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Abstract: When it comes to skin tumors and cancers, melanoma ranks among the most prevalent
and deadly. With the advancement of deep learning and computer vision, it is now possible to
quickly and accurately determine whether or not a patient has malignancy. This is significant since
a prompt identification greatly decreases the likelihood of a fatal outcome. Artificial intelligence has
the potential to improve healthcare in many ways, including melanoma diagnosis. In a nutshell, this
research employed an Inception-V3 and InceptionResnet-V2 strategy for melanoma recognition. The
feature extraction layers that were previously frozen were fine-tuned after the newly added top layers
were trained. This study used data from the HAM10000 dataset, which included an unrepresentative
sample of seven different forms of skin cancer. To fix the discrepancy, we utilized data augmentation.
The proposed models outperformed the results of the previous investigation with an effectiveness of
0.89 for Inception-V3 and 0.91 for InceptionResnet-V2.

Keywords: melanoma; deep learning; artificial intelligence; diagnostics; Inception-V3; InceptionResnet-V2

1. Introduction

Among all cancers, skin tumors have the highest potential for malignancy [1,2].
Melanoma (MEL), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and non-
melanoma comprise the most common types of skin cancer. However, actinic keratosis (AK),
Kaposi sarcoma (KS), lymphoma, and keratoacanthoma [3,4] are exceptionally rare forms of
cancer. Figure 1 depicts an upward trend in the incidence of all types of skin cancer.
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The majority of cases of skin cancer fall into two categories: melanoma and non-
melanoma [1,6,7]. Cancer mortality and medical expenditures are both increased by the
presence of malignant lesions, so scientists have been working on techniques that can
identify pre-malignant skin lesions with a high degree of accuracy and flexibility. Due to
their rapid proliferation, invasion, and dissemination, malignant melanocyte cells must be
identified at an early stage [8]. Dermoscopy is commonly used by specialists to identify the
malignancy or benignity of a skin lesion.

The term “dermoscopy” refers to a method that makes use of a magnifying lens and
a light source to enhance the visibility of various medical features [9,10]. It reveals the
hidden morphologies to the naked eye. The ABCD rule [11], a seven-point checklist [12],
and pattern analysis [13] are just some of the methods that have been established to enhance
the precision of skin melanoma identification. However, dermoscopy images taken by
laypeople have a prognostic validity of 75% to 84% for melanoma; the processing is time-
consuming and subjective, depending on the dermatologist’s skill [14]. Professionals
have created computer-aided diagnosis (CAD) methods to help them work around these
problems [10,14]. Advances in computer-aided cancer diagnosis can be largely attributed
to deep learning (DL)-based AI [15,16].

Applying DL methods in skin lesion classification helps automate the screening and
early diagnosis of skin cancer, even in areas without easy access to dermatologists or
laboratories [17]. Traditional classifiers [18,19] require feature extraction performed by
humans before being supplied into computer-aided dermoscopy image processing.

In this research, various models were used (including InceptionV3 and Inception-
Resnet). InceptionResnet-V2 incorporates the residual connections within the Inception
design. For this reason, Inception-Resnet is the most reliable option. Computational
effectiveness is poor and fewer parameters are realized in the Inception-Resnet model.
Additionally, it provides a high-performance boost, efficient use of computing resources,
and a slightly higher computation load, all of which contribute to the Inception-Resnet
network’s high-performance output.

Our examination of deep neural network (DNN) classification performance on the
HAM10000 dataset led us to the conclusion that the employed InceptionResnet-V2 model
was more accurate at classification than competing DNNs. This means that individual
investigations may be needed to determine which network works best with specific medical
imaging datasets.

As a consequence, the following are the paper’s primary contributions:

1. An enhanced super-resolution generative adversarial network (ESRGAN) was em-
ployed using 10,000 training photos to generate high-quality images for the Human
against Machine dataset (HAM10000 dataset [20]).

2. Because the HAM10000 dataset contains uneven data, we employed augmentation to
balance the data throughout all classes.

3. A deep comparative evaluation employing several assessment parameters such as
accuracy, specificity, sensitivity, a confusion matrix, and the F1-score established
whether the proposed system was feasible.

4. Together with Inception-V3 and InceptionResnet-V2, it was used to fine-tune the
weights of HAM10000-trained networks.

5. To boost the recommended method’s scalability and safeguard against overfitting,
we used a supplementary training procedure assisted by several training strategy
variations (e.g., data augmentation, learning rate, batch size, and validation patience).

For the identification of numerous skin lesions, this research proposed an optimiza-
tion technique involving transfer learning models. For this, we used Inception-V3 and
InceptionResNet-V2 architectures to pre-train the weights of each model. The HAM10000
dataset, which contains images of skin lesions, was utilized to compare the models’ results.
The dataset’s class imbalance necessitated an oversampling technique. The rest of the paper
is organized as follows. Section 2 displays the cited references. In Section 3, we detail the
dataset, the analysis methods employed, and the proposed methodology. The findings
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of the experiments are presented in Section 4, and their analysis follows in Section 5. In
Section 6, we provide a summary.

2. Related Work

Commonplace machine learning (ML) and DL techniques have been employed in
CAD systems to process images of skin lesions following the standard image analysis
pipeline. Several methods and approaches have been tried for picture pre-processing, image
segmentation, feature extraction, and classification, but none have yielded satisfactory
results [21,22]. The low accuracy rate of the classical classifiers, the high sophistication
of segmenting the region of interest, and the need for specialized knowledge to obtain
beneficial properties associated with the physical characteristics of skin lesions all contribute
to the present perspectives’ restricted abilities. Because of these limitations, CAD systems
still require human input.

For instance, Albahar [23] improved a DL model for malignant melanoma detec-
tion utilizing 145 dermatologists from 12 German hospitals to make final diagnoses.
Tembhurne et al. [24] presented a fresh solution to address the issue of skin cancer
diagnosis by merging ML and DL methods. The DL model extracted features from
images using sophisticated neural networks (NNs), while the ML model used tech-
niques to analyze those features. Mazhar et al. [25] addressed the fundamental steps
necessary to develop melanoma diagnosis software, which centered on two aspects:
images with full segmentation and DL-based skin lesion tracking. Haenssle et al. [26]
compared 58 dermatologists’ diagnoses to a Google Inception V4 DL model. The data
included 100 dermoscopic and digitalized patient photos and medical documents. Fur-
thermore, Alenezi et al. [27] suggested using dermoscopic images of skin lesions as
part of an ongoing framework for identifying melanomas. In order to better examine
dermoscopic images without being distracted by hair, that model developed a workable
pre-processing strategy based on layer-by-layer dilation and pooling. The processed
photos’ features were then extracted using a deep residual NN.

Another approach presented by Inthiyaz et al. [28] provided a dependable real-time
pedagogical resource for medical students utilizing computational methods for image
analysis, processing, and classification while taking into account a wide variety of image
properties. A diagnostic analysis was produced after images were cleaned of unwanted
noise and adjusted to improve their overall clarity. Finally, features were derived from the
image using NN, and the images were classified using the softmax classifier method.

As an unresolved problem, optimization and fine-tuning can be incorporated into
transfer learning’s already-established base model configuration. Table 1 highlights the
several DL approaches [17,21,26–32] used to spot skin irregularities in photographs. The
study’s findings suggested that there are many unanswered questions regarding how to
identify and diagnose melanoma. Therefore, new models may enhance the efficiency of
melanoma diagnosis.

Table 1. Comparison of existing melanoma diagnostic methods.

Work Dataset Used Techniques Number of
Testing Images

Number of
Training Images

Number of
Classes

D. Mendes and
N. da Silva [29]

University Medical
Center Groningen

Dermofit
Atlas

ResNet-152 956 3797 12

S. Aijaz [30] BFL NTU + Dermnet Segmentation +
VGG-19 + LSTM 188 1468 6

R. Zare and A.
Pourkazemi [32] HAM10000

U-Net (segmentation)
+ DenseNet121
(classification)

- - 7
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3. Proposed Methodology

Throughout this section, we go into painstaking depth regarding our methodology.
As illustrated in Figure 2, there were three primary steps to this method. Pre-processing
skin photos improved their quality for categorization by removing minute noise. The skin
image’s edges were then delineated using ground truth, and the backdrop was then re-
moved. Then, we applied many distinct segmented images in the transfer learning models.
Automated learning of informative representations from skin images was accomplished
using transfer learning models. In the following sections, we will outline the details of the
proposed method.
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3.1. HAM10000 Dataset

The identification performance of the proposed models was assessed using the
HAM10000 [20] dataset of lesions with pigmentation. The authors compiled dermato-
scopic images from various demographics that were captured and stored employing
various techniques. As a training set for scholarly use, it was anticipated to contain
10015 dermatoscopic images divided among seven classes, as seen in Figure 3.
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Figure 3. Classes of HAM10000 dataset.

Histopathology was employed to verify the diagnosis in over 50 percent of the cases;
in the other half, the truth was established through a subsequent examination and the
agreement of experts. The HAM10000 metadata file contains a lesion-id column that
may be utilized to track the position of the lesion across the many photos that comprise
the dataset.
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The HAM10000 dataset was separated into training, validation, and testing data as
illustrated in Table 2, where 327 were Akiec, 514 were Bcc, 1113 were Mel, 142 were Vasc,
6705 were Nv, 115 were Df, and 1099 were bkl.

Table 2. Inadequate sample size prior to using augmentation techniques.

Class
Number of Images in Each Partition

Training Set Validation Set Testing Set Total Set

Akiec 273 27 27 327

Bcc 451 31 32 514

Mel 1030 42 41 1113

Vasc 119 12 11 142

Nv 5115 795 795 6705

Df 101 7 7 115

Bkl 940 79 80 1099

Total 8029 993 993 10,015

3.2. Image Pre-Processing Step

Maximizing dermoscopy image resolution and removing various types of noise from
images of skin lesions were also essential steps in bringing the proposed strategy into
practice. A high-quality image is essential for developing a trustworthy model for the
classification of skin lesions. Image segmentation, enhancement, data supplementation,
resizing, and normalization are all a part of this process. Overfitting occurs when there
are more variables to learn than can reasonably be accounted for due to an increase in
network complexity in the model. Overfitting due to a small and uneven sample size of
training photos was addressed by splitting the HAM10000 dataset into three distinct parts
(e.g., training, verification, and assessment), and then data augmentation was employed to
even out the forecasting capability across the board. Masks for rotation, reflection, shifting,
and scaling are provided alongside the enhanced images for each image in the dataset.

3.3. ESRGAN

Ledig et al. [33] developed an Enhanced Super-Resolution Generative Adversarial
Network (ESRGAN). By training generators and discriminators against each other, such
technique, which is based on adversarial learning, generates texture features that are com-
patible with the distribution of genuine images. By extracting visual features at a single
scale, this method achieves super-resolution. An image super-resolution rebuilding may
be employed to determine the corresponding image of high quality from one or more
photographs of different resolutions as shown in Figure 4. Examples of effective applica-
tions of this technology include remote sensing, medical imaging, picture compression,
video monitoring, and military applications. Many academics have focused on image
super-resolution since it is an important image-processing technology, and there have been
numerous effective ways of achieving image super-resolution proposed [33].
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3.4. Segmentation

The dermoscopy images were processed according to the image preparation technique
in order to extract the ROI. The original images were multiplied by the images that reflected
their respective ground truths in order to create the ROIs displayed in Figure 5.
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3.5. Data Augmentation

Prior to actually presenting the DNN with the original dataset images, we added more
data to the training set as a preliminary step. Data augmentation is the most common
way to avoid overfitting when training models. This is done by adding new images to
the dataset in a way that retains the class information [8]. The main idea is that changes
that can be made to replicable data do not change what the image means, so new samples
can be made. Most of the time, increasing the amount of training data for DL models
improves their performance. When it comes to dermatological images, we can make a lot
of adjustments to each one by using what makes it distinctive. For these images, fading,
flipping either vertically or horizontally, or spinning the images by a specific angle does
not affect the performance of deep NNs. As ways to improve the data, horizontal flips;
random rotations between 90 and 270 degrees; and changes to the saturation, exposure,
and hue values of the original images were chosen. In particular, these parameters were
set to have values of 1.5, 1.5, and 0.1, respectively. Each image in the training set was
subjected to the changes listed above, giving the network a new sample. In this study, we
used the ImageDataGenerator interface of Tensorflow2.0 to flip, rotate, and shift the input
image data. Adding significantly modified versions of existing data or new synthetic data
derived from existing data is how data augmentation works to increase the total amount of
available data, as seen in Figure 6.
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It was crucial that the DL models be trained on a large number of photos that were
fairly distributed because there was a noticeable disparity in the dataset (see Table 2).
As demonstrated in Table 3, if we followed this reasoning and applied augmentation
(oversampling) processes to the relevant classes after the dataset had been balanced, we
obtained well-balanced data with about equal numbers of images in each category.
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Table 3. Equitable dataset using augmentation (oversampling) with segmented images.

Class Number of Training Images

Akiec 5684

Bcc 5668

Mel 5886

Vasc 5570

Nv 5979

Df 4747

Bkl 5896

All Classes 39,430

3.6. Transfer Models for Learning

To solve a new problem that is similar to the original problem but unique, ML prac-
titioners can engage in a process known as transfer learning. In comparison to the con-
ventional neural network, it simply requires a small amount of training data and a quick
training period to attain a high accuracy. A discussion of the transfer models employed is
presented in the following subsections.

3.7. Model Training Utilizing Inception-V3

The theoretical underpinnings of the method are laid out and described in this sub-
section. Among these transfer learning pre-trained deep models is Inception-v3 [11,12],
which builds on the design of its predecessors Inception-v1 [34,35] and Inception-v2 [36,37].
ImageNet datasets [38,39] have been used to train the Inception-v3 model, which then has
been utilized to recognize a hundred distinct classes. Error rates have dropped from 17.3%
for the best system to 3.5% for the top five in ImageNet.

In particular, the technique developed by Serre et al. [40]—which may involve multiple
levels of processing—served as an inspiration for Inception. Using the method proposed by
Lin et al. [41], the creators of Inception increased the accuracy of the neural networks used
in the system. They were immune to computational limitations because the dimensions had
been shrunk to 11 convolutions. Using Inception [42], scholars have significantly reduced
the period and effort needed for DL picture classification. They aimed to strike a compro-
mise between the two commonly utilized techniques for boosting performance; namely,
expanding in depth and width and separating data into distinct layers without resorting to
any empirical evidence or empirical analysis. The Inception DL system’s 22-layer architec-
ture, in which every filter is a learned one, was designed with this specific end in mind.
Input into the next layer was generated from highly correlated categories using a correla-
tion statistical analysis based on the work of Arora et al. [43]. Eventually, after dimension
reduction, every one of these layers is reduced to a series of 1x1 convolutions [40].

3.8. Model Training Utilizing Inception-Resnet

State-of-the-art performance was achieved in the 2015 ILSVRC challenge by including
residual connections in a more conventional architecture; the resulting network was com-
petitive with the most recent generation of the Inception-V3 network. In light of this, one
may reasonably speculate as to whether combining the Inception architecture with residual
blocks might yield any beneficial results. Regarding Inception network training using resid-
ual links, the training time for InceptioResnet-V2 [43] was proven to be drastically reduced.
Even though Inception networks with residual connections are more expensive, there is
some evidence that they outperform those with no residual connections. Szegedy et al. [44]
introduced various novel, simplified topologies for Inception networks (both residual
and non-residual). The ILSVRC 2012 classification challenge benefited greatly from these
improvements when applied to single-frame identification.
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4. Experiments and Results

In this section, we begin by giving an overview of the experimental setup by describing
the models and parameters used, the datasets we utilized, and the hardware specifications
of the machines used to conduct the experiments. The outcomes for each dataset and model
comparison follow.

4.1. Instruction and Deployment of Inception-v3 and Inception-Resnet-V2

Transfer learning models were tested on the HAM10000 dataset and evaluated by
comparing them to the best practices; 90% of the data (9016 photos) was for training
and 10% was for testing (984 images). The validation procedure employed 10% of the
training set (992). Each image was reduced to 227 by 227 by 3 pixels and magnified to
a size of 39,430 throughout the training phase. An RTX3060-equipped Linux PC with
8 GB of RAM was used to test the TensorFlow Keras. Eighty percent of all TL models
were trained on an uninformed collection of photos. After training, a validation set
comprising 10% of the data was used to ensure that only the most accurate weight
combinations were kept. Approved models were pre-trained on the HAM10000 dataset
using the Adam optimizer and a learning rate approach that reduced the learning rate
while the model was inactive for the validation patience. The following hyperparameters
were passed to Adam during training: 0.90 momentum, 10 patience, and 50 epochs. The
range of batch sizes ranged from 2 to 64, and each increment was double the preceding
value. As part of our arsenal of methods to stop the spread of infectious forms, we also
used a method called “batching”.

4.2. Criteria for Assessment

Throughout this subsection, we describe the study’s evaluation measures and the
outcomes. The classifier effectiveness is a widely used measure of classification performance
(Ac). Equation (1) depicts the formula, which was calculated by dividing the total number
of examples by the proportion of correct identifications. Typically, the performance of
image-classification systems is measured by their sensitivity and specificity. Equation (2)
presents a formula for specificity that becomes more accurate as more photos are accurately
labeled. The number of pictures in the dataset that had a linear relationship was determined
according to Equation (3). More accurate predictions can be expected from a system with
a higher F-score. Accuracy and sensitivity are not enough to determine a system’s value.
The formula for determining the F-score (Fsc) is stated in Equation (4). The top N accuracy
was the fourth measurement, and it refers to how well the model N’s highest likelihood
responses fit the anticipated softmax distribution. If one of the N predictions was the
correct label, then the classification was valid.

Ac =
Tp + Tn

Tp + Tn + Fp + Fn (1)

Speci f icity =
Tn

Tn + Fp (2)

Sensitivity =
Tp

Tp + Fn (3)

Fsc = 2 ∗
(

Pre ∗ Rec
Pre + Rec

)
(4)

The abbreviation Tp indicates “true positive”, Tn indicates a true negative, Fp indicates
a false positive, and Fn indicates a false negative.
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4.3. Effectiveness among Several DNN Models

Several TL classification methods were trained and validated using the HAM10000
skin lesion identification challenge dataset (including Inception-V3 and InceptionResnet-
V2). The HAM10000 dataset was evaluated numerous times using a 90/10 crossover
among training and testing, and the findings are given below. This split was decided
upon to reduce the overall time required to finish the job. Classifiers were trained with
a batch size between 2 and 64 and learning rates of 1Eˆ4, 1Eˆ5, and 1Eˆ6 for Inception-
V3 and InceptionResnet-V2. Freezing different numbers of layers allowed Inception-
V3 and InceptionResnet-V2 to be fine-tuned for optimal accuracy. An ensemble of
models was generated by repeatedly running the same model with the same set of
parameters. The accuracy varied from run to run because the weights were generated
randomly. For Inception-V3 and InceptionResnet-V2 training on the HAM10000 dataset,
only the maximum run results were maintained; these are reported in Tables 4 and 5,
respectively. The tables demonstrate that the highest success rates for Inception-V3 and
InceptionResnet-V2 were 89.7% and 90.1%, respectively. The confusion matrices created
by Inception-V3 and InceptionResnet-V2 are depicted in Figures 7 and 8, respectively.

Table 4. Highest Effectiveness via Finest Tuning with Inception-V3.

Acc Top-2
Accuracy

Top-3
Accuracy Specificity Sensitivity Fsc

0.897 0.960 0.981 0.89 0.90 0.89

Table 5. Highest Effectiveness via Finest Tuning with InceptionResnet-V2.

Acc Top-2
Accuracy

Top-3
Accuracy Specificity Sensitivity Fsc

0.913 0.968 0.986 0.90 0.91 0.91
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Tables 6 and 7 indicate the total amount of test photos for every class in the HAM10000
dataset. With 95% specificity, 98% sensitivity, and 96% Fsc when using the Inception-V3
learning model and 94% specificity, 99% sensitivity, and 97% Fsc when using the modified
InceptionResnet-V2 learning model, it was clear that the Nv class had the most data points
out of all the classes tested (795 total).

Table 6. Detailed findings produced for every category by the Inception-V3 learning model.

Specificity Sensitivity Fsc Total Images

Akiec 0.71 0.37 0.49 27

Bcc 0.63 0.71 0.67 24

Bkl 0.66 0.5 0.57 80

Df 1 0.57 0.73 7

Mel 0.57 0.63 0.6 41

Nv 0.95 0.98 0.96 795

Vasc 0.89 0.8 0.84 10

Average 0.89 0.9 0.89 984

Table 7. Detailed findings produced for every category by the InceptionResnet-V2 learning model.

Specificity Sensitivity Fsc Total Images

Akiec 0.9 0.33 0.49 27

Bcc 0.74 0.83 0.78 24

Bkl 0.75 0.56 0.64 80

Df 0.8 0.57 0.67 7

Mel 0.5 0.49 0.49 41

Nv 0.94 0.99 0.97 795

Vasc 1 0.8 0.89 10

Average 0.9 0.91 0.9 984
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It was demonstrated that dermatologists can benefit from using lesion photos to
improve the accuracy of infection diagnoses and decrease their burden.

4.4. Comparison to Alternative Approaches

Comparisons of effectiveness with respect to competing methods are shown in Table 8.
According to Table 8, our method was more productive and efficient than competing
methods. Overall, the accuracy rate of the suggested InceptionResnet-V2 model was higher
than that of state-of-the-art methods by 91.26%. ESRGAN’s greater overall resolution
constituted the main reason for the improvement’s success.

Table 8. Comparison with other methods.

Reference Model Dataset Acc

[45] AlexNet HAM10000 84%

[46] MobileNet HAM10000 83.9%

[47] MobileNet, VGG-16 HAM10000 80.61%

[48] SVM HAM10000 74.75%

[49]

ResNet

HAM10000

78%

Xception 82%

DenseNet 82%

[50] CNN HAM10000 77%

[51] MobileNet and LSTM HAM10000 85%

[16] RegNetY-3.2GF HAM10000 85.8%

[52] Inception V3 ISIC 2019 91%

Proposed
Inception-V3 HAM10000 89.73%

InceptionResnet-V2 HAM10000 91.26%

5. Discussion

The results of our analysis demonstrated that the alternative approaches were signifi-
cantly less accurate. We ascribe the enhancement to a trifecta of factors, one of which was
ESRGAN’s higher overall resolution. Moreover, we employed a variety of architectures,
some of which were more effective than others at generalizing and adapting to various
types of data. Medical image categorization could not be enhanced by transfer learning ar-
chitectures due to the lack of distinguishing features. While Inception-V3 excelled at image
detection, it underperformed the proposed InceptionResnet-V2 when applied to medical
images. Due to their lack of semantic meaning for real images, InceptionResnet-V2 features
are more flexible and generally applicable in medical imaging (compared to Inception-V2).
As a result, fine-tuning enhanced the precision of the two models. Deep networks were
found to be superior to their shallow counterparts when it came to distinguishing crucial
elements when trained on a smaller sample. The successful outcomes of these methods are
shown in Figures 7 and 8.

6. Conclusions

It is now possible to diagnose seven different types of cancer quickly and accurately
through the study of skin blemishes. To improve the contrast of the lesion image and
get rid of noise, the proposed method made use of image-enhancing techniques. To
avoid overfitting and increase the capabilities of the suggested DL approaches, Inception-
V3 and InceptionResnet-V2 were trained on the forefront of pre-processed lesions using
augmentation procedures. The presented approach was evaluated by employing images
of lesions from the HAM10000 dataset. It was speculated that the Inception-V3 and
InceptionResnet-V2 versions of the conception model had accuracy rates similar to those of
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dermatology specialists with board certification. The study’s originality and novelty also
reside in the fact that it used ESRGAN as a pre-processing step for the numerous models it
employed (Inception-V3 and InceptionResnet-V2). Our freshly trained model performed
as well as, if not better than, the baseline. Tests comparing the suggested system to others
showed that it outperformed the competition with 91.26% accuracy. The technique’s
viability can only be established by putting it through its paces on a huge dataset basically
including a sizable number of future cancer predictions. DenseNet, VGG, and AlexNet are
three techniques that show promise for future analysis of the cancer dataset.
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