation function used batch normalization to apply a function to the input data
in order to boost non-linearity and speed up training. In order to avoid overfitting, the
pooling layer downsampled the input values to reduce computing costs and reduce the
spatial dimensions of the image. A fully connected layer provided the correlations of
the particular class to the high-level features. The number of outputs of the last fully
connected layer must be the same as the number of classes [31]. On the other hand, for the
decoder path, it was made up of four blocks, each of which contains a2 x 2 x 2 transposed
convolution layer with a stride of 2, followed by two convolutional layers with a size of
3 x 3 x 3, and a PReLU activation function that used batch normalization. The Shortcut
connections from equal-resolution layers in the encoder path helped to give the decoder
path the necessary high-resolution features. There was alsoa 1 x 1 x 1 convolution in the
final layer with sigmoid output used to reach the feature map with a depth equal to the
number of classes, which was 2, where the loss function was determined. Moreover, the
high-resolution 3D features in the encoder path were concatenated with up-sampled repre-
sentations of global low-resolution 3D features in the decoder path to learn and apply local
information. The network learned to employ both high-resolution local information and
low-resolution global features as a result of this concatenation. During training, the dice loss
was used as the loss function, and Adam was used as the optimizer, with a learning rate of
1 x 10~* using backpropagation to find the gradient of the loss function. Table 1 shows an
overview of the hyperparameters and their respective values used in this project.
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Figure 4. Three-dimensional (3D) U-Net architecture.

Table 1. Overview of the hyperparameters set for training.

Hyperparameters Values
Data split ratio 8:1:1
Maximum epochs 800
Batch size 2
Optimizer Adam
Loss function Dice loss
Activation function PReLU
Total number of parameters 4,808,917

Moreover, the trained model was evaluated quantitatively and qualitatively. The
evaluation metrics used to validate qualitatively were DSC. Throughout the training epoch,
the model with the highest validation mean DSC for each MRI image type was saved. The
average epoch loss was also recorded, which indicated the error occurred in the validation
dataset. On the other hand, the validation mean DSC and average epoch loss through the
training epoch were used to plot the curve for statistical purposes. In addition, the overlaid
image of the MRI image and the predicted output from the 3D U-Net model (Figure 4)
were shown to better observe the true or false prediction from the model. Lastly, for better
visualization, the 3D volume of the MRI image with the label of the predicted output was
displayed.

3.7. Image Segmentation Performance Validation

In this study, the suggested evaluation metrics used to validate and compare were dice
similarity coefficients (DSC). The DSC, also known as the overlap index [32], was a regularly
used performance metric in the field of medical image segmentation. It determined the
general similarity rate between a given ground truth label and the expected segmentation
output of a segmentation technique. DSC can be expressed as (8) and (9). Where S, is the
predicted segmentation output and S is the ground truth label. FP, TP, and FN indicate
false positives, true positives, and false negatives, respectively. DSC gave a score between 0
and 1, where 1 denotes the best prediction and indicates that the segmentation result was
as expected [32].

2TP
DSC(Sp8¢) = Fpramp T EN ®)
DSC(Sp,Sq) = 218y 0 5| ©)

|Sp| +[Sg|
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4. Discussion
4.1. Image Pre-Processing

Tables 2—4 show contrast-enhanced MRI images by CLAHE and contrast stretching
before and after implementing the median filter and Gaussian filter for T1IW, T2W, and
T1IW + Gd, respectively. The goal was to improve the contrast and brightness of the MRI
images using these enhancement techniques.

Table 2. Contrast-enhanced T1W MRI image after implementing Gaussian filter and median filter.

Combination of Pre-Processing Techniques

CLAHE + Gaussian CLAHE + Median Contrast Stretching + Contrast Stretching +
Filter Filter Gaussian Filter Median Filter

T1W MRI Image after
Contrast Enhancement

Table 3. Contrast-enhanced T2W MRI image after implementing Gaussian filter and median filter.

After Pre-Processing of T2ZW

CLAHE + Gaussian CLAHE + Median Contrast Stretching + Contrast Stretching +
Filter Filter Gaussian Filter Median Filter

T2W MRI Image after
Contrast Enhancement
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Table 4. Contrast-enhanced TIW + Gd MRI image after implementing Gaussian filter and median filter.

TIW + Gd MRI Image After Pre-Processing of TIW + Gd
after Contrast CLAHE + CLAHE + Contrast Stretching + Contrast Stretching +
Enhancement Gaussian Filter Median Filter Gaussian Filter Median Filter

The contrast and brightness of the MRI images had improved for both contrast en-
hancement methods. For CLAHE, the histogram of intensity value was clipped before
computing the cumulative distribution function and distributed uniformly to other bins.
As a result, a clear, enhanced MRI image without much noise was obtained. On the other
hand, contrast stretching increases the difference between the maximum and minimum
intensity values in an image. The remaining intensity values were spread out across the
range, making the contrast more noticeable. Therefore, in the resulting image from the
contrast stretching, one can clearly observe the contrast between the intensities. From the
enhanced MRI images in TIW, T2W, and TIW + Gd, it can be observed that the CLAHE
technique can give more detail on the MRI. However, in this study, the region of interest
(ROI) was not the details of the MRI images, so these details were considered noise, which
caused confusion during the segmentation part due to their similar intensity. Consequently,
the contrast stretching technique was more suitable to be used in pre-processing the MRI
image in this study.

The MRI images that were processed with the Gaussian filter were more blurry than
the MRI images processed with the median filter. This was because the Gaussian filter was
a linear type of filter that was more effective in smoothing the image and removing noise.
On the other hand, the median filter, which is a non-linear type of filter, showed a better
result than the Gaussian filter. This was due to the median filter, which removed thin lines
or edges and blurred the image but retained useful details. Moreover, both denoising filters
did not show good filtering results in the CLAHE-enhanced MRI images.

4.2. Image Quality Assessment

The lower value of MSE indicates there was less error in the image. Overall, from
Table 5, the MRI images that were processed with the combination of contrast stretching
and median filter scored the lowest MSE value as compared to other combinations. This
indicated the combination of contrast stretching and median filter would not affect much
on the image quality and would be close to the original MRI image.
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Table 5. Comparison of MSE, PSNR, and AMBE between T1W, TIW + Gd and T2W implemented
with CLAHE or contrast stretching and Gaussian filter or median filter.

MSE PSNR AMBE

TIW TIW + Gd T2W T1IW TIW + Gd T2W TIW TIW + Gd T2W
MRI 1 99.5270 98.0830 110.4348 28.1514 28.2149 27.6997 0.06093 0.07008 0.08086
MRI 2 77.6347 73.5121 106.9793 29.2302 29.4672 27.8378 0.07691 0.08538 0.10174
%I;ﬁ:;]i; MRI 3 88.3859 86.8852 108.9995 28.6670 28.7413 27.7566 0.04468 0.06080 0.07764
filter MRI 4 93.6140 105.3020 108.0355 28.4174 27.9064 27.7951 0.04200 0.05408 0.05596
MRI 5 94.4030 100.5126 110.5212 28.3809 28.1086 27.6964 0.04347 0.05096 0.05848
AVG 90.7129 92.8589 108.9940 28.5693 28.4876 27.7571 0.05359 0.06426 0.07493
MRI 1 88.8244 88.3116 99.6605 28.6455 28.6706 28.1456 0.05805 0.06831 0.07490
MRI 2 77.0120 72.0549 100.0506 29.2652 29.5542 28.1286 0.07475 0.08146 0.09748
CLAHE + MRI 3 81.6804 82.0138 97.0345 29.0096 28.9919 28.2615 0.04361 0.05940 0.06829
Niiel(ti;n MRI 4 76.8616 91.1990 100.1020 29.2737 28.5309 28.1264 0.38308 0.05018 0.05279
MRI 5 83.4949 87.9688 101.8403 28.9142 28.6875 28.0516 0.04084 0.04781 0.05486

AVG 81.5747 84.3096 99.7376 29.0216 28.8870 28.1427 0.1201 0.0614 0.0697
MRI 1 22.5087 18.8500 24.1599 34.6073 35.3777 34.1599 0.01251 0.01570 0.02479
Contrast MRI 2 40.4818 38.7746 38.2741 32.0582 32.2453 32.3018 0.04688 0.04477 0.04038
Sgﬁgtcf_ MRI 3 22.0822 21.9366 20.2009 34.6904 34.7191 35.0771 0.01152 0.01697 0.01564
Gaussian MRI 4 7.3680 55.7069 8.9038 39.4573 30.6717 38.6351 0.01216 0.03440 0.01196
filter MRI 5 7.4555 15.0778 9.9041 39.4060 36.3474 38.1726 0.01061 0.02000 0.01385
AVG 19.9792 30.0692 20.2886 36.0438 33.8722 35.6693 0.01874 0.02647 0.02132
MRI 1 21.7134 18.5888 23.6220 34.7635 35.4383 34.3976 0.01197 0.01522 0.02406
Contrast MRI 2 39.5238 38.6358 36.7550 32.1622 32.2609 32.4776 0.04632 0.04444 0.03961
S:;(:Cf- MRI 3 20.9480 20.8487 19.3480 34.9194 34.9400 35.2644 0.01099 0.01660 0.01492
Median MRI 4 7.6674 52.1598 9.1981 39.2844 30.9575 38.4938 0.01136 0.03300 0.01047
filter MRI 5 7.5921 14.8690 10.3506 39.3272 36.4080 37.9812 0.00986 0.01906 0.01293
AVG 19.4889 29.0204 19.8547 36.0913 34.0009 35.7229 0.01810 0.02566 0.02040

Note: The best reading of each categories is highlighted and compare between MRI images.

The higher the PSNR, the better the image quality after applying filters. In order to
calculate the PSNR, we should first have the value of the mean square error (MSE). This
was because PSNR was usually expressed in terms of a logarithmic decibel scale to calculate
the peak error. From the result in Table 5, as for the PSNR, the combination between the
Contrast Stretching and Median filter showed better performance because it got the highest
PSNR value.

The lower AMBE indicated better brightness preservation of the image. From
Table 5, the AMBE values for the combination of contrast stretching and median filter
were very close to zero. So, contrast stretching and median filter showed better brightness
preservation than other combinations.

Contrast stretching enhances the contrast between different regions of the cancerous
and bone, making its details more visible. By spreading out the intensity values across the
range, it increases the separability of different structures and enhances the overall MRI
image quality. Thus, this can lead to clearer distinctions between the cancerous region and
the surrounding healthy tissue, aiding in their accurate identification and segmentation.
This can be crucial for identifying the boundaries, shapes, and other characteristics of bone
cancerous cells, which may be critical for accurate segmentation. By applying a Median
filter to the MRI images, the filter can effectively remove high-frequency noise components
while preserving important details, such as the boundaries and structural characteristics
of bone cancerous cells. This preservation of details is essential for accurately delineating
and segmenting the cancerous regions. The median filter achieves noise reduction by
replacing outlier pixel values, which are likely to be noise, with the median value within a
defined neighborhood. This process effectively smoothed the MRI image while retaining
the sharpness and integrity of structures, such as the boundaries of the cancerous bone
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cells. Consequently, the contrast stretching and median filter help improve the visibility
and clarity of the cancerous regions within the MRI images.

4.3. Reconstruct MRI Images into 3D Model

The enhanced MRI images with contrast stretching and median filter will then be
reconstructed into a 3D volume of MRI images, which involves the conversion of DICOM
files to NIfTI files. DICOM image slices are stacked to build a 3D representation of the MRI
image. The acquired MRI DICOM images had dimensions of length, width, and height, so
the resolution of the reconstructed 3D images may vary from the acquired DICOM images.
In this study, DICOM images were obtained from the hospital, so each patient may have
a different number of slices. The assembled DICOM into a 3D model for TIW, T2W, and
T1IW + Gd are shown in Table 6. The reconstruction of the 3D model needed DICOM image
slices in different planes, such as axial, coronal, and sagittal.

4.4. Transformation of 3D Volumes

The transformation techniques applied in this project included image loading, adding
channels to the 3D volume and label, data orientation based on the affine matrix, spacing
adjustment by pixel dimension, scale intensity ranging in the aspect of contrast, cropping
the foreground to remove the zero border, randomly cropping patch samples from the
big image, and lastly, the random affine that would be able to perform rotation, scaling,
shearing, and translation based on the PyTorch affine transform. These transforms are
composed with “Compose” to create a fast pipeline. Based on the result obtained as
shown in Table 7, the images were resampled to a voxel size of 1.5, 1.5, and 2.0 mm in
each dimension to avoid any dimension error that might occur when loading the images
into the network. In addition, the 3D sub-volumes were also padded to sizes of 96, 96,
and 96 to make sure the input sizes of the images to be loaded into the neural network
were consistent. Moreover, the cropping of the foreground and random cropping of patch
samples were also effective, as shown in Table 7, where the ROI of the images was amplified
to better focus on the ROI when training the neural network. This transformation method
needed to be applied to both the input image and the segmentation mask.

4.5. Quantitative and Qualitative Evaluation of 3D U-Net Model

The 3D U-Net was trained and validated with TIW, T2W, and T1W + Gd MRI image
datasets through the implementation of Adam as the optimizer algorithm and Sigmoid as
the activation function on the GPU in Google Colaboratory. The 46 MRI images for each
MRI image type were split into 36 MRI images for training, 5 MRI images for validation,
and 5 MRI images for testing. These three types of MRI datasets took about 6 hours to train
the 3D U-Net model, as shown in Table 8.
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Table 6. Assembling DICOM into 3D model.

Type of MRI Plane DICOM Image 3D Model in NIfTI

Axial
w Coronal
Sagittal

Axial
TIW + Gd Coronal

Sagittal
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Table 6. Cont.

Type of MRI Plane DICOM Image 3D Model in NIfTI
Axial
2w Coronal
Sagittal

Based on Table 8, the proposed algorithm obtained a good DSC on all the MRI image
types. The T2W and T1W + Gd achieved excellent segmentation results with approximately
85% and 87% of the validation mean DSC at epochs 792 and 700, respectively, while the
T1W obtained a good result with around 83% of the validation mean DSC at epoch 786.
The validation mean DSC of the TIW image dataset was the lowest among these three
datasets. This is because T2W optimally shows fluid and abnormalities such as tumors,
inflammation, and trauma [33], and T1W + Gd inhibits the fat signal in TIW, which then
increases its significance in assessing tumor vascularization [34]. In contrast, TIW optimally
shows normal soft tissue anatomy and fat [33]. For this reason, TIW might have a low
contrast for the tumors to be identified as compared to T2ZW and T1W + Gd. The dice loss
function is defined as 1 minus the DSC in order to indicate the loss function’s convergence.
The epoch average dice loss produced by these three MRI datasets was approximately
between 0.15 and 0.17, as shown in Table 8. The smaller the value of the epoch average dice
loss, the less error there is in the validation dataset.

Different examples of different MRI image types after implementing the proposed
segmentation model are shown in Table 9. Based on the segmentation result, the output
test image for each T1W, T2W, and T1IW + Gd could be compared with the ground truth.
There were 3 samples with their respective 80th slice of predicted segmentation output
from the proposed segmentation method’s qualitative results. The output of samples
1 and 2 showed that the majority of the tumor was accurately segmented for T2W and
TIW + Gd, with slight border and small hole errors. However, it can be clearly observed
that the output of TIW had a false negative as compared to the ground truth, in which
some areas of the ROI were not predicted. Other than that, there was another common
error shown in sample 3, which was a false positive. It can be observed that there should
be no tumor being segmented in sample 3. Yet, a small false-positive tumor was found in
the output of the T2 image due to the presence of tissue with a similar look.
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Table 7. Transformation of 3D volumes.

After Transformation

Slice of Original Transformation
Image for Ground Truth TIW TIW + Gd T2W
G|Slice of a patient DLabeI of a patient

100 100

150 150

200
200

150
100 150

100

50

(=]

50

10 o0 o 50 109 150 00

0 50 100 150 200

Note: Yellow indicates the ROI of MRI images.

Table 8. The training time, mean dice similarity coefficient (DSC) and the epoch average dice loss of
model of different MRI image types.

Types of MRI Epoch Training Time Mean DSC Epoc.h Average
Image (Second) Dice Loss
TIW 786 20,194.563 0.8375 0.1709
T2W 792 20,429.427 0.8545 0.1563

TIW + Gd 700 20,020.069 0.8762 0.1534
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Table 9. Segmentation output (highlighted in yellow) of the osteosarcoma cancerous cell.

Sample No. Output
. Input Ground Truth
(MRI Slice) TIW T2W TIW + Gd
label 0 output O output O output §
0 g a 1]
50 50 w w0 &
g 100 100 00 100
1 150 150 150 50 150
(80th slice)
200 200 b ] ] 200
50 =0 4 -] 540
00
o 50 L o o ] i 50
o i label 2 i ourtpit 2 ; autput 2 . output 2
. 50 L w0 L'
e 100 100 ) 100
. a
2
(80th slice) 150 i =0 . 150
200 200 2 r 20
=0 54 ) 240
o 50 0 50 ! £ L - = 5 L =
8 - - = -
g : - - :
3 g g : ; z - -
(80th slice) E = ’ ? : :

In order to have a better observation of the result obtained, the overlaid slices of
sample 3 from slices 60th, 70th, 80th, 90th, and 100th were used as representative examples
for each T1W, T2W, and T1W + Gd, as shown in Tables 10-12. The last column of the table
shows the overlaid slices between the ground truth and the predicted output, where the
red tint denotes the output predicted by the model, the white tint denotes the true ground
truth, and the black color indicates the background.
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Table 10. Overlaid slices for output of the osteosarcoma cancerous cell in TITW MRI image for

sample 3.
Overlaid Slices
2/1[,1{1 Input Grour(lg)Truth Output (O) Ground Truth
1ce Ground Truth Output and Output,
(GNO)
g g -5. . g
60th '
[ =] o - (=] o o
° R ° g ° g
(=] o [=] =] a
g = g = u E
70th
- o (=] (=] Q
S R e 2
. =] (=] o (= o
2 S I‘ '2 :‘ le =
" i
- =] - [ = ] (= o
° R ° R ° R ° R
o o o o
=t g g g
90th
o [ =] [ =] Q
¢ R ° B2 ° R ° R
o o ! =] l o =
) = = C BE C BE =
100th ~ '
[]
o o =] o o
R

° R ° R = &R 2 R

Note: Ground truth (G): yellow denotes manually segmented cancerous cell by medical doctors; Output (O):
yellow denotes segmented cancerous cell output predicted by 3D U-net model; Ground Truth and Output
under overlaid slide (G N O): red denotes overlapping area of the ground truth and output, white denotes
non-overlapping area of the ground truth and output, black denotes the background.
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Table 11. Overlaid slices for output of the osteosarcoma cancerous cell in TIW + Gd MRI image for

sample 3.
Overlaid Slices
M_R I Input Ground Truth Output Ground Truth
Slice Ground Truth Output
and Output
=] o Q F = F S =
Lo | — — - - —
60th
o o o . | . o o
o o (=] - [ =] L= c:)
. ' =1 = = & = & = =1
70th
> R °© = °© R LA
= Q = = 2 =
. = = = - Y= C B E =
80th ’ I | I
C (=] [ =] (=] =]
° R ° g 2 R e = 2 =
: = |y (&Y .
90th
o =] o o o
° R ° R .o
= =1 2 2
= © AE C R =}
100th
o =] =] o

© Q o =

0
50
0

R °

Note: Ground truth (G): yellow denotes manually segmented cancerous cell by medical doctors; Output (O):
yellow denotes segmented cancerous cell output predicted by 3D U-net model; Ground Truth and Output
under overlaid slide (G N O): red denotes overlapping area of the ground truth and output, white denotes
non-overlapping area of the ground truth and output, black denotes the background.
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Table 12. Overlaid slices for output of the osteosarcoma cancerous cell in T2ZW MRI image sample 3.

Overlaid Slices

MRI

. Input Ground Truth Output
Slice Ground Truth Output Ground Truth
and Output
o (= o o
= l : l = l l = =]
60th
o - o - o o
b 3 =2 = =
- - * \- & V= b B
70th
L= o - [ ] - =] o
(=] < (=] 9 = B
- o
80th | |
© Q = - Qo - o b=
= = =1
90th | |
[ ] o - o - - &
[ - ] o
= =
100th

0
0 100
0 100
0 100

0
50
0
B0

o o = Q

Note: Ground truth (G): yellow denotes manually segmented cancerous cell by medical doctors; Output (O):
yellow denotes segmented cancerous cell output predicted by 3D U-net model; Ground Truth and Output
under overlaid slide (G N O): red denotes overlapping area of the ground truth and output, white denotes
non-overlapping area of the ground truth and output, black denotes the background.

The predicted output of the 60th slice of each type of MRI image did not show any
tumor, which was segmented correctly as compared with ground truth for each TIW, T2W,
and T1W + Gd as in Table 12. From the overlaid slice of the 70th slice for these three types of
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MRI images, it was obviously noticed that there was a bit of false-negative tumor wrongly
predicted by the trained model. However, in the 70th slice of these three types of MRI
images, T2W performed the best among these MRI image types because it predicted the
location of a small detail correctly, while the other two image types did not. In addition,
there was also a small false-positive tumor shown in these overlaid slices. Moreover, from
the observed results of 80th, 90th, and 100th, even though some of the slices of ground
truth were not fully overlapped with the output, most of the slices as shown were predicted
almost the same, with a small false-negative tumor as compared with ground truth.

4.6. Visualisation of the Predicted Output

In order to have a clearer visualization of the segmented data, the TensorBoard 3D
plugin was used to view the entirety of their three-dimensional deep-learning model output.
Thereby, the size and position of the tumor can be clearly observed through this 3D viewer.
Figure 5 shows the 3D model output, where the red tint denotes the predicted tumor from
the trained model.

Figure 5. Three-dimensional model output (red tint denotes the predicted tumor from the trained 3D
U-net Model).

4.7. Comparision DSC with Previous Research Works

Based on the comparison of DSC with other researchers’ segmentation models for
osteosarcoma MRI images in Figure 6, OSTransnet (by F. Liu, 2022) [15] stands out for
its superior segmentation performance, incorporating contextual information and edge
enhancement, although its limitations were not outlined. PESNet (Baolong Lv, 2022)
enhances tumor localization and segmentation accuracy through a priori generation and
feature enrichment networks, but it has a slightly higher computation time than U-Net [35].
MSECN allows for multi-scale feature integration and can handle objects at various scales.
It can be useful for tasks like semantic segmentation and object detection. However,
MSFCN may not be explicitly designed for 3D or volumetric data. Its performance can vary
depending on the specific task and dataset. SepUNet (by J. Wu, 2022) [16] is a powerful
model for osteosarcoma segmentation, providing improved accuracy and efficiency. It
excels at handling tumors of various sizes while maintaining a small parameter count,
making it accessible and computationally efficient. However, specific limitations were
not mentioned. SLIC-S (by E. B. Kayal, 2020) [36] provides efficient superpixel-based
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segmentation into compact, spatially connected regions. But it may struggle with fine-
grained details and be sensitive to the parameter settings of the superpixel generation
process. Our 3D U-Net is designed for volumetric segmentation, utilizing 3D convolutions
and skip connections to capture spatial information and fuse multi-scale features. However,
it requires high memory and computational resources due to volumetric data processing,
which provided a slightly lower 0.8762 of DSC. FCM (by E. B. Kayal, 2020) [35] offers
flexibility in unsupervised clustering and deals effectively with complex data distributions
and partial volume effects. But it may face computational complexity and sensitivity to
parameters such as ambiguous data, which caused the lowest DSC of 0.87. From the
comparison, SepUNet, PESNet, FCM, and SLIC-S are primarily used for 2D segmentation,
whereas 3D U-Net and OSTransnet are tailored for 3D segmentation tasks. They are
specifically designed to process 3D volumes or stacks of medical images, allowing for
the segmentation of objects or regions in the volumetric space. These models leverage
the spatial information and contextual cues present in three-dimensional data to achieve
accurate and comprehensive segmentations.

0.9490 0.9450

0.9140
0.9000
0.8762
0.8700

3D U-net (Our) OSTransnet (F. FCM (E. B. Kayal, SLIC-S (E. B. SepUNet+CRF PESNET

Liu, 2022) 2020) Kayal, 2020) +Prop (J.Wu, (Baolong Lv,
2022) 2022)
3 Dimensional 2 Dimensional

Figure 6. Comparative of DSC between other researchers’ segmentation models for osteosarcoma
MRI images [15,16,35,36].

5. Conclusions

The proposed segmentation model was 3D U-Net using MONALI After a series of
training epochs, the model with the highest dice similarity coefficient value was saved for
these three different types of MRI images. In the perspective of quantitative analysis, the
T1IW, T2W, and T1W + Gd achieved good validation mean DSC of 83.75%, 85.45%, and
87.62%, respectively, at epochs 786, 792, and 700. In addition, the epoch average dice loss
decreased as the training went over the epoch and got closer to zero, which was about 0.15
to 0.17. From the perspective of qualitative analysis, the overlaid images of the predicted
output and ground truth showed high overlapping, with a small false negative and false
positive appearing. Although the relative results were good, some of the qualitative data
indicate that the proposed method was still constrained by ill-defined borders, missing
lesion portions, and other confounding factors. Furthermore, even though all training
photos have the determined minimum lesion size maximized, it is possible that some small
lesions are still filtered out during testing. In summary, the larger tumor segmentation
performed significantly better with the model trained for these three datasets.
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