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Abstract: Modern technology frequently uses wearable sensors to monitor many aspects of human
behavior. Since continuous records of heart rate and activity levels are typically gathered, the data
generated by these devices have a lot of promise beyond counting the number of daily steps or calories
expended. Due to the patient’s inability to obtain the necessary information to understand their
conditions and detect illness, such as depression, objectively, methods for evaluating various mental
disorders, such as the Montgomery–Asberg depression rating scale (MADRS) and observations,
currently require a significant amount of effort on the part of specialists. In this study, a novel dataset
was provided, comprising sensor data gathered from depressed patients. The dataset included
32 healthy controls and 23 unipolar and bipolar depressive patients with motor activity recordings.
Along with the sensor data collected over several days of continuous measurement for each patient,
some demographic information was also offered. The result of the experiment showed that less
than 70 of the 100 epochs of the model’s training were completed. The Cohen Kappa score did
not even pass 0.1 in the validation set, due to an imbalance in the class distribution, whereas in
the second experiment, the majority of scores peaked in about 20 epochs, but because training
continued during each epoch, it took much longer for the loss to decline before it fell below 0.1. In
the second experiment, the model soon reached an accuracy of 0.991, which is as expected given the
outcome of the UMAP dimensionality reduction. In the last experiment, UMAP and neural networks
worked together to produce the best outcomes. They used a variety of machine learning classification
algorithms, including the nearest neighbors, linear kernel SVM, Gaussian process, and random forest.
This paper used the UMAP unsupervised machine learning dimensionality reduction without the
neural network and showed a slightly lower score (QDA). By considering the ratings of the patient’s
depressive symptoms that were completed by medical specialists, it is possible to better understand
the relationship between depression and motor activity.

Keywords: depression; unipolar detection; bipolar disorder; classification-based; motor activity;
machine-learning; UMAP method; actigraphic registration

1. Introduction

As the second most common condition in the US, behind hypertension, depression is
the fourth disease in the world to cause disability. Additionally, the COVID-19 epidemic
has made things worse. Depressive symptoms rose from 8.5% to 27.8% throughout the
quarantine period, according to [1,2]. Depression might become the most common disease
as a result of this phenomenon, which would have a significant impact on healthcare
costs and public health. Depression of the most serious severity is known as a major
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depressive disorder (MDD) [2]. Patients may exhibit symptoms including helplessness,
depression, sadness, poor energy, sleep disturbance, low appetite, and interference with
regular activities like work, study, or household chores for at least two weeks to receive an
MDD diagnosis [3]. The prevalence of psychotic illnesses, on the other hand, is 3.89 per
1000, which is a comparatively low rate of disease [3–5].

Using on-body sensors to track one’s health has become prevalent in today’s society.
People today gather a ton of information daily, which helps to significantly enhance their
quality of life, monitor their fitness, or even quit bad habits. Because continuous records
of heart rate and activity levels are routinely recorded, these data have great promise
in addition to measuring daily steps or calories burned. The relationship between these
activity statistics and other mental-health-related disorders, including mood or personality
changes, an inability to handle stress or daily problems, and withdrawal from friends and
hobbies, is becoming increasingly clear in the field of psychiatry [5,6]. Internal biological
system disruptions are linked to mental health issues [6]. These are intricate systems, and it
can be challenging to identify changes in them since the relationships between sensor data
and mood are still poorly understood. Early warning signals, according to research, are
frequently signaled by a phenomenon known as a critical slowing and take place during
key transition times before rapid and visible changes in status [7]. Critical slowing down is
characterized by a decreased capacity for self-restoration, i.e., a retarding of the system’s
ability to recover from minor disruptions [8]. The pathologic state and the healthy state in
depression and bipolar disorder may be interpreted as two distinct stable states that are
abruptly separated from one another [9].

Certainly, the 24 h circadian clock is synchronized with many ultradian rhythmic cycles
that last between two and six hours. This drives cyclical biological rhythms in connection
with repetitive daily social rhythms [9–11]. Key symptoms of mood episodes [10] have
been proposed as biological rhythmic rhythms that are out of sync [1]. Complex dynamical
systems are time series of repeating biological rhythms and daily activities [11]. Complex
dynamical systems are rarely categorized by straightforward linear models. Therefore, the
traditional approach to analyzing and assessing motor activity recordings has been based on
mathematical methods used in the study of non-linear, complex, and chaotic systems [12].
The capacity of ML to discover non-obvious patterns was utilized to largely correctly
categorize mood states in a long-term heart rate variability study of bipolar individuals.
In the study of data from complicated dynamical systems, ML approaches have shown
promising outcomes [13]. Similar changes in cardiovascular autonomic functions have been
discovered in manic individuals by nonlinear heart rate variability investigations [14–16].
Compared to heart rate data, accelerometer recordings are significantly noisier. However,
time series of motor activity offer tremendous potential for many ML techniques. Tech-
niques like neural networks and random forests [15] have shown encouraging potential
for handling time series of activation data. However, results from high-quality analyses of
critical variables should be taken seriously, at least when overfitting prevention strategies
have been used [16]. The Random Forest algorithm’s ensemble learning technique is resis-
tant to overfitting, and it can be seen as a woodland of decision trees, where different trees
each focus on a different stochastic aspect of the data [17]. Decisions in decision trees are
transparent, and lines of reasoning may be understood [18].

In connection with this, recordings of motor activity can be used to gauge the health
of biological systems. Research demonstrates that depressive moods are associated with
both decreased daytime motor activity and increased nighttime activity when compared to
healthy controls [18,19]. Decreased motor activity and greater levels of activity variability
have also been connected to bipolar depression [20]. In the realm of mental health, mea-
surements of activity and mobility are currently a popular topic. In several investigations,
sensors have been employed to monitor patients’ movements over time and relate them to
self-reports or diagnoses [21]. The classic linear and nonlinear statistical methods are often
used in these investigations to analyze the data. Among the stated findings [22], increasing
skewness and autocorrelations, both indicators of a significant slowing down, are also
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reported [23]. As is clear, such data also have application potential for ML techniques,
which are increasingly being applied in the area of psychology and psychiatry [23].

A depression dataset based on motor activity and machine learning is used in Figure 1
to identify and categorize bipolar depression. The first phase describes the data collection
procedure from which the participants’ or patients’ motor activity records are gathered.
Data pre-processing is involved in the second step, which is followed by the ML method
with feature extraction and additional methods like random forest and decision tree. Be-
ginning with daytime motor activity and bipolar depression, the categorization analysis
method then starts. The various categorization models are assessed to complete the valida-
tion steps.
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Figure 1. Bipolar depression detection and classification using machine learning and the depression
dataset based on actigraphic registration of motor activity.

These databases face the two difficult problems listed below: Data in the medical
profession are generally protected and difficult to obtain; data frequently comprise a small
number of positive examples but considerably more bad ones, making it difficult to compare
the results of different treatments (episodes are typically not the norm, and it is much easier
to collect normal data compared to relevant cases). By making it completely available for
research and having a disproportionately high proportion of depression cases compared to
control patients, the dataset described here, called Depresjon after the Norwegian word for
depression, tries to solve these two issues. Therefore, the main contributions of this study
are as follows:

• The study provides a unique and open dataset consisting of sensor data collected
from depressed patients as well as healthy individuals. This dataset offers valuable
resources for further research in the field of depression and related disorders.

• The dataset includes a significant number of patients with both unipolar and bipolar
depression, allowing for a comprehensive analysis of different forms of depression.
The presence of healthy controls further enhances the comparative aspect of the study.

• The study employs machine learning (ML) algorithms to differentiate between “bad
days” and “good days” based on motor activity data. This analysis provides insights
into the relationship between motor activity patterns and depressive symptoms.

• The study suggests evaluation measures that can be utilized in future research on
depression detection and classification. These measures serve as a reference point for
assessing the effectiveness of different methods and algorithms.

This paper is organized as follows: In Section 2, the literature review is presented in
great detail. Section 3 provides a dataset, while Section 4 outlines the methodology. The
results are covered in Section 5 and the discussion is presented in Section 6. The assignment
is ultimately concluded in Section 7.

2. Literature Review

In terms of size reduction and energy efficiency, sensor technology has advanced
significantly over the past few years. These technological advancements have sped up the
creation of new categories of technology, like smartphones and smartwatches with potent
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sensing capabilities. Lately, experts have begun investigating fresh strategies for employing
those gadgets to covertly and continuously observe consumers. The long-term collection of
objective data has also been made possible by these technologies. Understanding users’
surroundings and actions through data analysis utilizing machine learning techniques
paves the way for the development of useful systems like activity identification, indoor
positioning, and fitness monitoring. The field of mental healthcare has a lot of potential
for these pervasive technologies. Early research has focused on the use of sensing devices
to automatically track patient sadness. For instance, Ref. [3] uses a wrist-worn activity
monitoring unit to track persons with late-life depression and discovers that their phys-
ical activity was lower than that of healthy controls. In a different study, Ref. [5] uses
smartphone sensors to track bipolar illness patients and discover that the more severe the
depression symptoms, the fewer outgoing calls they registered and the less they responded
to incoming calls. Based on cell tower IDs, they also discover that sad patients moved less.
In contrast to the previous two studies, our work uses machine learning to automatically
distinguish between depressed and nondepressed people using statistical variables gener-
ated from sensor data. A depressed mood is associated with both lower daytime motor
activity and increased night-time motor activity, as shown by systematic reviews of the
use of actigraphy in research on depression [5]. Bipolar depression shares traits with other
types of depression, such as lower motor activity and higher levels of activity variation [6].
Machine learning has also been utilized in several types of research to recognize depressive
conditions. For instance, Ref. [7] classifies manic and depressed states in bipolar patients
using smartphone data such as acceleration, sound, and position, with a 76% accuracy
rate using a Naive Bayes classifier. Our strategy is distinct since it focuses more on the
diagnosis and seeks to establish whether a patient is depressed or not. Additionally, it has
been shown that social media can be utilized to identify sadness, for example, by analyzing
submitted Instagram photos [8].

Another intriguing approach is that of [8], who describe how psychological treatments
using a smartphone as a clinical tool could reduce anxiety in schizophrenia patients. Tommy
et al.’s analysis provides information on psychiatric patients’ interest in and use of mobile
applications to monitor their mental health problems. To manage their disease, 50% of
patients across all age groups plan to utilize mobile applications to track their mental
health, according to the survey’s findings. Activity detection at different levels of activity
abstraction is described in Stockings et al.’s systematic review of numerous works [13] that
focus on the use of mobile phone sensors to detect human behavior characteristics, and
characterizes health-related activities, such as physical activity and sleep. In addition to
being used in applications, these devices also have several embedded sensors that have
been applied in a variety of fields [14,15], such as activity recognition [16] and, in particular,
an activity that helps detect mental health issues [17]. To demonstrate how inertial sensors
and GPS traces can be used as measurement instruments in mental diagnosis, Ref. [15]
uses a methodology based on feature extraction of physical motion levels and trip patterns
and a classification analysis using a naive Bayes algorithm. Using submitted Instagram
photographs and the random forest method, Ref. [18] determines participants who are
depressed. A study on smartphone data [19] proposes the classification of manic and
depressive episodes in bipolar patients. Bipolar patients are categorized by [20] using
audio, motor activity, and questionnaires. Using data on motor activity, Ref. [21] suggests a
method for identifying patterns in schizophrenia and depression.

Ref. [22] discusses research on the utilization of combining biomarkers from other tech-
niques, such as motor activity based on actigraphy data, suggesting that patient distinction
based on these biomarkers improves the diagnosis of depressed individuals. Actigraphy
activity levels are used by [23–25] to analyze the psychomotor changes that take place dur-
ing depressive episodes to assess how well the treatment for depression is working. They
conclude that early alterations in the basic activity and psychomotor speed can be used to
assess the efficacy of the therapy in depressed patients. Ref. [26] finds that the actigraphy
data contain information that enables evaluation of a subject’s depression condition in
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their research on actigraphy data using machine learning to categorize depressed persons.
Ref. [27] proposes a review to help people with depression select self-help apps. Given the
weak level of commitment to the core elements of the CBT and BA models, the value of
applications that offer cognitive behavioral therapy (CBT) or behavioral activation (BA) is
questioned. It was possible to conclude that using higher levels of scientific, technological,
and legal knowledge is necessary to increase the credibility of the apps for people with
depression [28].

On the other hand, a layered and hierarchical model for the transformation of raw
sensor data into indicators of behaviors and states related to mental health is provided by
Falciani et al. in their assessment of sensing research on mental health [29]. Reference [30]
provides a review of the study that uses screening questionnaires, public sharing on Twitter,
and participation in an online forum to predict mental illness. They conclude that passive
activity on social media can be monitored to identify sad or at-risk persons using auto-
mated detection approaches. Moreover, the methodologies employed in several reference
papers on major depressive disorder are shown in Figure 2, which also demonstrates how
various disorders can lead to MDD. It is well established that reciprocal susceptibility and
generalized anxiety disorders are two-way illnesses that can lead to serious problems.
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Nie et al. [31] focus on long dialogue emotion identification in this study and present a
system that makes use of commonsense knowledge graph guidance. In lengthy dialogues,
they address the problem of understanding emotions and demonstrate the effectiveness of
their technique. Their method improves the accuracy and comprehensiveness of emotion
identification in dialogue-based multimedia content by using commonsense knowledge.
Wang et al. [32] conduct a randomized controlled trial to investigate the efficacy of transcra-
nial alternating current stimulation (tACS) in the treatment of depression. They investigate
the possibility of tACS as a non-invasive neuromodulation technology and provide useful
information about its therapeutic benefits. The findings add to the growing amount of
research on innovative methods to depression management.

Liu et al. [33] present an overview of current breakthroughs in pulse-coupled neural
networks (PCNNs) and their image processing applications. They address the underlying
ideas and architectures of PCNNs, as well as their use in a variety of image-related tasks.
The review is an excellent resource for scholars and practitioners interested in using PCNNs
for image analysis and processing. Liu et al. [34] concentrate on region-aware picture
captioning and present a novel approach based on interaction learning. They solve the
difficulty of producing accurate and informative captions by incorporating image-level
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interactions. Their technology improves performance in generating region-aware captions
and adds to the advancement of picture captioning. Xie et al. [35] provide a study on the
prediction of unexpected rainy scenarios and propose an integrated strategy that integrates
decision makers’ emotions, dynamic Bayesian networks, and DS evidence theory. They
underline the need for addressing emotional variables in natural disaster decision-making
processes. Their research contributes to the development of more effective techniques for
dealing with unexpected rainstorms. The summary of the state of the art techniques are
listed in the below Table 1.

Table 1. List of past paper references with methodology used and results.

Ref. Dataset/Parameters Methodology/Techniques Results

[1] Knowledge discovery from
databases (KDD).

ML, RF, Feature Selection,
Data Mining, EGG, 5-fold

cross-validation, major
depressive disorder (MDD).

Data for each Day Stage are as follows:
06:00–11:59, 12:00–17:59, and

18:00–23:59.
The maximum accuracy for these

models is 98%, 88.45%, 81.65%, and
91.26%, respectively.

[2] Motor activity database
(Depresjon)

ML-based method,
Bipolar disorder, unipolar

depression

Specificity value of 0.89 and sensitivity
value of 0.97.

[3] Database for depression,
14 statistical parameters shown

motor activity, RF, feature
extraction, and

classification analysis

Specificity measures 0.920 with a
sensitivity value of 0.877.

[5]
The dataset for the Motor Activity
Recording had 291 depressed and

402 non-depressed situations.

ML, RF, DNN, CNN, SMOTE
sampling, and piezoelectric
accelerometer programming.

analyses interpretability

The weighted CNN method, which
accurately classified 65% of the data in
the initial run, was the best-performing

ML technique.
Using the SMOTE oversampling

method, DNN correctly categorized
82% of depressed patients and 84%

of controls.

[11]
PSMU was reported by 125 pupils.

Stress for 14 days, seven times
each day.

PSMU, signs of depression,
descriptive statistics Temporal

Network and Vector-Auto
Regression

A relationship between PSMU and
particular depressive symptoms

was established.

[16]
25 patients with major depressive

disorder and 21 patients with
schizophrenia were evaluated.

Supervised Convex
Nonnegative Matrix

Factorization, DMN, SN, CEN
Network, and brain

imaging research

82.6% classification accuracy
was attained.

[17] 17 people underwent
cognitive MRI.

Mini-Mental Status Test,
Rest-Activity Rhythm (RAR)

method, and English’s
Mini-Mental Status
Examination (3MS)

RAR fragmentation: per SD β = −0.43,
95% confidence interval (CI):

−0.73, −0.14.
Standard deviation β = 0.47, 95% CI:

0.14, 0.79.

[36]

Depression was present in
23 individuals.

32 individuals are devoid
of depression.

Feature Extraction, Feature
Selection, Genetic Algorithm,
RF, and Statistical Analysis of

the Montgomery–Asberg
Depression Rating Scale

AUC for a motion signal can be as low
as 0.647, whereas AUC for a method of

feature extraction can be as high
as 0.734.

The review of the literature identifies several unresolved issues in sensor-based mental
health monitoring [37,38]. First off, there are not many thorough, standardized methodolo-
gies for combining sensor data with machine learning. The development of standardized
methods that can be widely used and compared between studies should be the main goal
of future research. Second, there is not much attention paid to diagnostic models that use
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sensor data. To increase the precision and diagnostic capabilities of these models, more
research is required. Thirdly, the range of behavioral and physiological indicators collected
for monitoring mental health can be expanded by integrating multiple sensor modalities.
To increase accuracy and reliability, research should investigate the pairing of various
sensors. Additionally, there is a need to broaden the application of sensor technology to
a wider range of mental health conditions, as the majority of current studies primarily
concentrate on particular mental health conditions like depression and bipolar disorder.
Since the use of ubiquitous sensing technologies raises questions about responsible data
collection and usage, ethical and privacy considerations also need to be taken into account.
Finally, the viability of sensor-based mental health monitoring systems depends on their
validation in real-world settings and scalability. To assess the efficacy and scalability of
these technologies in practical settings, extensive trials and feasibility studies are required.
The development of novel interventions and the advancement of sensor-based mental
health monitoring can both benefit from filling in these research gaps.

This study aims to fill the research gaps found in the literature review by creating a
model for depression detection and classification using sensor data. The research offers a
unique dataset made up of sensor data gathered from depressed patients, including both
unipolar and bipolar depressive patients, as well as healthy controls. Additionally, the
dataset contains demographic data. The relationship between motor activity and depression
can be examined in greater detail thanks to this extensive dataset. A model is trained in the
study’s experiment using machine learning methods and UMAP dimensionality reduction.
In the second experiment, the model achieves an accuracy of 0.991, demonstrating its
efficacy in differentiating between people with and without depression. To obtain the best
results in depression detection and classification, UMAP and neural networks are combined.
The proposed model improves our understanding of the relationship between depression
and motor activity by taking into account the ratings of depressive symptoms completed
by medical professionals. Compared to conventional techniques that rely on judgments
and observations, it offers a method for evaluating and detecting depression that is more
objective and effective. Detailed information of the proposed model is discussed in the
subsequent sections.

3. Dataset

The actigraphic registration of motor activity revealed a more ordered behavioral
pattern in schizophrenia than in major depression, with the study of [39] serving as the
initial source for the data. It comprised the actigraph recordings of motor activity from
32 healthy individuals and 23 individuals with schizophrenia (unipolar and bipolar) who
were treated as inpatients or outpatients, respectively. These individuals are referred to
in the study as conditions and controls. Actigraphy is the study of human sleep and
activity patterns. The participants’ right wrists were adorned with an actiwatch, which
the researchers utilized to record that information. In contrast to the recordings of the
healthy participants, the patient’s data were also attached, along with personal details about
the patient, such as age, gender, education, employment, marital status, the presence or
absence of melancholy, the type of affiliation (bipolar I, bipolar II, unipolar depressive), and
the assessment of their depressive symptoms using the Montgomery–Asberg Depression
Rating Scale (MADRS) [40].

The dataset used for the implementation was derived from a study on the actigraphic
registration of motor activity in individuals with schizophrenia and major depression.
The dataset comprised actigraph recordings of motor activity from 32 healthy individuals
(referred to as controls) and 23 individuals with schizophrenia (both unipolar and bipolar).
The individuals with schizophrenia were treated either as inpatients or outpatients.

3.1. Dataset Attributes

Many characteristics in the dataset contained important details about the participants
and their motor activity patterns. These qualities consisted of the following
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• Actigraph recordings: Actiwatches worn on the participants’ right wrists were used
to record their motor activity, and these recordings are referred to as “actigraphs”.
Actiwatches are tools that track and record motion and provide unbiased assessments
of motor activity. These recordings provide information about the individuals’ sleep
habits, rest states, and general levels of activity over the course of the experiment.

• Personal information: The dataset included participant personal information such
as age, gender, education, employment, marital status, and kind of affiliation. Age
helps participants identify their life stage, whilst gender can help investigate potential
differences in motor activity patterns between males and females. Education, occu-
pation, and marital status provide information on participants’ socioeconomic status
and daily routines, which may influence their motor activity.

• Melancholy: This feature reflects whether or not the individuals experienced melan-
choly, which is characterized by sadness, low mood, or depression. It gives information
on the participants’ mental health and allows for the investigation of potential correla-
tions between melancholy and motor activity patterns.

• MADRS (Montgomery–Asberg Depression Rating Scale): The MADRS scale is a
popular instrument for evaluating depressive symptoms. It provides a standardized
measure of the severity of depression, taking into account aspects such as sorrow,
pessimism, sleep disorders, and difficulty concentrating. The inclusion of MADRS
assessments in the dataset enables researchers to look into the link between depressive
symptoms and motor activity patterns.

These factors, taken together, provide a full picture of the participants’ features,
mental health state, and motor activity patterns. Researchers can acquire insights into the
association between motor activity and mental health problems such as depression and
schizophrenia by evaluating and exploring these aspects. Furthermore, these characteristics
allow for additional research into potential factors impacting motor activity, such as age,
gender, and socioeconomic considerations.

3.2. Data Visualization

The right-hand figure on the page illustrates the age distribution of participants by
the proportion of genders. It is shown below in Figure 3, which displays the participants’
ages. Although the selection procedure was not skewed to utilize the age feature as the
data processing, it is useful in data exploration. The participants (conditions and controls)
range in age from 20 to 69 years old, with 30 females and 25 males. Higher N◦ participants
are found in the participant age groups of 45 to 54.
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The data sample gathered from the participants’ actigraphy recordings is displayed
below in Figure 4. Additionally, during the experiment, data were gathered every minute at
a frequency of 32 Hz and for movements greater than 0.05 g. This figure shows the activities
of four subjects throughout the course of 24 h; one is healthy, and the other three exhibit
the three forms of depression recognized in this study. It can be seen from the recordings
alone how a healthy participant’s activity and rest states can be separated from those of the
sad patients.
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Figure 5 shows the activity logged over 24 h by participants in the control and condition
groups, where blue and red activities are related to the recorded data of a healthy subject
and the Fourier transform of a healthy subject, respectively. Here, data for bipolar I, bipolar
II, and unipolar are all compiled.
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In addition, the dataset made available to the public was split into two directories: one
folder contains recordings from the control group along with date, timestamps, and activity
measures for each participant in a CSV file; the second directory contains recordings from
the condition group with the same parameters as the control group; and lastly, the dataset
also includes a score. The above-mentioned participants’ data are contained in the CSV file.
The majority of the recordings were recorded over a period of 13 days; however, others took
longer or shorter. Figure 6 shows how many days were spent recording for each subject.
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4. Methodology

The main objective is to determine whether or not a person is depressed. The following
method is recommended to achieve this goal: Let us denote the participant who gathered
the most data as “i”, and “di” as the total number of days during which each participant
collected data. From each day, statistical data were extracted to create feature vectors
for each participant. To prevent overfitting, a Leave-One-Out validation technique was
employed. This technique involved training the classifier using all the data from all other
users (excluding “i”) and testing it using the data from “i”. A vector of predictions was
initially collected from the trained classifier to determine the final classification for a
specific person—whether they are depressed or not. Each entry relates to the forecast for a
specific day.

The majority vote, which outputs the most frequent forecast from the group, deter-
mines the final label. This study utilized various class-balancing approaches due to the
unbalanced nature of the data. Specifically, two oversampling methods were applied to
enhance the minority class data. The first method involved duplicating randomly selected
data points through random oversampling. The second method, called SMOTE, generated
synthetic samples by selecting nearby points that were similar to each other. Two different
ML classifiers, an RF and a DNN, were tested alongside a baseline classifier that assigned
random class labels based on previous probabilities. The solution’s implementation is
depicted in the workflow diagram shown in Figure 7. Following the initial data processing
step, the feature extraction process took place. Subsequently, the data underwent testing,
training, and validation phases. To ensure accurate results and facilitate comparison, two
trials for this image were planned: one with UMAP dimension reduction and one without.
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4.1. Data Preprocessing

The data preprocessing phase plays a crucial role in preparing the dataset for further
analysis and modeling. In this study, a series of preprocessing steps were applied to ensure
the data’s quality, consistency, and compatibility with the proposed system. The data
preprocessing pipeline consisted of the following steps:

4.1.1. Leave-One-Out Validation Technique

The proposed system implemented two strategies to address the issues of overfitting
and a small dataset. Firstly, a Leave-One-Out validation technique was employed to prevent
overfitting. This technique involved training the classifier using data from all participants
except the one being tested. By evaluating the classifier’s performance on unseen data and
avoiding bias toward specific participants, overfitting was mitigated.

4.1.2. SMOTE

The system tackled the problem of class imbalance in the dataset. Some classes had
significantly fewer samples, which could lead to biased predictions. To address this, two
oversampling methods were utilized: random oversampling and the Synthetic Minority
Over-Sampling Technique (SMOTE). Random oversampling duplicated randomly selected
data points from the minority class, while SMOTE generated synthetic samples by interpo-
lating between similar data points. These techniques balanced the class distribution and
provided the classifier with a more representative training dataset.

In addition to the aforementioned steps, several other data preprocessing techniques
were applied to ensure the quality and compatibility of the dataset. Data cleaning played
a vital role in the initial phase, involving a thorough examination of the raw dataset to
identify and handle missing or erroneous values. Various imputation techniques, including
mean imputation, median imputation, or regression-based imputation, were employed
to fill in the missing values based on the nature and distribution of the data. Statistical
methods were utilized to detect outliers, and appropriate strategies such as removing
outliers or replacing them with suitable values were implemented. Moreover, categorical
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variables were transformed into numerical representations to facilitate their integration
into the modeling process.

4.2. Feature Extraction

The data were gathered and divided into 4 arrays for each of the model’s 4 classes—
healthy, bipolar I, bipolar II, and unipolar—because each class was considered. The data
processing left the time series in the shape of an array of activity values, truncated the
arrays into the same size ts and smaller arrays, then concatenated them into one array of
shape [N, ts] with N samples, each having a ts data sample. As was previously mentioned,
the dataset is a set of time series of controls and conditions, all recorded with a timestamp
of 1 min. This created a data sample of ts dimension. The classes of the dataset are listed in
the below Table 2.

Table 2. Dataset related to four classes.

Class Size (N, ts)

Healthy 697, 1440
Bipolar I 117, 1440
Bipolar II 14, 1440
Unipolar 240, 1440

Once that finished, skewed data were transformed using the SciPy library using a
z-score transformation to roughly adhere to normality:

X =
(x − µ)

σ
(1)

The z-score can be calculated using Equation (1) above for a given number from any
distribution; it is always calculated by taking X, minus the distribution’s mean, and then
dividing by the distribution’s standard deviation [41]. Each sample was labeled according
to the tape it was derived from in order to produce a rigorous target value, resulting in
4 classes overall. The authors of [42] applied an unsupervised machine learning dimen-
sionality reduction (UMAP) to improve performance, in contrast to the work of [43,44]
and others, but only two classes—healthy and depressed—were considered; no classifica-
tion of the depressed type was used. Four courses were considered in this essay, as was
previously mentioned.

The UMAP technique is a dimensionality reduction algorithm that preserves the
structure and relationships of high-dimensional data when projecting them to a lower-
dimensional space. It involves several key steps: nearest-neighbor search to construct a
graph, fuzzy-simplicial set approximation to approximate the topological structure, opti-
mization and embedding to obtain a low-dimensional representation by minimizing the
discrepancy between distances, and continuation and hierarchical structure for exploring
different scales and identifying hierarchical relationships. The UMAP architecture com-
bines these steps to generate a compact representation of the input data for visualization,
clustering, or other data analysis tasks.

The Uniform Manifold Approximation and Projection (UMAP) technique is described
in Figure 8, which shows multidimensional data transformed using the UMAP technique.
UMAP assumes that the available data samples are evenly (uniformly) distributed across a
topological space (manifold), which can be approximated from these finite data samples
and mapped (projected) to a lower-dimensional space.
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Finding a low-dimensional representation and learning the manifold structure make
up the majority of the UMAP approach.

• Finding the nearest neighbors is the first stage in learning the structure of a manifold.
Next, it moves on to linking those nearest neighbors to create a graph, which
will produce an approximation of a manifold. This process takes place in high-
dimensional space.

• The process of locating a low-dimensional representation entails projecting the ap-
proximate manifold onto a lower-dimensional space.

Figure 9 illustrates the UMAP approach schematized. Above it, the first step involves
finding the closest neighbors by building a graph, estimating the varying distance between
various regions while maintaining local connectivity, removing the fuzzy areas by changing
the n-degree neighbors, and merging the edges between intersecting regions to complete
the step. Additionally, the UMAP approach does away with the minimum distance in step
2 to prevent points from converging. To determine the ideal weights, it finally minimized
the cost function [45].
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To effectively apply the UMAP (Uniform Manifold Approximation and Projection)
algorithm in Python, the UMAP-learn library was utilized. This library provides pre-
trained pipelines that are compatible with NumPy data and Pandas [36]. The following
steps outline the implementation process:

• Import data: The first step is to import the data that will be used for UMAP. This can be
performed by loading the data from a file or retrieving it from a database, depending
on the data source.

• Set desired parameters: UMAP offers various parameters that can be set according to
the desired outcome. For example, you can specify the maximum number of items
to be included in the final result or choose the algorithm used to transform the data.
These parameters can be adjusted to customize the UMAP process to fit the specific
requirements of the analysis.

• Train UMAP: Once the desired parameters are set, the UMAP algorithm needs to be
trained on the original data. This involves feeding the data into the UMAP model and
allowing it to learn the underlying patterns and structure in the data. The training
process aims to create a low-dimensional representation of the data that preserves the
relevant information.

• Apply UMAP on the data: After the UMAP model has been trained, it can be applied
to the original data. This step involves transforming the data into a lower-dimensional
space, where each data point is represented by a set of coordinates. UMAP leverages
manifold learning techniques to map high-dimensional data onto a lower-dimensional
space while preserving the inherent structure and relationships among the data points.

• Data visualization and analysis: The final transformed data obtained from UMAP can
be utilized for data visualization and analysis. The lower-dimensional representation
allows for easier visualization, as the data points can be plotted in a reduced space.
This visualization helps in understanding the structure, patterns, and clusters present
in the data. Additionally, the transformed data can be further analyzed using various
techniques and algorithms tailored for lower-dimensional spaces.

All classes’ processed data underwent dimensionality reduction, resulting in the two-
dimensional data depicted in Figure 10, where blue dots stand for the Healthy class, red
points for Bipolar I, magenta points for Unipolar, and cyan points for Bipolar II.
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We can see from the modified data in Table 3 how sparse the data for the Bipolar II
(labeled 3) class is, in contrast to how distinct the other classes are.
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Table 3. Transformed data.

Class Size (N, ts)

Healthy 697, 2
Bipolar I 117, 2
Bipolar II 14, 2
Unipolar 240, 2

4.3. Model Training

After applying dimensionality reduction, the data were randomly divided into three
sets for training, testing, and validation. The training set comprised 70% of the data,
the testing set contained 20%, and the remaining 10% was allocated for validation. This
particular ratio is commonly employed by researchers to assess the performance of the
proposed system. Cross-entropy was utilized as a loss function with the Adam optimizer
for the classification model’s neural network, which included 52 parameters. Accuracy
score, F1-score, and Cohen Kappa were used as metrics to assess the model’s performance.

- Cross-entropy loss, also known as log loss, assesses how well a classification model
performs when producing a probability between 0 and 1.

- Accuracy score: This score assesses the model’s performance by comparing the ratio
of true positive to true negative outcomes among all created predictions.

- F1 score: comparable to accuracy score, but requires fewer observations.
- Cohen-Kappa Score: Calculations that account for chance—the degree of agreement

between qualitative assessments made of identical things by two observers or methods.

Figure 11 model is an example of a trained model with more than 100 epochs and a
batch size of 30 samples. According to the type of data used, experiment 1’s input size in
layer 1 was 1440 but experiment 2’s input size was 2 (reduced or raw).
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Figure 11. Model architecture summary.

The proposed system’s hyperparameter adjustment was critical in optimizing its
performance. To explore the hyperparameter space and discover the best combination of
values for the model, a methodical methodology was used. Grid search, random search, and
Bayesian optimization techniques were used to find the best hyperparameters. The tuned
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hyperparameters differed based on the model utilized in the proposed system. Parameters
such as the number of trees, the maximum depth of each tree, and the number of features
examined for each split, for example, were modified in a Random Forest classifier. The
learning rate, batch size, number of hidden layers, and number of neurons in each layer
were all changed in a DNN.

The tuning procedure entailed training and assessing the model numerous times with
various hyperparameter combinations, comparing their performance, and selecting the set
of hyperparameters that produced the best results. The goal of this iterative procedure was
to discover the hyperparameter configuration that maximized the model’s performance and
generalizability. The suggested system was able to fine-tune its models, maximize their per-
formance, and obtain superior outcomes when compared to using default hyperparameter
values by performing hyperparameter tweaking.

5. Results

In this study, two experiments were conducted to evaluate the performance of the
model. In Experiment 1, various metrics including accuracy, F1-score, and Cohen Kappa
were used to assess the model’s performance. These metrics provide insights into the
model’s accuracy, precision, recall, and agreement with the actual labels. In Experiment 2,
the same metrics were employed to evaluate the model’s performance. The focus was on
comparing the results with other studies, shedding light on the strengths and weaknesses
of the model concerning existing approaches. The analysis of the confusion matrix revealed
interesting findings, particularly regarding class imbalances and misclassifications, with
a notable impact on the Bipolar II class due to the limited number of samples available.
This highlights the challenges of training a model when there is an unequal distribution of
classes and the importance of addressing such imbalances in future studies. Furthermore,
additional statistical analysis was conducted to gain a deeper understanding of the data.
Various statistical measures such as mean, number of zeros, skewness, and standard
deviation were computed. These measures provided insights into the characteristics of the
patients and their behaviors, suggesting a higher level of activity and a significant decrease
in MADRS scores over time.

5.1. Experiment 1

Using the unprocessed data, the first experiment was run (not the extracted features
with UMAP). Due to the implementation of the Adam optimizer, which ends training once
the network approaches the local minimum and leaves no room for improvement, fewer
than 70 of the 100 epochs of the model’s training were completed. The cross-entropy loss
decreased and almost reached 0.2, but the validation score performed poorly in comparison
to the training score, passing 0.8 in accuracy and F1 score, whereas the validation score
remained around 0.6, and the Cohen Kappa score did not even pass 0.1 in the validation
set, due to the imbalance in the class distribution, as shown in Figure 12.

The metrics and validation score for the model are shown in Table 4 below. If the
f1-score is 0.56, the accuracy is roughly 0.63, and the Cohen Kappa validation score is 0.105.

Table 4. Metrics and validation score for the model.

Metrics Validation Score

Accuracy 0.6340
F1-score 0.5694

Cohen Kappa 0.1058
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5.2. Experiment 2

In the second experiment, the model soon reached an accuracy of 0.991, which can be
seen as expected given the outcomes of the UMAP dimensionality reduction, where it is
simple to determine the categorization of the various classes. The majority of scores peaked
in about 20 epochs, but because training continued during each epoch, it took much longer
for the loss to decline before it fell below 0.2, as seen in Figure 13.
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The metrics and validation score for the model in experiment 2 are displayed in
Table 5 below, where the Cohen Kappa validation score is 0.977, the f1-score is 0.99, and the
accuracy is around 0.991.



Diagnostics 2023, 13, 2323 18 of 23

Table 5. Metrics and score validation data.

Metrics Score

Accuracy 0.991
F1-score 0.9887

Cohen Kappa 0.9772

5.3. UMAP, Neural Network

The findings of the two trials were as expected: UMAP and neural networks worked
together to produce the best outcomes. While Garcia-Ceja et al. [43] used a variety of
machine learning classification algorithms, including the nearest neighbors, linear kernel
SVM, radial basis function kernel (RBF) SVM, Gaussian process, decision tree, and random
forest, Price et al.’s paper [41] used the UMAP unsupervised machine learning dimension-
ality reduction without the neural network in forward and showed a slightly lower score
(QDA). None of the algorithms had a score greater than 0.727. In Zanella-Calzada et al.’s
research [4], statistical feature extraction was performed to feed a random forest classifier,
which produced a score of 0.919 in Table 6.

Table 6. Comparison of other authors’ experiments and our model.

Paper Brief
Description Accuracy F1 Kappa

Ours UMAP + NN 0.991 0.9887 0.9772
[36] UMAP 0.89 / 0.773
[3] RF 0.893 0.919 /
[5] Linear SVM 0.727 0.727 /

As seen in Figure 14, the confusion matrix for both studies showed that the healthy-
labeled samples had the maximum presence, while the bipolar II samples had essentially
no presence and the remaining classes were in the middle. This brings us back to the nature
of the data source; as was previously demonstrated, there were only 14 samples in the
bipolar II class, and only two samples were left in the testing set after the data had been
divided among the training, testing, and validation sets. This has an impact on how well
the network trains because with fewer samples, it is more difficult to identify the data, as
seen in the left-bottom cell, where Bipolar II samples were mistaken for healthy samples.
As seen in columns one and three of the confusion matrix, many samples in experiment 2
were incorrectly classified as “unipolar” or “healthy”, whereas in experiment 2, all classes
except Bipolar II were correctly classified. This can be attributed to the size of both classes,
which are larger than the other two classes (Bipolar I and Bipolar II).

Numerous statistics were computed, such as the mean, number of zeros, skewness,
and standard deviation, to enhance our understanding. These figures allowed us to see that
the patients seemed to be significantly more active than the average of the patients with
the other conditions. The fact that this was more extreme than it was for the other patients
was more evidence of this. Taking a look at the patients’ MADRS scores also showed that
from the time of admission to the time of release, these patients’ MADRS scores generally
decreased significantly. This can be due to improved treatments or medications that were
not included in the dataset. Since it appears that the five patients who were routinely
misclassified by the MADRS scale share a trait but not with the controls or the patients with
the other conditions, it might be interesting to classify patients in more than just depressed
and non-depressed classes for future studies. To gain a better grasp of the classification
performance, the MADRS scores for the controls should also be gathered for future datasets.
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6. Discussion

ML has been used to develop an efficient way to classify more than one mental disorder
against healthy controls using motor activity. The main idea of this work was to assemble
an efficient model to classify multiple types of mental illness, rather than performing a
binary classification between disease and healthy controls. Approaches were also presented
to classify patients as depressed or non-depressed based on the motor activity data collected
through actigraphy devices. The actigraphic registration of motor activity revealed a more
ordered behavioral pattern in schizophrenia than in major depression. Berle et al. [39]
studied 32 healthy individuals and 23 individuals with schizophrenia (unipolar and bipolar)
that were treated as inpatients or outpatients. In contrast to the recordings of the healthy
participants, the patient’s data were also attached, along with personal details about
the patient, such as age, gender, education, employment, marital status, the presence or
absence of melancholy, the type of affiliation (bipolar I, bipolar II, unipolar depressive), and
the assessment of their depressive symptoms using the Montgomery–Asberg Depression
Rating Scale. Moreover, fewer than 70 of the 100 epochs of the model’s training were
completed. Using the unprocessed data, the first experiment was run. The Adam optimizer,
which ends training once the network approaches the local minimum, left no room for
improvement. The cross-entropy loss decreased and almost reached 0.2, but the validation
score performed poorly in comparison to the training score. Table 4 displays the model’s
metrics and validation score. The accuracy was approximately 0.63 and the Cohen Kappa
validation score was 0.105 if the f1-score was 0.56. In the second experiment, the model
quickly attained an accuracy of 0.991, which is to be expected given the results of the UMAP
dimensionality reduction, where it is easy to identify the various classes’ classifications.
The majority of scores peaked at 20 epochs on average, but because training persisted
during each epoch, it took much longer for the loss to decrease before it dropped below 0.2.
Table 5 shows the metrics and validation score for the model used in Experiment 2, where
the accuracy was roughly 0.991, the f1-score was 0.99, and the Cohen Kappa validation
score was 0.977.

The two experiments’ results confirmed what was predicted: the best results were
obtained when UMAP and neural networks collaborated. Price et al.’s paper [41] used the
UMAP unsupervised machine learning dimensionality reduction without the neural net-
work in forward and showed a marginally lower score compared to Garcia-Ceja et al. [43]
who used of a variety of machine learning classification algorithms, including the nearest
neighbor, linear kernel SVM, radial basis function kernel, SVM, Gaussian process, decision
tree, and random forest (QDA). A score of more than 0.72 was not achieved by any algo-
rithm. Moreover, the confusion matrix for both studies showed that the healthy-labeled
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samples had the maximum presence, while the bipolar II samples had essentially no pres-
ence. This can be attributed to the size of both classes, which are larger than the other
two classes. Many samples in experiment 2 were incorrectly classified as “unipolar” or
“healthy”. The patients’ mean, number of zeros, skewness, and standard deviation (std)
were calculated with the aid of these statistics. This can be due to improved treatments or
medications that were not included in the dataset. Taking a look at the patients’ MADRS
scores also showed that from the time of admission to the time of release, these patients’
MADRS scores generally decreased significantly. With the aid of these statistics, it can
be seen that the patients appeared to be much more active than the average of the other
condition patients.

The proposed system underwent various optimizations for better performance.
Leave-One-Out validation prevented overfitting, and the class imbalance was addressed
using random oversampling and SMOTE. Multiple classifiers (RF and DNN) were tested,
and UMAP was used for dimensionality reduction. Model training utilized training,
testing, and validation sets, with evaluation metrics such as accuracy, F1-score, and
Cohen Kappa. Results were compared with other studies, showcasing the system’s
performance and contributions.

The study has several limitations that should be acknowledged. Firstly, the sample
size was relatively small, consisting of 32 healthy controls and 23 depressed patients, which
may limit the generalizability of the findings. Secondly, the class distribution within the
dataset was imbalanced, particularly in the Bipolar II class, which can affect the model’s
performance and lead to biased results. Additionally, the model’s training in Experiment 1
was incomplete, potentially impacting its performance. Another limitation is the lack of
comparison with established gold-standard diagnostic methods for depression, limiting the
evaluation of the proposed ML and UMAP methods. The study primarily focused on motor
activity, neglecting other important features that could enhance the model’s performance.
Furthermore, there was a lack of external validation and long-term monitoring, which
could provide a more comprehensive understanding of the relationship between motor
activity and depressive symptoms. These limitations highlight the need for future research
to address these issues for improved validity and applicability of the ML and UMAP
methods in depression detection and classification.

7. Conclusions

This paper proposes a combination of unsupervised machine learning dimension-
ality reduction, neural networks, and uniform manifold approximation and projection
for accurate depression detection and classification. Two experiments were conducted,
one with dimensional reduction and one without, to demonstrate the effectiveness of the
proposed method. Various metrics, including accuracy score, F1-score, and Cohen Kappa
score, were utilized to assess the model’s performance. Remarkable results were achieved,
successfully distinguishing between healthy and ill instances as well as different stages of
depression. The model training process was completed in fewer epochs than anticipated,
thanks to the implementation of the Adam optimizer. However, while the cross-entropy
loss approached zero, the validation score did not perform as well as the training score. The
second experiment showed rapid convergence to a high accuracy of 0.991, aligning with the
outcomes of UMAP dimensionality reduction. Furthermore, a range of machine learning
classification techniques, such as the nearest neighbors, SVM, decision tree, random forest,
and neural network, were employed. The highest score achieved among these algorithms
was 0.727. It is worth noting that due to the limited number of samples in the Bipolar II
class, especially in the testing set, the classification performance was adversely affected.

The study’s findings suggest several future research directions. These include explor-
ing additional dimensionality reduction techniques such as t-SNE or PCA, integrating
multimodal data sources for improved accuracy, conducting longitudinal studies to un-
derstand depression’s progression, validating the proposed method in clinical settings,
and focusing on the interpretability and explainability of depression classification models.
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By pursuing these avenues, advancements can be made in the diagnosis, treatment, and
support for individuals with depression.
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