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Abstract: The advent of optical coherence tomography angiography (OCTA) is one of the cornerstones
of fundus imaging. Essentially, its mechanism depends on the visualization of blood vessels by using
the flow of erythrocytes as an intrinsic contrast agent. Although it has only recently come into clinical
use, OCTA has become a non-invasive diagnostic tool for the diagnosis and follow-up of many retinal
diseases, and the integration of OCTA in multimodal imaging has provided a better understanding
of many retinal disorders. Here, we provide a detailed overview of the current applications of OCTA
technology in the diagnosis and follow-up of various retinal disorders.

Keywords: age-related macular degeneration; macular neovascularization; optical coherence
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1. Introduction

Optical coherence tomography angiography (OCTA) is a new, non-invasive imaging
modality that provides high-quality images of the retinal and choroidal vascular struc-
tures [1]. Although it is still a developing technology, the reliability and reproducibility of
its measurements have been proven [2]. The most important advantage of the system is its
capability to display functional and structural data in simultaneous sections [1,2].

The basic working principle of OCTA is based on the detection of contrast created
by the movement of erythrocytes on a stationary background. The algorithms evaluate
the signal differences between repeating sections passing through the same location. The
signal difference between two cross-sectional B-scan OCT images, taken consecutively from
a single point on the retina, is calculated. Then, colored flow signals are superimposed on
the B-scan OCT images, and three-dimensional OCTA images (OCTA cube) are created.

Commercially available OCTA devices use swept-source (SS-OCTA) or spectral do-
main (SD-OCTA) systems. SS-OCTA devices have a wavelength of 1050 nm, providing
axial scan rates of up to 100–236 kHz A-scans per second, while traditional SD-OCTA
systems use a wavelength of 840 nm, acquiring an approximately 70–85 kHz A-scan
rate [3,4]. The longer wavelength of SS-OCTA devices enables deeper tissue penetration
of the light, providing improved imaging of the choroid and choriocapillaris with less
scattering and interference.

The auto-segmentation feature of the software can generate OCTA slabs passing
through different layers of the retina and choroid, and the segmentation level can also
be adjusted manually to avoid segmentation errors. These slabs basically include the
superficial capillary plexus, deep capillary plexus, the outer retina, and choriocapillaris
(Figure 1).
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Figure 1. Autosegmented en-face OCTA slabs: (A) superficial capillary plexus, (B) deep capillary 
plexus, (C) outer retina, and (D) choriocapillaris. 

Nowadays, OCTA has become a non-invasive diagnostic tool for the diagnosis and 
follow-up of many retinal diseases. In this section, OCTA findings in various retinal dis-
eases will be discussed. 

Limitations of OCTA and Imaging Artefacts 
The most significant limitation of OCTA is that, unlike conventional dye angio-

graphies, it is not capable of detecting vascular leakage, which is an important sign of 
blood–retinal barrier breakdown. In fact, this feature provides more prominent visualiza-
tion of vascular networks, with their exact boundaries. However, sometimes it turns into 
a disadvantage, especially with regard to inflammatory vascular pathologies, determina-
tion of the lesion activity, or differentiation of neovascularization and microvascular 
anomalies. In addition, although some devices are able to achieve a wider scan, it is still 
not possible to provide ultra-wide field retinal imaging with currently available OCTA 
systems. 

Among the OCTA artifacts, the most well-known are low-intensity artifacts, motion 
artifacts, projection artifacts, shadowing artifacts, false positive and false negative flow 
artifacts, and segmentation errors. 

Due to the reflection of the vibrational signals passing through the large blood vessels 
of the retina from the RPE/photoreceptor layer, a copy image of these large retinal vessels 
may be formed in the deep layers of the retina and is known as the “projection artifact”. 
With the development of software updates for projection artefact removal and motion-
correction and dual tracking, these artifacts could be partially ruled out. However, in this 
case, post-processing artifacts may develop due to the intervention of the device to reduce 
the artifacts. 

Since OCTA has lower and upper threshold values for flow detection, it may not be 
able to detect reduced flows below its threshold limit or high turbulent flows above its 
threshold value. The inability to detect reduced flow is known as the false negative flow 
artifact, while the inability to show rapid flow in the large choroid vessels is known as the 

Figure 1. Autosegmented en-face OCTA slabs: (A) superficial capillary plexus, (B) deep capillary
plexus, (C) outer retina, and (D) choriocapillaris.

Nowadays, OCTA has become a non-invasive diagnostic tool for the diagnosis and
follow-up of many retinal diseases. In this section, OCTA findings in various retinal
diseases will be discussed.

Limitations of OCTA and Imaging Artefacts

The most significant limitation of OCTA is that, unlike conventional dye angiographies,
it is not capable of detecting vascular leakage, which is an important sign of blood–retinal
barrier breakdown. In fact, this feature provides more prominent visualization of vascular
networks, with their exact boundaries. However, sometimes it turns into a disadvantage,
especially with regard to inflammatory vascular pathologies, determination of the lesion
activity, or differentiation of neovascularization and microvascular anomalies. In addition,
although some devices are able to achieve a wider scan, it is still not possible to provide
ultra-wide field retinal imaging with currently available OCTA systems.

Among the OCTA artifacts, the most well-known are low-intensity artifacts, motion
artifacts, projection artifacts, shadowing artifacts, false positive and false negative flow
artifacts, and segmentation errors.

Due to the reflection of the vibrational signals passing through the large blood vessels
of the retina from the RPE/photoreceptor layer, a copy image of these large retinal vessels
may be formed in the deep layers of the retina and is known as the “projection artifact”.
With the development of software updates for projection artefact removal and motion-
correction and dual tracking, these artifacts could be partially ruled out. However, in this
case, post-processing artifacts may develop due to the intervention of the device to reduce
the artifacts.
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Since OCTA has lower and upper threshold values for flow detection, it may not be
able to detect reduced flows below its threshold limit or high turbulent flows above its
threshold value. The inability to detect reduced flow is known as the false negative flow
artifact, while the inability to show rapid flow in the large choroid vessels is known as the
“fringe wash-out” artifact. Additionally, the suspended scattering particles in motion is a
newly described artifact which develops due to non-erythrocyte moving particles.

2. Clinical Applications
2.1. Age-Related Macular Degeneration

Histopathological studies of age-related macular degeneration have revealed signifi-
cant loss of choriocapillaris, even in the early stages of the disease [5]. OCTA technology
has further strengthened this existing knowledge.

In non-neovascular age-related macular degeneration (AMD), it has been shown that
the vascular density of the choriocapillaris decreases with increased drusen density [6].
In fact, this change is not limited to the choriocapillaris slab alone, but it has been shown
to affect all choroidal layers [7]. Especially in the presence of reticular pseudodrusen,
the loss of choriocapillaris signal in OCTA is higher than those in other drusen types [8].
In a study comparing SS-OCTA and SD-OCTA features under drusen, a 30.4% signal
loss was observed in SS-OCTA and a 73.9% signal loss was observed in SD-OCTA. As
a result of this study, it was observed that all signal decreases under the drusen were
not associated with the flow reduction of the choriocapillaris but could also be caused by
a false-negative flow signal, due to drusen-induced blockage—a “shadowing artefact”.
There is not yet any correction software that can totally eliminate these shadowing artifacts.
Therefore, the researchers have used retinal pigment epithelium (RPE) elevation maps,
to extract these parts, in order to obtain more accurate choriocapillaris vascular density
measurements. As a result of this study, it was discovered that there was a significant flow
signal loss in choriocapillaris compared with healthy controls, even in areas without drusen
in non-neovascular AMD cases [9].

In geographic atrophy, which is the advanced form of non-neovascular AMD, it has
been reported that there is a significant loss of choriocapillaris flow under the RPE atrophy
area, and flow abnormalities are also observed at the borders of the atrophy [10]. The loss
of blood flow around geographic atrophy has been reported to be directly proportional to
the growth rate of geographic atrophy [11].

In contrast to conventional dye angiographies, OCTA has provided a visualization
of the exact boundaries and intrinsic details of neovascular membranes. Analysis of
macular neovascularization (MNV) composition revealed a similar capability to detect
capillary pattern, as well as mixed and mature vessels with OCTA and indocyanine green
angiography (ICGA), butthe MNV area measured by OCTA was reported to be smaller
than ICGA [12]. The most common type of MNV observed in neovascular AMD is type
1 MNV, in which MNV localization occurs between the RPE and the Bruch’s membrane.
These lesions, which are observed as fibrovascular pigment epithelial detachments (PED)
or late leakage of an undetermined source on fluorescein angiography, can be visualized
in the choriocapillaris section of OCTA. According to the data from the COFT-1 study
group, the rate of OCTA imaging, supported by structural OCT to detect type 1 MNV,
was 85.7% [13]. It has been shown that even type 1 MNVs, which cannot be detected by
fluorescein angiography or SD-OCT, can be detected with OCTA [14].

Type 2 MNVs are located above the RPE and are usually seen as smaller but sharper
vascular structures than type 1 MNVs in the outer retinal section of OCTA [15]. Type 3
neovascularization originates from the deep capillary plexus. Eyes with unilateral type
3 MNV were also reported to have decreased choriocapillaris perfusion versus fellow
non-neovascular eyes, and therefore, it was suggested that outer retinal ischemia might
play a role in the type 3 MNV pathogenesis [16].

Many OCTA imaging features, such as the pattern of MVN (medusa, sea fan, glomeru-
lar, lacy wheel, etc.), the branching characteristics, anastomosis and loop formation, and
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the dark halo appearance around the lesion have been described previously [17]. Several
researchers have tried determining the lesion activity criteria according to these OCTA
pattern characteristics. The pattern of medusa or sea fan, thin capillary structures with
numerous branching instead of large thick vessels, the formation of anastomosis and loops,
the vessel termini forming peripheral arcades, and the hypointense halo appearance around
the lesion, were accepted as activity criteria [18]. If at least three of these five criteria are
present, the lesion is considered active. In particular, the existence of a thin capillary struc-
ture and arcade formation were identified as the most related criteria with the possibility of
exudation [19].

However, an international panel of experts on the OCTA nomenclature of neovascular
AMD has recently introduced new, simplified terminology to provide standardization.
According to this latest terminology, maturity of the MNV lesion was categorized as
immature, mature, and hyper-mature, according to the density of the capillaries [20]. The
MNV lesion was defined as immature in the presence of a dense network of capillary vessels
(Figure 2). Mature MNV lesions are those which have a reduced density of capillaries with
a well-developed network of vessels. If the MNV lesion was composed of well-delineated
vessels with almost no capillaries, it was categorized as hyper-mature. The central trunk
was defined as a single large vessel, located anywhere within the lesion, branching into
smaller vessels.
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Figure 2. Classification of the maturity of type 1 macular neovascularizations. (A) An immature
type 1 MNV with abundant number of capillaries. (B) A mature type 1 MNV with reduction in the
number of capillaries with a well-developed network. (C) A hyper-mature type 1 MNV with almost
no capillaries.

With the increasing use of OCTA in AMD, new concepts such as “quiescent MNV”
have emerged. Quiescent type 1 MNV is a novel subclinical subtype of neovascular
AMD that does not yet show signs of activation (i.e., exudative symptoms) (Figure 3).
The presence of subclinical MNVs has been demonstrated in 14.4% of patients with non-
exudative AMD [21]. Visualization of these quiescent, subclinical type 1 MNV lesions by
OCTA provides close follow-up of the lesions and facilitates early recognition of exudation.
The risk of exudation was 13.6 times greater for eyes with subclinical MNV detected by
SS-OCTA, compared with eyes without subclinical MNV after 24 months [22].

Various changes in the morphology of MNV may also occur under anti-vascular
endothelial growth factor (anti-VEGF) therapy. The formation of thicker and dilated vessels
in the lesion is called “arteriolization”. There are controversial results associated with
changes in MNVs receiving anti-VEGF therapies. Minimal changes in the MNV total area
and vessel density are reported after anti-VEGF [23]. McClintic et al. reported that active
MNV shrank after therapy and then grew again [24]. However, Xu et al. reported the
growth of MNVs under anti-VEGF therapy [25]. Bailey et al. reported that growth of 20%
per month in silent MNVs carries a risk of exudation [26]. These studies suggest that the
growth detected by OCTA is an important criterion for assessing MNV activity.
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vascular lesion decreases, due to the loss of small caliber vessels [27]. Lacunarity is a meas-
urement of vascular diversity. High values of lacunarity correspond to heterogeneous net-
works, whereas low values correspond to the homogeneity of the neovascular lesion. Eval-
uations with OCTA after intravitreal anti-VEGF injections showed a change in neovascu-
lar network from a homogeneous structure with a small branching network to a hetero-
geneous structure with the loss of capillaries [18]. 
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Figure 3. Treatment-naïve quiescent macular neovascularization (MNV). (A) Choriocapillaris slab
of optical coherence tomography angiography and (B) flow data superimposed horizontal B-scan
shows well-defined MNV without any exudative feature.

New mathematical formulas, fractal dimension and lacunarity, quantitatively enabled
the evaluation of MNV characteristics with the help of sophisticated software, such as
ImageJ FracLac Plugin, Fractalyse, and MATLAB coding language (Figure 4). The frac-
tal dimension (FD) is a new quantitative parameter that indicates the complexity of the
lesion. It has a value between 0 and 2. A higher value refers to the increased complexity
of the lesion. Al-Sheikh et al. showed that after anti-VEGF treatment, complexity of the
neovascular lesion decreases, due to the loss of small caliber vessels [27]. Lacunarity is
a measurement of vascular diversity. High values of lacunarity correspond to heteroge-
neous networks, whereas low values correspond to the homogeneity of the neovascular
lesion. Evaluations with OCTA after intravitreal anti-VEGF injections showed a change in
neovascular network from a homogeneous structure with a small branching network to a
heterogeneous structure with the loss of capillaries [18].
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Figure 4. Quantitative analysis of a type 1 MNV lesion with ImageJ version 1.52 u. (A) The area
of the MNV was manually outlined and measured as 0.792 mm2. (B) Then, a skeleton model was
created by the ImageJ software following Otsu binarization, and the total vessel length of the lesion
was measured as 8.3 mm. (C) Number of skeleton intersection points (in red color) were calculated as
56. (D) Using box contig formula (purple boxes), the fractal dimension and lacunarity values were
measured as 1.52 and 0.38, respectively.
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2.2. Pachychoroid Neovasculopathy

Type 1 MNV, that is associated with classical pachychoroid features in the absence
of characteristic age-related macular degeneration features, has been defined as pachy-
choroid neovasculopathy (PNV) [28]. In a study evaluating 88 eyes of 61 central serous
chorioretinopathy cases with flat irregular PED appearance, it was reported that MNV was
detected with OCTA in one-third of the cases [29].

OCTA is not affected by choroidal hyperpermeability and can show the exact size of
the neovascular membranes in PNV cases (Figure 5). However, in 11.8% of ICGA-proven
PNV cases, it was stated that OCTA could not identify MNV due to blockage of fluid or
hemorrhage [30]. In contrast, chroroidal hyperpermability and the extend of RPE alterations
may limit the use of ICGA for the MNV detection in these cases. Demirel et al. reported a
higher sensitivity with OCTA in detection of type 1 MNV, compared to conventional dye
angiography in cases with pachychoroid spectrum disease [31].
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Figure 5. Pachychoroid neovasculopathy: (A) Choriocapillaris slab of optical coherence tomography
angiography shows macular neovascularization. (B) Flow-data-superimposed horizontal B-scan
reveals flat irregular pigment epithelial detachment with intrinsic flow signal and dilated Haller
vessels (yellow arrows).

In the concept of pachychoroid-related disorders, another application of OCTA is the
visualization of intervortex venous anastomoses passing through the watershed zone in the
macular area. Choroidal slabs of en-face OCTA images could be used for both qualitative
and quantitative evaluations of intervortex venous anastomoses [32].

2.3. Polypoidal Choroidal Vasculopathy

Polypoidal choroidal vasculopathy (PCV) is characterized by aneurysmal dilatations
of the internal choroidal network. Polyps are observed as round structures showing
hyper or hypo flow in OCTA [33]. In OCTA imaging, the branching vascular network
structure can be visualized better than polypoidal lesions, due to the different intrinsic flow
characteristics of polyps (turbulent flow, thrombosis) (Figure 6).
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Figure 6. Polypoidal choroidal vasculopathy: (A,B) Polypoidal structures and branching vascular
network on the early and late phases of indocyanine green angiography. (C,D) Hyporeflective polyps
on the choriocapillaris slab of the en-face OCTA and an inverted V shaped polyp with intrinsic flow
signal on corresponding flow signal superimposed horizontal B-scan OCT. (E,F) Branching vascular
network on choriocapillaris slab of en-face OCTA and flat irregular pigment epithelial detachment
appearance corresponding to branching vascular network on the flow signal superimposed horizontal
B-scan OCT.

In a study comparing the findings of ICGA and OCTA in PCV, a smaller number
of vascular networks, with a larger number of polyps, was reported with ICGA [34].
Additionally, the area of the PCV complex detected by OCTA is wider than the area
detected in ICGA in the majority of cases [35]. However, the polyp sizes detected by OCTA
are smaller than those of the ICGA [34]. Polypoidal lesions form cluster-like structures in
OCTA in 74% of cases, and these cluster-like structures are associated with particularly
large-sized polypoidal lesions [36].

2.4. Other Macular Neovascularizations

Macular neovascularization may be idiopathic or may develop secondarily to degener-
ative causes (angioid streaks (Figure 7), myopic MNV (Figure 8)), hereditary degenerative
disorders (vitelliform macular dystrophy), inflammatory pathologies (multifocal choroidi-
tis, MEWDS (Figure 9)), infectious agents (tuberculosis, toxoplasmosis), tumor, and trauma.

OCTA studies in angioid streaks have shown that vascular involvement in the level of
choriocapillaris exists even before the development of secondary MNV [37]. In addition,
OCTA is an effective method for the detection of MNV in these cases [38].

In the presence of high myopia, even without the accompanying staphyloma or MNV,
it is difficult to obtain high-quality OCTA images due to the prolonged axial length. In
myopic MNV, the lesion may be difficult to detect because the MNV is smaller than other
MNV lesions. Usually, it appears as a hyperreflective material localized on RPE and may
not be accompanied by subretinal or intraretinal fluid or is minimal. Therefore, even if
OCTA is a part of multimodal imaging in the diagnosis and follow-up of myopic MNV, it
should be used in combination with other imaging methods, due to these limitations.
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Especially in the presence of inflammatory and infectious MNVs, due to the presence
of dense hyperreflective material and inflamed choriocapillaris, conventional dye angiogra-
phies may not be able to detect the plaque or hot spot appearance of an MNV. In these
cases, it has been shown that the underlying MNVs can be easily visualized with the help
of OCTA [39].
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Figure 8. Myopic macular neovascularization: (A) Spectral domain optical coherence tomography
shows a subfoveal hyperreflective lesion. (B) Outer retinal slab of OCTA shows an irregular type 2
macular neovascularization. (C) Intrinsic flow signal is observed in the hyperreflective MNV lesion
on the flow data superimposed horizontal B-scan.
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Figure 9. Multimodal fundus images of a patient with inflammatory macular neovascularization
(MNV): (A) Fluorescein angiography shows centrally located type 2 MNV lesion. (B) Indocyanine
green angiography shows hypocyanescent spots on the macula. (C) Outer retina slab of en-face OCTA
reveals the type 2 MNV together with (D) intrinsic flow signal on the flow signal superimposed
horizontal B-scan OCT.

OCTA imaging is also a helpful diagnostic tool for hereditary macular and retinal
dystrophies. In vitelliform macular dystrophy, MNV lesions may not be visualized in FA or
ICGA, due to the blocking effect of vitelliform material. Additionally, in the recirculation
phase, the staining of vitelliform material can also avoid the visualization of MNV. OCTA is
a useful device for the visualization of MNVs in these cases [4]. Regarding other hereditary
dystrophies such as Stargardt or retinitis pigmentosa, it has been reported that the distance
between the capillaries increases in the areas above the focal external retinal changes. The
region of the choriocapillaris changes has been shown to be smaller than the region of
overlying RPE and photoreceptor alteration, suggesting that the vascular loss in these cases
was secondary to outer retinal changes [40].

2.5. Diabetic Retinopathy

Diabetic retinopathy is one of the microangiopathic complications of diabetes. It has
been reported that macular microvascular changes can be visualized with OCTA even
when the fundus examination does not yet show any signs of diabetic retinopathy [41].

Microaneurysms, capillary non-perfused areas, capillary tortuosity, and dilatation,
choriocapillaris abnormalities, IRMA, enlargement of the foveal avascular zone (FAZ),
increase in the perifoveal intercapillary space, and retinal and disc neovascularizations can
be visualized with OCTA. In addition to these qualitative data, it is capable of quantitatively
measuring capillary non-perfusion areas, the FAZ area, the FAZ circularity index, and
vascular densities (Figure 10). Among the quantitative parameters, the most frequently
studied are the FAZ area measurements. As the severity of diabetic retinopathy increases,
the FAZ area enlarges [42]. This enlargement is particularly pronounced in the deep
capillary plexus [43].
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Figure 10. Quantitative measurements in diabetic retinopathy: (A) measurement of non-perfused
areas. (B) Measurement of foveal avascular zone area and perimeter. Note the enlargement and
irregularity of the FAZ.

Microaneurysms may also be detected by OCTA in DRP (Figure 11). Compared to
fluorescein angiography, OCTA may be insufficient to detect microaneurysms since some
microaneurysms contain reduced blood flow below the OCTA threshold value. Addi-
tionally, another important limitation of OCTA is the auto-segmentation error caused
by macular edema. Eyes with DME that respond poorly to anti-VEGF therapy have a
significantly larger FAZ area in OCTA and more microaneurysms in the deep capillary
plexus, compared to eyes that respond well to anti-VEGF therapy [44]. Another important
limitation to be considered is that the edematous cystoid spaces can be confused with the
exact ischemic areas. The cystoid spaces in DME appear devoid of flow on the OCTA and
are oblong in shape with smooth borders that do not follow the distribution of surround-
ing capillaries, whereas areas of capillary nonperfusion have a grayer hue and irregular
borders [45].
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Figure 11. A 6 mm × 6 mm OCTA scan from a patient with diabetic retinopathy demonstrating
microaneurysm. (A) On deep capillary plexus slab of OCTA, microaneurysm is seen as hyperreflective
vascular lesion (yellow arrow). (B) Intrinsic flow signal of the microaneurysm (yellow arrow) on flow
data superimposed B-scan. (C) A thin-walled oval microaneurysm (yellow arrow) is observed on
structural B-scan OCT.

Proliferative diabetic retinopathy, though OCTA does not provide vascular leakage
information, may be useful in the differentiation of IRMA and NVE. Especially on the
flow data superimposed B-scans, the flow signal is located under the internal limiting
membrane in IRMA. IRMA, which is considered a risk factor for developing proliferative
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diabetic retinopathy, has been shown to be localized adjacently to preretinal NVE areas in
OCTA [46].

Nowadays, it is possible to generate composite OCTA images, providing a wide-field
view up to 80◦, using the montage tool of the devices. However, the field of view is
still significantly less than the 200◦ provided by ultra-wide field (UWF) FA systems and
wide-field OCTA imaging is the most promising technique for the near future. The mean
percentages of correct neovascularization grading were reported to be very similar using
SS-OCTA with B-scans (87.8%) and using FA 86.2% (p = 0.92) [47]. Couturier et al. observed
that the detection rate of nonperfusion areas was higher with swept-source, wide-field
OCTA than with UWF FA [48].

2.6. Retinal Vein Occlusions

Retinal vein occlusions are the second-most-common retinal vascular disease after
diabetic retinopathy. OCTA can be used to evaluate both branch retinal vein occlusions
(BRVO), and central retinal vein occlusions (CRVO). In these cases, increased venous folding,
capillary nonperfusion areas, intraretinal shunt vessels, and emerging neovascularizations
can be easily visualized with OCTA (Figure 12).

Diagnostics 2023, 13, x FOR PEER REVIEW 11 of 17 
 

 

brane in IRMA. IRMA, which is considered a risk factor for developing proliferative dia-
betic retinopathy, has been shown to be localized adjacently to preretinal NVE areas in 
OCTA [46]. 

Nowadays, it is possible to generate composite OCTA images, providing a wide-field 
view up to 80°, using the montage tool of the devices. However, the field of view is still 
significantly less than the 200° provided by ultra-wide field (UWF) FA systems and wide-
field OCTA imaging is the most promising technique for the near future. The mean per-
centages of correct neovascularization grading were reported to be very similar using SS-
OCTA with B-scans (87.8%) and using FA 86.2% (p = 0.92) [47]. Couturier et al. observed 
that the detection rate of nonperfusion areas was higher with swept-source, wide-field 
OCTA than with UWF FA [48]. 

2.6. Retinal Vein Occlusions 
Retinal vein occlusions are the second-most-common retinal vascular disease after 

diabetic retinopathy. OCTA can be used to evaluate both branch retinal vein occlusions 
(BRVO), and central retinal vein occlusions (CRVO). In these cases, increased venous fold-
ing, capillary nonperfusion areas, intraretinal shunt vessels, and emerging neovasculari-
zations can be easily visualized with OCTA (Figure 12). 

 
Figure 12. En-face OCTA image showing superficial (A) and deep (B) capillary plexuses of a patient 
with superiotemporal branch vein occlusion in his left eye. Capillary non-perfusion areas and retinal 
shunt vessels are seen. Retinal shunt vessels are especially pronounced in the deep capillary plexus. 

It has been shown that there is a decrease in the vascular density of both the superfi-
cial and deep capillary plexi in venous occlusions. However, the amount of microvascular 
occlusion is more pronounced in the deep vascular plexus compared to the superficial 
plexus, and appears to be associated with the development of paracentral acute middle 
maculopathy [49]. In a study evaluating the effect of FAZ changes on visual prognosis in 
CRVO cases, it was reported that the FAZ was enlarged in both the superficial and the 
deep capillary plexus in OCTA, and there was a significant correlation between the FAZ 
area and visual acuity in cases without macular edema [50]. 

The most important limitation of OCTA in the imaging of venous occlusions is subop-
timal segmentation due to intraretinal edema or retinal thinning. In addition, peripheral 
retinal ischemia cannot be evaluated due to the limited field of view of OCTA. Although 
a study comparing fluorescein angiography and OCTA showed high compatibility be-
tween the two methods for detecting non-perfusion areas, it was shown that 46% of the 
eyes had nonperfusion areas and 32% had retinal neovascularization in the area outside 
the 8×8 mm OCTA screening area [51]. However, this limitation will soon be eliminated 
with the promotion of wide-field OCTA systems. For the detection of marked nonperfu-
sion, widefield OCTA had been reported to have a sensitivity of 100% and a specificity of 
64.9% [52]. 

  

Figure 12. En-face OCTA image showing superficial (A) and deep (B) capillary plexuses of a patient
with superiotemporal branch vein occlusion in his left eye. Capillary non-perfusion areas and retinal
shunt vessels are seen. Retinal shunt vessels are especially pronounced in the deep capillary plexus.

It has been shown that there is a decrease in the vascular density of both the superficial
and deep capillary plexi in venous occlusions. However, the amount of microvascular
occlusion is more pronounced in the deep vascular plexus compared to the superficial
plexus, and appears to be associated with the development of paracentral acute middle
maculopathy [49]. In a study evaluating the effect of FAZ changes on visual prognosis in
CRVO cases, it was reported that the FAZ was enlarged in both the superficial and the deep
capillary plexus in OCTA, and there was a significant correlation between the FAZ area
and visual acuity in cases without macular edema [50].

The most important limitation of OCTA in the imaging of venous occlusions is subop-
timal segmentation due to intraretinal edema or retinal thinning. In addition, peripheral
retinal ischemia cannot be evaluated due to the limited field of view of OCTA. Although a
study comparing fluorescein angiography and OCTA showed high compatibility between
the two methods for detecting non-perfusion areas, it was shown that 46% of the eyes
had nonperfusion areas and 32% had retinal neovascularization in the area outside the
8 × 8 mm OCTA screening area [51]. However, this limitation will soon be eliminated
with the promotion of wide-field OCTA systems. For the detection of marked nonperfu-
sion, widefield OCTA had been reported to have a sensitivity of 100% and a specificity of
64.9% [52].

2.7. Retinal Artery Occlusion

Retinal artery occlusion is an ophthalmic emergency. In the literature, there are a
limited number of case reports or case series detailing the use of OCTA in retinal artery
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occlusion. In acute retinal perfusion limitations, OCTA imaging has been proven to reveal
the precise boundary of the ischemic retinal area, especially on the deep capillary plexus
(Figure 13) [53].
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2.8. Idiopathic Macular Telangiectasia Type 2

Idiopathic macular telangiectasia type 2 (MacTel 2 or perifoveal telangiectasia) is a
macular disorder characterized by Muller cell degeneration and loss. The vascular changes
in the MacTel type 2 include the enlargement of the FAZ, increase in the distance between
capillaries, capillary losses, telangiectatic changes, and the formation of superficial and
deep capillary plexi anastomosis (Figure 14).
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An OCTA-based staging system was described by Toto et al. [54]. The authors classified
the extent of the vascular changes on OCTA according to the lateral extension of vascular
anomalies, using the foveal center as the main landmark: temporal to the fovea, spread
nasally, circumferentially, and outer retinal neovascularization [54]. While the superficial
capillary plexus is usually preserved in the early stage of the disease, early changes originate
from the deep capillary plexus, especially the temporal parafoveal area [55]. The right-
angled retinal venules, extending from the epiretinal surface to the deep capillary plexus,
are also an additional imaging feature described with OCTA [56].

In the advanced stages, vascular abnormalities also affect the outer retina, which is
normally avascular. Neovascularization develops in the subretinal space. Anastomosis
may occur between subretinal neovascularization and choroidal circulation. Epiretinal neo-
vascularizations are another newly defined OCTA finding [57]. In these cases, intraretinal
pigment formation, and severe retinal thinning have been reported.

2.9. Other Vascular Diseases of the Retina

Microvascular abnormalities in sickle cell disease affect both superficial and deep
capillary plexi. OCTA has higher sensitivity than FA for the detection of macular mi-
croangiopathies in asymptomatic patients [58]. These findings can be seen at any stage of
retinopathy, but OCTA findings are more pronounced in the presence of the SC genotype
or in proliferative retinopathy [59].

If deep capillary ischemia affects the inner nuclear and external plexiform layers, it is
called paracentral acute middle maculopathy (PAMM). If it influences the outer plexiform
and the outer nuclear layers, then it is called acute macular neuroretinopathy (AMN).
Although these two clinical conditions were initially classed as two different types of the
same disease, they are now considered different clinical entities. The deep vascular complex
consists of two different capillary networks: the intermediate and the deep capillary plexus.
If the intermediate plexus is affected, PAMM develops; if the deep capillary plexus is
affected, AMN develops. These two clinical pictures are differentiated from each other
according to the retinal layer, where the hyperreflective band is located in the structural
B-scan images, or where nuclear atrophy develops. In OCTA, vascular density reduction is
observed in the deep capillary plexus [60].

Susac syndrome is a microangiopathy that affects the arterioles of the brain, retina,
and cochlea. It may cause repetitive retinal artery occlusions. In OCTA, a decrease in
vascular density has been shown in both superficial and deep capillary plexi, and partial
improvement in vascular densities has been reported under treatment [61].

3. Conclusions

OCTA has gained widespread use, both in daily practice and for clinical research
purposes. It has been shown to be very useful, especially in the diagnosis and follow-
up of many retinal vascular diseases and MNVs. Although it has not yet completely
replaced conventional dye angiographies, the limitations that restrict its clinical use are
being overcome with the advancements made in this developing technology.
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