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Abstract: The growth of biomedical engineering has made depression diagnosis via electroen-
cephalography (EEG) a trendy issue. The two significant challenges to this application are EEG
signals’ complexity and non-stationarity. Additionally, the effects caused by individual variances
may hamper the generalization of detection systems. Given the association between EEG signals and
particular demographics, such as gender and age, and the influences of these demographic character-
istics on the incidence of depression, it would be preferable to include demographic factors during
EEG modeling and depression detection. The main objective of this work is to develop an algorithm
that can recognize depression patterns by studying EEG data. Following a multiband analysis of such
signals, machine learning and deep learning techniques were used to detect depression patients auto-
matically. EEG signal data are collected from the multi-modal open dataset MODMA and employed
in studying mental diseases. The EEG dataset contains information from a traditional 128-electrode
elastic cap and a cutting-edge wearable 3-electrode EEG collector for widespread applications. In
this project, resting EEG readings of 128 channels are considered. According to CNN, training with
25 epoch iterations had a 97% accuracy rate. The patient’s status has to be divided into two basic
categories: major depressive disorder (MDD) and healthy control. Additional MDD include the
following six classes: obsessive-compulsive disorders, addiction disorders, conditions brought on by
trauma and stress, mood disorders, schizophrenia, and the anxiety disorders discussed in this paper
are a few examples of mental illnesses. According to the study, a natural combination of EEG signals
and demographic data is promising for the diagnosis of depression.

Keywords: major depressive disorder (MDD); electroencephalogram (EEG); convolutional neural
network; feature extraction; deep learning; depressive disorder

1. Introduction

A frequent mood illness called depression can result in a constant feeling of melancholy,
a loss of interest, and memory and attention problems. Cognitive impairment and long-
lasting, profound affective depression are common in depressed patients. In addition,
paranoia and illusions may occur in certain people in severe instances [1]. As a result, it is
crucial to diagnose depression when it is still treatable and can even save a patient’s life [1,2].
The mechanisms behind protracted unpleasant moods and depression are currently the
subject of intense research into the human brain.

A scale-based interview conducted by a psychiatrist is the most common technique
for diagnosing depression. EEG coherence is a strong indicator of integrated neuronal
correlation when analyzing the linearly dependent relationships between the bandwidths
of EEG signals collected from brain areas or working electrodes [3]. This measure generates
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a symmetrical two-dimensional matrix. The presence of high coherence between two EEG
signals indicates coherent neuronal oscillations, inferring interconnection between neural
populations. Low convergence, on the other hand, demonstrates independent activity. EEG
coherence has proven to be a highly effective method for analyzing the brain activity of
individuals with depression [3], Alzheimer’s disease (AD) [4] and Parkinson’s disease [5]
using EEG coherence. The outcomes of the existing approaches for diagnosing depression,
however, depend on the psychiatrist’s expertise and involve a lot of work.

Furthermore, because of the stigma associated with the condition and its nature, de-
pressed people are less inclined to seek care. As a result, many individuals with depression
receive incorrect diagnoses and inadequate care, delaying their recovery. Therefore, a
growing area of research is discovering practical and reliable ways to identify depression.
With the latest innovations in sensor and mobile technologies, analyzing physiological data
for diagnosing mental diseases opens up a brand-new opportunity for a precise and objec-
tive tool for anxiety identification. Along with much other clinical information, the EEG
exhibits deep personal human cognitive function [6,7]. The EEG recorded the monotonous,
spontaneous electrical impulses of cells in the brain on the scalp. Since the discovery of the
monkey brain and the first recording of the human EEG signal, scientists have investigated
the association between brain function and mental disorders utilizing EEG data [8].

The EEG-based depression detection system is depicted in Figure 1, where raw EEG
signals processed via CNN follow EEG recording. The signal is then sent to LSTM, also
known as sequence learning, and finally to automated recognition.
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The current widely used method for examining functional brain interconnection
employs network analysis assessment to transform a functional brain matrix into a gra-
dient. After accomplishing a categorization of the structural features of the graph, the
clustering coefficient and attribute path length, two index values that interpret a chart
and correlate to the two significant aspects of functional brain entity, such as functional
splitting and connectivity [9], are utilized to distinguish between people suffering from
neurological abnormalities and normal individuals. These two indices can also capture the
network’s significant attributes accurately. Random network topology and small-world
network architecture distribution have been demonstrated repeatedly in Alzheimer’s dis-
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ease, schizophrenia, and depression. By demonstrating that AD is characterized by a loss
of small-world network properties, [10] showed that the characteristic path length in AD
patients was substantially longer than that in healthy controls. In schizophrenia, Ref. [11]
discovered that the small-world network structure was randomized. According to one
EEG study, MDD adjusts the topological organization of the cognitive system implicated in
sleep, as demonstrated by the deficit of additional features [12].

Furthermore, Ref. [10] found that the brain networks of depressed patients during
sleep are more similar to the random section of the reconfiguring spectrum. In contrast, the
visual cortex networks of healthy controls are comparable to the scale’s ordered amount.
Although abnormalities in brain function connections have been discovered in MDD, the
brain functional network model of chronic depression is still unidentified. As a result, we
used graph theory to examine the operational brain network of individuals afflicted with
clinical depression.

DNNs have lately seen tremendous popularity in vector image, video, and text-
based recognition tasks [13,14]. CNNs are used in the best current architecture processing
techniques for image and video data because of their advantages in handling 2D input
data [15]. CNN performs well in biological picture categorization, and the features it learns
are frequently superior to hand-crafted features. According to research by [16], an ensemble
system of custom-made and known features can improve CNN’s performance when
categorizing biological images. Studies have employed various techniques to translate
EEG signals into visual representations for neural signal categorization. One, in particular,
combines 1D CNNs and stacked autoencoders with the short-term Fourier transformation
approach to categorize EEG motor imagery signals [17].

EEG studies could be utilized to effectively comprehend the mechanisms underlying
brain function, human cognitive abilities, the symptoms of frontal cortex ailments, and
the field of the Brain–Computer Interface (BCI), which has notably gained a great deal of
attention [18]. When equated with computed tomography (CT) and magnetic resonance
imaging, EEG has a higher temporal resolution, lower costs of maintenance, and a more
functional operation mode. As a possible consequence, EEG was recommended as a non-
invasive procedure to research cognitive behavior [19] and other illness depression, such as
chronic fatigue [20], seizure disorders, and insomnia [21], as an objective physiological tool
for data consolidation. EEG has also been used to diagnose mental illnesses like depression,
psychosis, and anxiety [22,23]. Additionally, depression always comes with irregular brain
activity and blatant emotional swings because it is a mental condition with clinical signs like
significant depression and slow thinking. EEG can therefore identify these strange events
to monitor brain activity. The frequency of the EEG signal can be divided into several wave
bands based on their frequency ranges. These include delta (0.5–4 Hertz), theta (4–8 Hertz),
alpha (8–13 Hertz), beta (13–30 Hertz), and gamma (30–50 Hertz or higher). Delta waves are
typically associated with deep sleep or unconsciousness; they are prevalent in stages 3 and
4 of sleep and are the predominant rhythm in newborns up to one year of age. Theta waves
are observed to be more prominent during internal focus, meditation, prayer, and spiritual
awareness. These waves are known to represent a transitional state between wakefulness
and sleep and are associated with the subconscious mind. While it is considered atypical
for theta waves to be present in fully awake adults, their presence is a natural occurrence
in children up to 13 years of age. The alpha wave peak occurs at 10 Hz, and a healthy
production of alpha waves is known to promote mental flexibility, coordination, and a sense
of relaxation. When in this state, individuals can work efficiently to complete tasks at hand.
Dominance of alpha waves is generally associated with feelings of calmness and comfort.
Alpha waves have been linked to the connection between awareness and the subconscious
mind. Typically, calm adults exhibit this primary rhythm, which is present for most of their
lives. After the age of thirteen, it tends to dominate resting EEG traces. The beta wave
is a normal rhythm commonly observed in individuals who are alert or anxious, as well
as those with their eyes open. This state is associated with analytical problem-solving,
decision-making, and processing information about the surrounding environment. It is the
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most common brain state during waking hours when an individual is actively listening and
thinking. Gamma waves, which have the highest frequency, are associated with cognitive
processing, attention, and perception [24].

A typical approach for classifying normal and depressive EEG signals is shown in
Figure 2. EEG studies of depression often use the properties of EEG signals to analyze the
data. The local feature extraction module, also known as the signal processing module,
comes before the LSTM and the classification module, which all proceed to the CNN.
The successful development of a multifaceted, three-electrode EEG monitoring system by
Intelligent Solutions Lab [25] is part of the current ability to contribute to this field. It was
used to build a database of depressed patients and healthy controls.
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MODMA, a multi-modal open dataset for analyzing mental illnesses, collects EEG
signal data. The EEG dataset contains data from an advanced wearable 3-electrode EEG
collector for widespread applications and a standard 128-electrode elastic cap. Three
locations are used to store EEG data. As a result, the research has concentrated on analyzing
a pervasive EEG-based depression detection system using cutting-edge data processing
methods and machine learning.

The auditory tones used as the external stimuli. These tones were presented through
headphones to both the healthy control group and the group of patients diagnosed with
major depressive disorder. To ensure that the experiment was conducted in a consistent
manner, the auditory stimuli were presented in a passive listening paradigm. During this
paradigm, the participants were instructed to listen attentively to the sounds presented
without any active response or task. This approach allowed us to isolate the brain responses
to the auditory stimuli without any confounding factors that could arise from a specific task
or cognitive demand. The auditory tones used in our study had a duration of 100 ms, which
is a standard duration used in ERP studies. The inter-stimulus interval between the tones
was 1000 ms. This interval was used to ensure that the auditory stimuli were presented in a
controlled and consistent manner, allowing us to measure the brain’s response to each tone
in isolation. The use of a consistent and controlled presentation of stimuli is critical in ERP
studies, as it allows for the reliable measurement of the brain’s response to external stimuli.

For the ERP analysis, we selected several local peaks including N1, P2, N2, and P3,
as these components have been previously shown to be sensitive to depression-related
alterations in brain function. The amplitude and latency measures of these peaks were
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used to compare the differences between the two groups. N1, P2, N2, and P3 are com-
mon event-related potential (ERP) components that are often used in neurophysiological
research. N1 (Negative 1) is a negative deflection that occurs approximately 80–150 ms
after the onset of a stimulus. It is thought to reflect early sensory processing and attention
allocation to the stimulus. P2 (Positive 2) is a positive deflection that occurs approximately
150–250 ms after stimulus onset. It is thought to reflect higher-order cognitive processing
and attention, such as identifying and categorizing the stimulus. N2 (Negative 2) is a
negative deflection that occurs approximately 200–300 ms after stimulus onset. It is thought
to reflect cognitive processes related to stimulus evaluation, including working memory,
attention, and decision-making. P3 (Positive 3), also known as the P300 or the “oddball”
response, is a positive deflection that typically occurs 300–500 ms after stimulus onset. It is
thought to reflect cognitive processes related to stimulus evaluation, including memory
updating and response preparation. Both the mean and maximum amplitudes of specific
time windows for each local peak, as well as the latency of each peak from stimulus onset,
were determined to identify differences in brain function between healthy controls and
patients with major depressive disorder. The following EEG signals in the resting state
with 128 channels are taken into consideration in this project to support this research:

• Event-related potentials in response to external stimulation were recorded over
128 channels; 24 patients had major depressive disorder, while 29 persons in the
healthy control group did not.

• In resting-state 128-channel recordings, 24 persons with major depressive disorder
and 29 without the condition were found.

• Twenty-nine healthy control subjects and 28 people with major depressive disorder
were found in 3-channel resting-state recordings, as detailed in the section below.

The purpose of the work is to use EEG data analysis to create an algorithm that can
automatically identify depression tendencies. The complexity and non-stationarity of EEG
signals, as well as the unique variations that may have an impact on the generalizability
of detection systems, are discussed in the study. The suggested methodology integrates
demographic information such as age and gender with EEG signals to increase the precision
of depression diagnosis. The study used machine learning and deep learning methods to
automatically identify people with depression. The usage of wearable EEG technology and
open datasets in practical applications is also covered in the article. The study’s ultimate
objective is to aid in the early and accurate identification of depression, which might
improve patient outcomes.

Section 2 is devoted to discussing associated works in the organization of this review.
Section 3 discusses data collection, while Section 4 discusses methodology. Section 5
contains the provided results. Section 6 includes a discussion. The conclusion is addressed
in Section 7 at the end.

2. Literature Review

This section reviews the studies that have looked at EEG signals and deep learning
techniques for diagnosing and predicting depression patients. Ref. [7] reviewed research
that used EEG data to identify the two types of depression, bipolar disorder (BD) and MDD,
using neural network and deep learning techniques. It searched among papers published
over the previous ten years using a variety of search engines and a mix of different key-
words, then took some valuable information from those. The fact that this review classified
exploited datasets, techniques for analyzing or extracting features, and algorithms in the
publications was one of its strong qualities [11,12]. It also creates many tables to exhibit
the extracted data and allow comparisons between them in different ways. Only about
five articles, as indicated, especially for MMD diagnosis, were considered an apparent
fault in this research because it needed to employ a significant number of publications to
review. Additionally, the journals must explain their general concept and method more.
The review by [26] focused on studies using deep learning techniques to investigate mental
diseases, including depression. The four primary areas of this study were the detection
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of mental illness using clinical data, genetic data in disease diagnosis, analysis of various
datasets, and social media data to estimate the risk of mental illness. Only three studies
that dealt with depression diagnosis or prediction employed the electroencephalogram
dataset type out of the selected papers that were published up through April 2021. The
examined datasets were wholly represented in this study. An in-depth discussion was also
given about the opportunities and difficulties that could result from using each dataset.
However, because the review was comprehensive and focused on a wide range of mental
illnesses, several studies on deep learning for depression diagnosis and prediction using
EEG data were briefly discussed. CNNs have recently been used to investigate the possi-
bility of EEG encoding and decoding. Ref. [11] proposed a parallel linear CNN to capture
dynamic and static energy identifiers. In [10], CNN was utilized for features extracted
from epileptic intraoperative EEG signals. In [27], EEG signals were transformed into
multi-spectral images and decrypted using recurrent CNN. Ref. [10] used a 13-layer CNN
model to detect depression. In light of the entitlements of CNN, this work describes 1D
CNN to retrieve spatiotemporal representations of EEG signals. Convolutional neural
networks (CNNs) have recently been recognized as an essential and reliable deep learning
methodology. Recently, the method has expanded its employment in biomedical signal and
image processing problems due to its notable success in computer vision [28]. Researchers
have also concentrated on creating a CNN-based computer-aided diagnosis system for
the medical industry. Ref. [29] developed a CNN model for extracting EEG data and
characterizing the signal as predicted, preictal, or convulsion, with an overall accuracy
of 89.8%. Ref. [30] provided a 1D CNN to structure standard and pathological EEG data
instantly and discovered a 21.10% classification error. Refs. [10,31] recently developed
CNN models with eleven and thirteen layers to recognize depressed patients using EEG
signals. Ref. [32] created a one-dimensional CNN-based model with 91.33% accuracy to
detect cardiac arrhythmia from long-term ECG signal segments. In a comparison study
of Alzheimer’s disease diagnoses performed via three distinct NN models, the FFNN, the
block-based neural network, and CNN, CNN was the best classifier [33].

Ref. [34] proposed using a kernel eigen-filter-bank typical spatial pattern to extract
characteristics from the EEG of twelve patients suffering from severe depression and twelve
normal individuals. The study used the leave-one-subject-out cross-validation assessment
method to achieve an SVM classifier recognition rate of 80%. Ref. [35] estimated the power
spectral density in multiple bandwidths (theta, beta, and alpha) as well as the entire band
of the EEG signal to categorize forty depressive patients and forty healthy subjects.

A review of studies [4] examined how EEG signals and various classifiers could be
used to monitor issues like emotion identification and identify neurological diseases like
depression. Only four publications were from an earlier period, and most of the papers
were published between 1999 and 2020, using various sources, including journals, books,
conferences, and theses. Only about ten articles related to the diagnosis of depression were
considered. This provided a comprehensive comparative assessment of the techniques and
data used in publications separated into separate regions, such as artifact removal, types of
extracted features, dimensionality reduction, feature selection, and clustering algorithm
algorithms [36]. Based on their method concerning the collection gathered, numerous
adopted datasets were summed up and are presented as general and local recognition
categorizations. Additionally, this included details on functional neuroimaging methods.
However, because it covered so many fields of research on mental health issues, the method
needed to treat each one more thoroughly. Table 1 shows a list of past paper references
with methodology used and results.
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Table 1. List of Earlier Research Publications Cited Along with Their Methodologies and Findings.

Ref. Methodology Experimental
Parameters/Dataset

Libraries/Platform
Implementation Outcome/Results Main Focus

[1]
Depression, depressive
disorders, EEG, CNN,

and LSTM

Deep learning techniques
have been employed to

identify or predict depression.
What methods are primarily

employed for feature
extraction from EEG signals?

FFT, CNN, 1DCNN,
2DCNN, and

3DCNN

Using convolutional
layers end-to-end, local
features were extracted.

DL is used to
diagnose depression
using EEG readings.

[2] CNN, RNN, RNN with
LSTM, DL, ML, MLP

When 40% of the testing set’s
data are present, RNN with

LSTM model is used.

SVM and Neural
Network-Based DL

Two supervised ML
models, SVM and LR,

outperformed each other
with accuracy rates of
about 97.85 percent in

testing and 100% in
training, respectively.

A Comparative Study
Using DL to Monitor
Mental Depression

Using EEG Data

[4] EEG; Clinical
depression

Convolution layers are
convolved with the input
signal to produce feature

maps.

LSTM Model, CNN

Using the random
splitting method, the

model was tested, and
the results showed
99.23% and 99.05%

accuracy for the right and
left hemispheres’ EEG
signals, respectively.

Automatic clinical
depression detection

[6] EEG, CNN, Transfer
Learning

Visual abstract theta, alpha,
and beta band EEG power is

calculated.
CAD; ConvNet

The proposed system
delivered an 85.82%

accuracy rate.

CNN’s use for
recognizing mild

depression

[7]
EEG data, SVM, LR,

and LNR are associated
with MDD.

Ratio of features taken out of
EEG signals in different

frequency bands.

Elimination of
recursive features,

Pearson correlation
coefficient

The development of this
MDD detection

framework may be
integrated into a

healthcare system to
assist medical

professionals in
identifying MDD

patients.

Framework for
detecting depressive
disorders with two

stages of feature
selection

[8]

Symptoms of child
anxiety related to the

Children’s Depression
Inventory

Sample of 451 young adults
and adolescents.

Multivariable linear
regression

There was an increase in
depression and

somatic/panic symptoms
in females, in addition to
social anxiety and social

phobia.

Symptoms of anxiety

[37]
Decision Tree, Variance,

SVM, and Feature
Selection

13 features in total were
retrieved, and a subset of the

6500 total features was
calculated.

RF Model,
FDR-based feature

selection, and
tree-based feature

selection

Calculations of the linear,
non-linear, and power
spectral features were

made for each channel of
the EEG data for each

sub-band.

Using ML, an
EEG-Based

Depression Detection
Method

[11] ANN, DL, DNN, FFNN
Network, EEG, MDD Trans diagnostic cohorts.

EEG Data + Compu-
tational

Tool + MATLAB

It has a classification
accuracy rate of 97.66%.

Utilizing neural
networks to detect

bipolar disorder

According to the literature evaluation, the present research gap is that just a few
studies have used EEG data and deep learning algorithms to diagnose and predict de-
pression. While some studies have used EEG signals to diagnose or predict depression,
the majority of studies have focused on other mental health issues. Furthermore, few
studies have extensively discussed the difficulties associated with using EEG data and deep
learning techniques for depression diagnosis and prediction. More research into the most
appropriate methods for feature extraction from EEG signals is also needed to improve
the accuracy of depression diagnosis and prediction. Finally, further study is needed to
examine the efficacy of various deep learning approaches for diagnosing and predicting
depression using EEG data. The suggested technique overcomes constraints in using EEG
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data to diagnose depression. To capture the complexity and non-stationarity of EEG data,
multiband analysis is performed. To account for individual differences, demographic
parameters such as gender and age are incorporated in the modeling. Machine learning
and deep learning approaches are utilized to improve accuracy and efficiency in automated
depression diagnosis. The approach employs a vast and diversified dataset (MODMA)
spanning a variety of mental diseases, as well as traditional and wearable EEG collectors,
which improves the system’s generalizability and resilience.

3. Dataset

The multi-modal open dataset MODMA, which is used for the investigation of mental
disorders, is where EEG signal data are obtained. Data from both a conventional 128-electrode
elastic cap and a cutting-edge wearable 3-electrode EEG collector for widespread applications
are included in the EEG dataset.

A 128-electrode elastic cap is a common EEG recording equipment item used in
research and clinical settings. It consists of a cap that is fitted over the participant’s scalp,
with 128 electrodes placed at specific locations according to the International 10-10 system.
These electrodes detect electrical signals generated by the brain and transmit them to
an amplifier, which amplifies the signals and converts them into digital data for further
analysis. A wearable 3-electrode EEG collector is a newer type of EEG recording equipment
that is designed for widespread applications. It typically consists of a small device that is
worn on the forehead or behind the ear, with three electrodes that are placed in contact with
the skin. These electrodes detect electrical signals generated by the brain and transmit them
to a wireless receiver or a smartphone app, which records and analyzes the signal. It is noted
that the eyes were closed during EEG recording to reduce any potential visual artifacts
caused by eye movement. Lighting levels were also kept constant to minimize the effect
of visual stimuli on brain activity. Moreover, additional methods for artifact correction,
such as time-domain signal filtering or spatial filtering techniques, were commonly used to
further improve the quality of EEG signals.

Table 2 summarizes the characteristics of three different experiments that were con-
ducted on participants with major depressive disorder and healthy controls. For EEG, there
are three datastores.

Table 2. MODMA Dataset description.

Experiment Type Recording Type Number of Participants Outpatients (M/F) Healthy Controls (M/F) Age Range

When External
Stimulation is Used

128-channel event-related
potential recordings 53 13/11 20/9 16–56 years

Three channels when
at rest

3-channel resting-state
recordings

55 15/11 19/10 16–56 years

Under Rest 128-channel recordings 53 16/8 20/9 16–56 years

1. When External Stimulation is Used:

• Age range: 16 to 52 years; 128-channel event-related potential recordings; 24 ma-
jor depressive disorder participants; and 29 healthy control subjects.

• Contains demographic information and psychiatric evaluations.

2. Under Rest:

• Age range: 16 to 52 years; 128-channel recordings of participants in their resting
states; 24 major depressive disorder patients and 29 healthy controls; demo-
graphic information; and psychological evaluations.

3. Three channels when at rest:

• Age range: 16 to 56 years; 3-channel resting-state recordings; 26 major depressive
disorder participants; and 29 healthy control subjects.

• Contains demographic information and psychiatric evaluation.
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This project considers 128-channel resting state EEG signal recording data. The inclu-
sion criteria for participants in the MODMA dataset includes individuals between the ages
of 18 and 55 years old with normal or corrected-to-normal vision and a primary or higher
education level. For participants diagnosed with major depressive disorder (MDD), the
diagnostic criteria of Mini-International Neuropsychiatric Interview (MINI) must be met,
and the Patient Health Questionnaire-9item (PHQ-9) score must be greater than or equal
to 5. MDD patients must not have received any psychotropic drug treatment in the last
two weeks. Control participants should not have a personal or family history of mental
disorders. All participants must provide written informed consent. The inclusion criteria
ensure that the study sample is representative of the population of interest and that the
study results are generalizable to the intended population.

The exclusion criteria for participants in the MODMA dataset include individuals
with mental disorders or brain organ damage, serious physical illness, or severe suicidal
tendencies for MDD patients. Participants with a personal or family history of mental
disorders are excluded from the control group. In addition, participants who have abused
or been dependent on alcohol or psychotropic drugs in the past year, women who are
pregnant or lactating, or taking birth control pills are excluded from the study. These
exclusion criteria ensure that participants are healthy and have not been exposed to any
substances that could affect their brain function. The criteria also help to minimize any
potential confounding factors that could influence the results and increase the internal
validity of the study.

The Analysis of Variance (ANOVA), a statistical analysis, was carried out to compare
the mean age of two groups, and the outcome indicated that there was no significant
distinction between the mean age of the two groups. The results of the ANOVA revealed
that there was no significant difference in the mean age between the depression group and
healthy control group. The p-value was greater than 0.05, indicating that any differences in
EEG signals between the two groups were unlikely to be solely caused by the difference
in age between them. Therefore, it can be inferred that the lack of age difference between
the two groups suggests that the differences in EEG signals were more likely due to the
presence of depression in the depression group rather than an age difference between the
two groups.

3.1. Data Visualization

Typically, an EEG machine has a number of electrodes. The electrodes are positioned
on the patient’s scalp, and after extracting voltage, they transform it into signal data. For
instance, if there are n electrodes, each electrode will produce a time series of voltage values.
Different parts of the brain have different voltage levels. The architecture of a typical
128-channel headset is shown in Figure 3:

Figure 4 displays the 128-channel voltage for the resting state power spectral distribu-
tion at a sampling frequency of 250.

Frequency information for 128 channels of EEG signals is shown in the figure below.
Figure 5 displays the power spectral distribution for 16 channels.

AC is responsible for the increase in power at frequency = 50,120. These spikes are
viewed as signal noise that will be eliminated in the next part.
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3.2. Pre-Processing
3.2.1. Artifact Correction and Re-Referencing

Artifact correction and re-referencing are important steps in EEG data preprocessing
to improve the quality of EEG signals and remove unwanted artifacts. In the context of this
study, artifact correction was likely performed to remove any electrical noise or artifacts
caused by muscle movement or eye blinks.
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One common method for artifact correction is Independent Component Analysis
(ICA), which separates EEG signals into independent components that correspond to
different sources in the brain or outside the brain, such as muscle activity or eye movement.
By identifying these components, the artifacts can be isolated and removed from the EEG
signals.

Re-referencing is a process of changing the reference electrode to improve the signal-
to-noise ratio and enhance the detectability of EEG signals. In the context of this study,
the EEG signals were likely referenced to a common reference electrode or a reference-
free method was applied. This is done to eliminate or minimize the impact of spatially
distributed electrical activity that is unrelated to the underlying brain activity of interest.

3.2.2. Noise Removal

The power spectral distribution spikes are eliminated using a bandpass filter with
a filter size of 50 Hz. Since we cannot process signals directly for feature extraction,
the function built additionally turns the EEG signal into a NumPy array in addition to
eliminating these spikes. After using the band pass filter, the smoothed power spectral is
shown in Figure 6.
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3.2.3. Feature Engineering

After the noise is removed from the EEG signals, they are transformed to a NumPy
array, then feature engineering is used to extract valuable features from the data that will
be used to distinguish between the EEG power spectrum of a healthy person and that of a
mentally ill person. Following are two different kinds of features:

1: Linear features;
2: Nonlinear features.
Following are the linear features which are given as: power at alpha, power at beta,

power at delta, power at theta, mean amplitude, median amplitude, maximum amplitude,
minimum amplitude. The explicit EEG features used in the analysis are linear and nonlinear
features. The linear features include power at different frequencies such as alpha, beta,
delta, and theta. The amplitude of power signals including mean, median, maximum, and
minimum are also used as linear features. The nonlinear features used in the analysis are
spectral entropy and singular-value deposition entropy. The Pandas data frame contains
all the extracted features, including linear and nonlinear features.

Power can be seen at various frequencies, including alpha, beta, delta, and theta.
Amplitudes of power signals include mean, median, maximum, and minimum. The
Pandas data frame contains the features that were extracted. The linear features are shown
in Table 3.
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Table 3. Linear Features.

if_alpha_one_pat if_beta_one_pat if_delta_one_pat if_theta_one_pat if_mean_one_pat if_max_one_pat if_min_one_pat if_median_one_pat

E9 1875.276458 549.464641 2901.380098 1367.535960 18,576.888899 2.132937 × 107 21.852823 600.045377
E22 1962.344324 564.344696 2103.001899 1128.255877 5045.360363 4.711530 × 106 11.292816 582.253467
E24 1829.038390 500.105839 1683.582830 920.839226 19,974.846182 2.365145 × 107 27.258894 528.262270
E33 1762.225038 655.299494 3190.643405 1483.650170 21,054.315858 2.431015 × 107 33.866445 662.574884
E36 1290.414086 442.475702 1464.350040 821.077427 10,529.862183 1.211437 × 107 11.256188 428.169135

3.2.4. Non-Linear Features

The supplied EEG signal datastore is used to extract two nonlinear features: spectral
entropy and singular-value deposition entropy. These two characteristics demonstrate how
much valuable information is lost from the signal. The retrieved nonlinear features are
shown in Table 4.

Table 4. Non-Linear Feature Extraction.

nl_svden_one_pat nl_spec_enone_pat nl_permenone_pat

E9 0.460683 0.385432 0.781321
E22 0.460976 0.423530 0.769295
E24 0.456698 0.379321 0.778964
E33 0.452907 0.395446 0.779078
E36 0.460703 0.450232 0.770696

3.2.5. Feature Allocation and Visualization

All of the features in this step are collected into a single data frame and saved in a CSV
file that will be used in the following section. Table 5 in the citation below displays the
Pandas data frame, which stands for the feature datastore.

Table 5. Data Frame for Feature Datastore.

if_alpha_resting_E36 if_beta_resting_E36 if_delta_resting_E36 if_theta_resting_E36 if_mean_resting_E36 if_max_resting_E36 if_min_resting_E36

0 4884.613979 2278.624552 17,200.055374 6866.060694 89,740.273531 9.384269 × 108 63.744193
1 4449.706266 2262.541526 19,716.190512 7544.042248 76,589.372973 7.777201 × 108 96.528437
2 2535.166056 2705.244726 5962.754681 2638.860812 21,714.444838 2.003181 × 108 5.312277
3 4719.376369 2299.826126 16,074.572713 6303.707905 48,324.405457 4.815979 × 108 21.432547
4 7827.445436 3818.779974 33,842.519264 12,699.762977 71,679.363955 6.715888 × 108 788.428172

3.2.6. Visualization of Linear Features

The terms “transformation” and “function” both refer to something that takes in a
number and produces a number, such as f(x) = 2xf(x) = 2xf, where x is the input number and
x is the output number. However, despite the fact that we frequently visualize functions
using graphs, the phrase “transformation” is frequently used to imply that you should
instead see a thing moving, stretching, squishing, etc. Consequently, the translation of the
function f(x) = 2xf(x) = 2xf, left parenthesis, x, and right parenthesis, equals 2, x, gives us
the multiplication-by-two video above. The number line’s point one is moved to where two
begins, two to where four begins, etc. Figure 7’s Visualization of Linear Features section
displays four EEG features—delta, theta, alpha, and beta—that were retrieved.
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3.2.7. Visualization of Power Spectral Features

The frequency and power characteristics of a signal are extracted using the block
called spectral features. Unwanted frequencies can also be filtered out using low-pass and
high-pass filters. Figure 8 shows the visualization of four power spectral features, including
the minimum, maximum, median, and mean.
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4. Methodology
4.1. Model Development

At first, characteristics were extracted from EEG data from several patients while they
were at rest. Along with the patient’s condition and demographic information, these data
are merged. The patient’s current state of health will serve as the response, and the retrieved
attributes will be employed as a predictor. Major depressive disorder and healthy control
are the two basic categories into which the patient’s condition can be divided. Additional
MDD subtypes include the following six:
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• Obsessive-compulsive disorders;
• Addictive disorder;
• Trauma and stress-related disorder;
• Mood disorder;
• Schizophrenia;
• Anxiety disorder.

All the demographic data kept in the Pandas data frame are displayed in
Table 6 below.

Table 6. Demographic Information stored in the Pandas Data Frame.

No. Sex Age Eeg.Date Education IQ Main.Disorder

0 1 M 57.0 2012.8.30 NaN NaN Addictive disorder

1 2 M 37.0 2012.9.6 6.0 120.0 Addictive disorder

2 3 M 32.0 2012.9.10 16.0 113.0 Addictive disorder

3 4 M 35.0 2012.10.8 18.0 126.0 Addictive disorder

4 5 M 36.0 2012.10.18 16.0 112.0 Addictive disorder

. . . . . . 1 *** *** . . . . . . . . .

940 941 M 22.0 2014.8.28 13.0 116.0 Healthy control

941 942 M 26.0 2014.9.19 13.0 118.0 Healthy control

942 943 M 26.0 2014.9.27 16.0 113.0 Healthy control

943 944 M 24.0 2014.9.20 13.0 107.0 Healthy control

944 945 M 21.0 2015.10.23 13.0 105.0 Healthy control

*** represents here a sequence of records. They can include all the records of the table.

The features are integrated with this data frame, as shown in Table 7, to generate the
training datastore.

Table 7. Data Frame.

No. Sex Age Eeg Date Education IQ Main Disorder

0 1 M 57.0 2012.8.30 NaN NaN Addictive disorder
1 2 M 37.0 2012.9.6 6.0 120.0 Addictive disorder
2 3 M 32.0 2012.9.10 16.0 113.0 Addictive disorder
3 4 M 35.0 2012.10.8 18.0 126.0 Addictive disorder
4 5 M 36.0 2012.10.18 16.0 112.0 Addictive disorder
. . . . . . . . .

940 941 M 22.0 2014.8.28 13.0 116.0 Healthy control
941 942 M 26.0 2014.9.19 13.0 118.0 Healthy control
942 943 M 26.0 2014.9.27 16.0 113.0 Healthy control
943 944 M 24.0 2014.9.20 13.0 107.0 Healthy control
944 945 M 21.0 2015.10.23 13.0 105.0 Healthy control

4.2. Data Preprocessing and Pre-Operation

The columns for age, gender, IQ, and serial number are removed from this data frame
as well as any null entries. The target columns and predictor columns for classification are
selected after the dataset has been analyzed. The remaining columns of the feature are set
as predictor columns, with the MDD column set as the target column. Data are subjected to
cross-validation using 10-fold validation.

4.2.1. Label Datastore

The label datastore is displayed below in Table 8.
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Table 8. Label Datastore.

{‘Additive disorder’: 0 1.00
1 1.00
2 1.00
3 1.00
4 1.00

. . . . . .
940 0.00
941 0.00
942 0.00
943 0.00
944 0.00

Name: main.disorder, length: 281, dtype: float64,
trauma; and ‘stress related disorder’: 31 1.00

32 1.00
33 1.00
34 1.00
35 1.00

. . . . . . . . .
940 0.00
941 0.00
942 0.00
943 0.00
944 0.00

Name: main.disorder, length: 223, dtype: float64,
‘mood disorder’:89 1.00

4.2.2. Feature Datastore

Table 9 displays the feature datastore.

Table 9. Feature Datastore.

{‘Addictive disorder’: Sex Age Education IQ delta.FP1 delta.F7

0 0.00 4.04 13.00 102.00 3.58 3.08 3.07

1 6.60 3.62 6.00 120.00 2.60 2.40 2.4B6165

2 6.60 3.47 16.00 113.00 3.40 3.32 2.84

3 6.60 3.56 18.00 126.00 3.07 3.08 2.85

4 6.60 3.SB3S19 16.00 112.00 3.63 3.51 3.08

940 0.00 3.09 13.00 116.00 3.73 3.66 3.78

941 0.00 3.258B97 13.00 118.00 2. 943747 2.965345 3.317324

942 0.00 3.258B97 16.00 113.00 3.36 3.48 2.461167

943 0.00 3.18 13.00 107.00 2.992181 3.23 2.676375

944 0.00 3.04 13.00 105.00 4.17738B 4.24 3.565626

6 delta. F3
3.289336

delta. Fz
3.281344 delta. F4 3.247761 COH.gamma.Pz.P4

4.025159
COH.gamma.Pz.T6\
2.817782

1 2.73 2.649B26 2.52 3.82 2.86

2 3.16 3.30 2.67 4.60 4.26

3 2.63 2.65 2.57 4.09 4.16

4 3.08 3.13 3.07 4.12 4.08
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Table 9. Cont.

{‘Addictive disorder’: Sex Age Education IQ delta.FP1 delta.F7

940 3.61 3.21 3.16 4.417763 3.55

941 3.01 2.97 3.01 4.188416 4.20

4.11 82.00

943 2.80 2.87 2:733 4.59 3.88

4.2.3. Classification Model

For the classification of each MDD based on the features that were taken from the EEG
data, three models were created.

• XGBOOST;
• Random Forest;
• 1D CNN model.

4.3. XGBoost

A distributed, scalable gradient-boosted Decision Tree (GBDT) machine learning
framework is called Extreme Gradient Boosting (XGBoost). Parallel tree boosting is a
feature of the best ML library for regression, classification, and ranking problems. Table 10
below lists the XGBoost parameters. According to the findings, feature optimization
combined with the XGBoost algorithm improves classification accuracy. A number of
features are extracted from the EEG brain signals in this work, and the set of features is then
optimized utilizing the correlation matrix, information gain computation, and recursive
feature removal approach.

Table 10. Parameters for XGBoost Model.

Parameters Values

Number of estimators [100, 300, 500]

Sub-sample [0.3, 0.5, 1]

Maximum depth of the tree [1, 3, 6, none]

Figure 9 depicts the overall operation of the XGBoost method, which preprocesses
the data before segmenting it, extracting features, and creating a correlation matrix. The
data splitter separates it into training sets and testing sets once it has received the data. The
classification outcome is presented by the XGBoost classifier last.
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• Features of XGBoost

a. Parallelization: The model is trained over several CPU cores.
b. Regularization: XGBoost offers a range of regularization penalties in order to

prevent overfitting. Penalty regularizations result in successful training, which
enables accurate generalization of the model.

c. Non-linearity: XGBoost can recognize and learn from non-linear data patterns.
d. Cross-validation: Pre-installed and readily available.
e. Scalability: Thanks to distributed servers and clusters like Hadoop and Spark,

XGBoost can handle large amounts of data.

4.4. Random Forest Model

The Random Forest method’s ensemble of Decision Trees is constructed from a data
sample selected from a training set and a replacement sample known as the bootstrap
sample. The RF model’s parameters are shown in Table 11.

Table 11. Parameters of Random Forest Model.

Parameters Values

Number of estimators [100, 300, 500]

Maximum depth of the tree [1, 3, 6, none]

Model Parameters

The steps of the Random Forest algorithm are as follows and as shown in Figure 10:

• Step 1: The Random Forest technique uses n randomly chosen records from a data
collection of k records.

• Step 2: A distinct Decision Tree is constructed for each sample.
• Step 3: Each Decision Tree will generate an output.
• Step 4: The final outcome for classification and regression is assessed using a majority

vote or an average.
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4.5. 1D CNN Model

The creation of a neural network is a very iterative process that calls for adjusting
a number of hyperparameters to maximize the output. Additionally, trying out other
architectures is part of it. Here, we will begin by constructing a sequential CNN. It will
include our classification layer, two convolution layers, one dropout layer, one max pooling
layer, one flatten layer, and one dense connected layer. Table 12 lists the parameters for the
1D CNN model, whereas Table 13 lists the hyperparameters.

• Model Architecture
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Table 12. Parameters for 1D CNN Model.

Layer Properties

Input layer-Conv 1D Input shape = (11,144) Output shape = (1)

Conv 1D Kernal size = 11 Activation = relu layer

Drop out layer Drop out value = 0.2

Maximum pooling layer 1D Pool size = 4

Flatten layer Layer size = default

Dense layer Layer size = 100 Activation = layer

Output classification dense layer Layer size = 1 Activation function = sigmoid

• Model Hyperparameters

Table 13. Model Hyperparameters.

Hyperparameters Properties

Epochs 25

Batch size 32

Learning rate 0.001

Loss Binary cross entropy loss

Input, output, and hidden layers are all features of CNNs that aid in the processing
and classification of pictures. Convolutional, pooling, ReLU, and fully linked layers are
included in the hidden layers. The CNN Classification layer is displayed in Figure 11.
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Figure 11. Classification Layer for Convolution Neural Network.

Multiple artificial neuronal layers make up CNN. Artificial neurons are mathematical
processes that compute the weighted sum of a number of inputs and output an activation
value, just like their biological counterparts do. Each layer of a ConvNet generates several
activation functions in response to the entry of a picture, which are subsequently transmit-
ted to the following layer. Basic elements, including borders with a horizontal or diagonal
axis, are often removed in the first layer. The layer below receives this output and thus can
identify more complex properties, such as corners and multiple edges. The classification
layer provides a series of confidence ratings (numbers between 0 and 1) that indicate how
likely it is for the image to belong to a “class,” based on the activation map of the final
convolution layer.
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4.6. Model Training Results

The sklearn library is used to import both models. Both models classify each MDD
with an accuracy of more than 80%. Tables 14 and 15 show the outcomes of the two models.

Table 14. Model Training Results.

Disorder Algorithm Params Mean_Score

Addictive disorder RF {‘max_depth’: None, ‘n _estimators’: 500} 0.788509

Addictive disorder XGB {‘max_depth“: 1, ‘n_estimators’: 100, ‘subsamp . . . 0.851462

Trauma and stress related disorder RF {‘max_depth’: None, ‘n_estimators’: 500} 0.826282

Trauma and stress related disorder XGB {‘max_depth“: 1, ‘n_estimators’: 100, ‘subsamp . . . 0.891538

Mood disorder RF {‘max_depth’: None, ‘n_estimators’: 500} 0.792669

Mood disorder XGB [‘max_depth“: 1, ‘n_estimators’: 500, ‘subsamp . . . 0.818229

Obsessive-compulsive disorder RF {‘max_depth’: 6, ‘n_estimators’: 100} 0.633889

Obsessive-compulsive disorder XGB {‘max_depth“: 3, ‘n_estimators’: 100, ‘subsamp . . . 0.689944

Schizophrenia RF {‘max_depth’: 3, ‘n_estimators’: 500} 0.808232

Schizophrenia XGB [‘max_depth’: 1, ‘n_estimators’: 100, ‘subsamp . . . 0.922694

Anxiety disorder RF {“max_depth’: None, ‘n_estimators’: 500} 0.759566

Anxiety disorder XGB (‘max_depth’: 1, ‘n_estimators’: 100, ‘subsamp . . . 0.828283

• Standard Deviation Score

Table 15. Standard Deviation Score.

Std_Score

0.086534

0.078554

0.109268

0.121718

0.152891

0.136123

0.189414

0.088103

0.103762

0.074632

0.202616

0.189725

4.7. Model Evaluation

The MODMA dataset is taken into consideration in order to predict depression using
EEG signals from MDD patients and healthy control individuals. First, linear characteristics
and nonlinear features are retrieved from the EEG signals. Additionally, MODMA offers
data from patients, including demographic and psychological assessment data. After that,
the features are integrated with the demographic information, which includes details such
as gender, age, and MDD type. MDD is divided into six classes.

• Obsessive-compulsive disorders;
• Addictive disorder;
• Trauma and stress-related disorder;
• Mood disorder;
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• Schizophrenia;
• Anxiety disorder.

Every class has an additional two characteristics, namely patients with disorders and
healthy controls. In model training, classes are used as the responses and the features that
were extracted as predictors. In order to determine the accuracy of three distinct models
for six different illnesses, models are then assessed using the testing dataset.

• Evaluation of Training Model
The following metrics are being considered for evaluation of the trained model

# Accuracy score;
# Micro F1 score;
# Macro F1 score;
# ROC curve;
# Micro Recall score;
# Macro recall score;
# Macro precision score;
# Micro precision score.

Accuracy: Ratio of the number of correct predictions to the total number of predictions,
and this represents how often the classifier makes the correct predictions.

Accuracy =
TN + TP

TN + FP + TP + FN
(1)

Here, Equation (1) relates to an equation for accuracy, which expresses the proportion
of correctly classified data instances to all other data instances.

If the dataset is unbalanced, accuracy might not be an acceptable metric (both negative
and positive classes have different numbers of data instances).

Precision: Proportion of anticipated positives that are actually positive.

Precision =
TP

TP + FP
(2)

The precision model is shown in Equation (2). A good classifier’s precision should
preferably be 1 (high). Only when the numerator and denominator are equal, or when
TP = TP + FP, does precision become 1, which also implies that FP is zero. The accuracy
value drops as FP rises because the denominator value exceeds the numerator.

Recall: The fraction of true positives successfully identified.

Recall =
TP

TP + FN
(3)

The recall equation is shown in Equation (3), where recall for a good classifier should
ideally be 1 (high). Only when the numerator and denominator are identical, as in
TP = TP + FN, does recall become 1, which also implies that FN is zero. As FN increases,
the denominator value rises above the numerator and the recall value falls.

F1 score: The harmonic mean of recall and precision.

F1 Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

The F1 Score equation is shown in Equation (4). When precision and recall are both 1,
the F1 Score is 1. Only when precision and recall are both strong can the F1 score rise. A
more useful metric than accuracy is the F1 score, which is the harmonic mean of recall and
precision. The results are as shown in the below Table 16.

5. Results

1D CNN Results
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Table 16. One-dimensional CNN results.

loss: 0.3229 accuracy: 0.8790

loss: 0.2638 accuracy: 0.9004

loss: 0.2198 accuracy: 0.9217

loss: 0.2054 accuracy: 0.9004

loss: 0.1907 accuracy: 0.9253

loss: 0.1301 accuracy: 0.9573

loss: 0.1079 accuracy: 0.9644

loss: 0.1067 accuracy: 0.9644

loss: 0.0661 accuracy: 0.9858

loss: 0.0589 accuracy: 0.9858

loss: 0.0501 accuracy: 0.9929

loss: 0.0659 accuracy: 0.9822

loss: 0.0427 accuracy: 0.9929

Figures 12a and 13a, which display the training performance graph and loss perfor-
mance graph, are plotted in the sample below.
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5.1. First Class Addictive Disorder

Early detection of depression symptoms is a crucial initial step towards evaluation,
diagnosis, and behavior modification. The performance of a classification model is deter-
mined using an N × N matrix termed a confusion matrix, where N is the total number of
target classes. The RF model’s parameters are listed in Table 17 below. In comparison, the
confusion matrix for the RF model is shown in Figure 14.

Table 17. Parameters of the RF Model.

Model Accuracy Micro F1 Score Macro F1 Score Micro Recall Macro Recall Micro Precision Macro Precision

RF 0.82 0.760 0.84 0.88 0.89 0.91 0.91

Figure 14. (a) Confusion Matrix for XGBoost Model; (b) ROC Curve for XGBoost Model.

5.1.1. Random Forest Classification Model

The model evaluation parameters for the RF classifier model are displayed in Table 17.
Additionally, Figure 13a displays the RF classifier model’s confusion matrix.

5.1.2. XGBoost classification Model

XGBoost with its traditional classifier will be the first algorithm we employ. This is the
standard basic algorithm from the XGBoost library, and Table 18’s display of the XGBoost
model’s parameters illustrates this. The confusion matrix for the XGBoost model is shown
in Figure 14a.

Table 18. Parameters of the XGBoost Model.

Model Accuracy Score Micro F1 Score Macro F1 Score Micro Recall Score Macro Recall Score Micro Precision
Score

Macro Precision
Score

XGboost 0.85 0.81 0.86 0.91 0.93 0.92 0.93

Figure 14b shows the ROC graph for the XGBoost model. There are two linear graphs
showing ROC curve and random curve

5.1.3. CNN Classification Model

The effectiveness of the categorization approach is summarized in a confusion matrix.
In other words, the confusion matrix summarizes how well the classifier performed. The
parameters of the CNN Classification model are shown in Table 19. The confusion matrix
for the CNN model is shown in contrast in Figure 15.
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Table 19. Parameters of the CNN Classification Model.

Model Accuracy Score Micro F1 Score Macro F1 Score Micro Recall Score Macro Recall Score Micro Precision
Score

Macro Precision
Score

CNN 0.94 0.95 0.90 0.92 0.94 0.91 0.95
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Figure 16a shows the training and validation accuracy performance graph, where
the blue graph shows the training accuracy and the orange graph shows the validation
accuracy. Similarly, Figure 16b shows the training and validation loss performance graph.
Figure 16c shows the ROC curve for the CNN Classification model.
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5.1.4. Class Obsessive-Compulsive Disorder

The broad category of neurotic, stress-related, and somatoform disorders, which also
includes hypochondriacal disorder as a sub-group of somatoform disorders, is where OCD
is categorized in the ICD-10.

5.2. Model Classification
5.2.1. Random Forest Classifier Model

Random Forest is an ensemble classifier made up of several Decision Trees that pro-
duces a class based on the average output of the class from each individual tree. The RF
classifier model’s parameters are displayed in Table 20. Figure 17 depicts the RF classifier
model’s confusion matrix in contrast.

Table 20. Parameters of RF Classifier Model.

Model Accuracy Score Micro F1 Score Macro F1 Score Micro Recall
Score

Macro Recall
Score

Micro Precision
Score

Macro Precision
Score

RF 0.79 0.82 0.81 0.86 0.81 0.83 0.88Diagnostics 2023, 13, x FOR PEER REVIEW 29 of 52 
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Figure 17 shows the ROC curve for the RF classifier model. There are two linear graphs
showing ROC curve and random curve.

5.2.2. XGBoost Classifier Model

Table 21 displays the XGBoost model’s parameters. Figure 18a depicts the XGBoost
model’s confusion matrix in contrast.

Table 21. Parameters of XGBoost Model.

Model Accuracy Score Micro F1 Score Macro F1 Score Micro Recall
Score

Macro Recall
Score

Micro Precision
Score

Macro Precision
Score

XGboost 0.84 0.86 0.87 0.89 0.85 0.86 0.82
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Figure 18 shows the ROC curve for the XGBoost classifier model. There are two linear
graphs showing ROC curve and random curve.

5.2.3. CNN Model

Table 22 lists the CNN model’s parameters, whereas Figure 19 shows the confusion
matrix.

Table 22. Parameters of CNN Model.

Model Accuracy Score Micro F1 Score Macro F1 Score Micro Recall
Score

Macro Recall
Score

Micro Precision
Score

Macro Precision
Score
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5.3. Class Trauma Stress-Related Disorder 
5.3.1. Random Forest Classifier 

The model evaluation parameters for the RF classifier model are displayed in Table 
23. Additionally, Figure 21a displays the RF classifier model’s confusion matrix. 

Figure 19. Confusion Matrix of CNN Model.

Figure 20a shows the training and validation accuracy performance graph. The blue
graph shows the training accuracy and the orange graph shows the validation accuracy.
Similarly, Figure 20b shows the training and validation loss performance graph. Figure 20c
shows the ROC curve for the CNN Classification model.
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Figure 20. (a) Training and Validation Accuracy Performance Graph; (b) Training and Validation
Loss Performance Graph; (c) ROC Curve.

5.3. Class Trauma Stress-Related Disorder
5.3.1. Random Forest Classifier

The model evaluation parameters for the RF classifier model are displayed in Table 23.
Additionally, Figure 21a displays the RF classifier model’s confusion matrix.
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Table 23. Model Evaluation Parameters of RF Classifier Model.

Model Accuracy Score Micro F1 Score Macro F1 Score Micro Recall
Score

Macro Recall
Score

Micro Precision
Score

Macro Precision
Score

RF 0.73 0.78 0.81 0.82 0.84 0.83 0.89

Figure 21b shows the ROC curve for the RF classifier model. There are two linear
graphs showing ROC curve and random curve.

5.3.2. XGBoost Model

Table 24 lists the XGBoost model’s parameters according to the Class Trauma Stress-
related Disorder, and Figure 22 displays the confusion matrix.

Table 24. Parameters of XGBoost Model.

Model Accuracy Score Micro F1 Score Macro F1 Score Micro Recall
Score

Macro Recall
Score

Micro Precision
Score

Macro Precision
Score

XGBoost 0.82 0.79 0.84 0.85 0.81 0.83 0.88
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Figure 22b shows the ROC curve for the XGBoost classifier model. There are two
linear graphs showing ROC curve and random curve.

5.3.3. CNN Model

Table 25 lists the CNN model’s parameters, while Figure 23 depicts the confusion
matrix for the same model.

Table 25. Parameters of CNN Model.

Model Accuracy Score Micro F1 Score Macro F1 Score Micro Recall
Score

Macro Recall
Score

Micro Precision
Score

Macro Precision
Score

CNN 0.91 0.90 0.96 0.94 0.93 0.98 0.95
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Figure 23. Confusion Matrix of CNN Model.

Figure 24a shows the training and validation accuracy performance graph. The blue
graph shows the training accuracy and the orange graph shows the validation accuracy.
Similarly, Figure 24b shows the training and validation loss performance graph. Figure 24c
shows the ROC curve for the CNN Classification model.
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5.4. Class Mood Disorder

To identify mood disorders, we employ tree-based classification algorithms, specifi-
cally classification trees, along with the Random Forest, XGBoost, and CNN approaches.
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5.4.1. Random Forest Classifier

Figure 25a depicts the RF model’s confusion matrix, while Table 26 displays the
model’s parameters.
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Table 26. Parameters of RF Model.

Model Accuracy Score Micro F1 Score Macro F1 Score Micro Recall
Score

Macro Recall
Score

Micro Precision
Score

Macro Precision
Score

RF 0.76 0.78 0.71 0.75 0.81 0.83 0.84

Figure 25b shows the ROC curve for the RF classifier model. There are two linear
graphs showing ROC curve and random curve.

5.4.2. XGBoost Model

Figure 26a depicts the XGBoost confusion matrix, while Table 27 displays the XGBoost
model’s parameters.
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Table 27. Parameters of XGBoost Model.

Model Accuracy Score Micro F1 Score Macro F1 Score Micro Recall
Score

Macro Recall
Score

Micro Precision
Score

Macro Precision
Score

XGboost 0.81 0.88 0.93 0.84 0.81 0.86 0.87
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Figure 26b shows the ROC curve for the XGBoost classifier model. There are two
linear graphs showing ROC curve and random curve.

5.4.3. CNN Model

The parameters of the CNN model are shown in Table 28, while the CNN model’s
confusion matrix is shown in Figure 27.

Table 28. Parameters of CNN Model.

Model Accuracy Score Micro F1 Score Macro F1 Score Micro Recall
Score

Macro Recall
Score

Micro Precision
Score

Macro Precision
Score

CNN 0.93 0.94 0.95 0.91 0.92 0.90 0.95
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Figure 28a shows the training and validation accuracy performance graph. The blue
graph shows the training accuracy and the orange graph shows the validation accuracy.
Similarly, Figure 28b shows the training and validation loss performance graph. Figure 27c
shows the ROC curve for the CNN Classification model.
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5.5. Class Schizophrenia

ML algorithms can identify diseases like schizophrenia and support clinical decision-
making with predictive models. In order to forecast the presence of hospitalized schizophre-
nia patients, machine learning techniques such as Decision Tree, Random Forest, XGBoost,
and CNN are used.

5.5.1. Random Forest Model

Table 29 provides the RF model’s parameters according to Class Schizophrenia, and
Figure 29a depicts the model’s confusion matrix.

Table 29. Parameters of RF Model.

Model Accuracy Score Micro F1 Score Macro F1 Score Micro Recall
Score

Macro Recall
Score

Micro Precision
Score

Macro Precision
Score

RF 0.72 0.76 0.79 0.78 0.73 0.81 0.79
Diagnostics 2023, 13, x FOR PEER REVIEW 33 of 41 
 

 

 

 
(a) (b) 

Figure 29. (a) Confusion Matrix of RF Model; (b) ROC Curve for RF Model. 

5.5.2. XGBoost Model 
The XGBoost parameters are shown in Table 30, and Figure 30a provides the confu-

sion matrix. 

Table 30. Parameters of XGBoost Model. 

Model 
Accuracy 
Score 

Micro F1 
Score 

Macro F1 
Score 

Micro Recall 
Score 

Macro Recall 
Score 

Micro Preci-
sion Score 

Macro Preci-
sion Score 

boost 0.80 0.83 0.81 0.88 0.87 0.83 0.79 

Figure 30b shows the ROC curve for the XGBoost classifier model. There are two 
linear graphs showing ROC curve and random curve. 

  
(a) (b) 

Figure 30. (a) Confusion Matrix of XGBoost Model; (b) ROC Curve for XGBoost Model. 

5.5.3. CNN Model 
Table 31 lists the CNN model’s parameters, and Figure 31 displays the model’s con-

fusion matrix. 

Table 31. Parameters of CNN Model. 

Model 
Accuracy 
Score 

Micro F1 
Score 

Macro F1 
Score 

Micro Recall 
Score 

Macro Recall 
Score 

Micro Precision 
Score 

Macro Precision 
Score 

CNN  0.93 0.95 0.97 0.91 0.93 0.95 0.98 

Figure 32a shows the training and validation accuracy performance graph. The blue 
graph shows the training accuracy and the orange graph shows the validation accuracy. 

Commented [M1]: Figures 29 and 30 are the same, 
Please confirm they are correct. If not, Please 
revise it. 
If there is no error in the two pictures, Please 
explain why the two pictures are consistent. 
Thank you. 

Commented [MZ2R1]: Now figure 29 is corrected. 

Commented [M3]: Figures 29 and 30 are the same, 
Please confirm they are correct. If not, Please 
revise it. 
If there is no error in the two pictures, Please 
explain why the two pictures are consistent. 
Thank you. 

Figure 29. (a) Confusion Matrix of RF Model; (b) ROC Curve for RF Model.

Figure 29b shows the ROC curve for the RF classifier model. There are two linear
graphs showing ROC curve and random curve.

5.5.2. XGBoost Model

The XGBoost parameters are shown in Table 30, and Figure 30a provides the confusion
matrix.

Table 30. Parameters of XGBoost Model.

Model Accuracy Score Micro F1 Score Macro F1 Score Micro Recall
Score

Macro Recall
Score

Micro Precision
Score

Macro Precision
Score

boost 0.80 0.83 0.81 0.88 0.87 0.83 0.79

Diagnostics 2023, 13, x FOR PEER REVIEW 42 of 52 
 

 

  
(a) (b) 

Figure 29. (a) Confusion Matrix of RF Model; (b) ROC Curve for RF Model. 

5.5.2. XGBoost Model 
The XGBoost parameters are shown in Table 30, and Figure 30a provides the confu-

sion matrix. 

Table 30. Parameters of XGBoost Model. 

Model 
Accuracy 
Score 

Micro F1 
Score 

Macro F1 
Score 

Micro Recall 
Score 

Macro Recall 
Score 

Micro Preci-
sion Score 

Macro Preci-
sion Score 

boost 0.80 0.83 0.81 0.88 0.87 0.83 0.79 

Figure 30b shows the ROC curve for the XGBoost classifier model. There are two 
linear graphs showing ROC curve and random curve. 

  
(a) (b) 

Figure 30. (a) Confusion Matrix of XGBoost Model; (b) ROC Curve for XGBoost Model. 

5.5.3. CNN Model 
Table 31 lists the CNN model’s parameters, and Figure 31 displays the model’s con-

fusion matrix. 

Table 31. Parameters of CNN Model. 

Model 
Accuracy 
Score 

Micro F1 
Score 

Macro F1 
Score 

Micro Recall 
Score 

Macro Recall 
Score 

Micro Precision 
Score 

Macro Precision 
Score 

CNN  0.93 0.95 0.97 0.91 0.93 0.95 0.98 

Figure 32a shows the training and validation accuracy performance graph. The blue 
graph shows the training accuracy and the orange graph shows the validation accuracy. 
Similarly, Figure 32b shows the training and validation loss performance graph. Figure 
31c shows the ROC curve for the CNN Classification model. 

Figure 30. (a) Confusion Matrix of XGBoost Model; (b) ROC Curve for XGBoost Model.



Diagnostics 2023, 13, 1779 32 of 39

Figure 30b shows the ROC curve for the XGBoost classifier model. There are two
linear graphs showing ROC curve and random curve.

5.5.3. CNN Model

Table 31 lists the CNN model’s parameters, and Figure 31 displays the model’s confu-
sion matrix.

Table 31. Parameters of CNN Model.

Model Accuracy Score Micro F1 Score Macro F1 Score Micro Recall
Score

Macro Recall
Score

Micro Precision
Score

Macro Precision
Score

CNN 0.93 0.95 0.97 0.91 0.93 0.95 0.98Diagnostics 2023, 13, x FOR PEER REVIEW 43 of 52 
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5.6. Anxiety Disorder 
Data mining is able to find hidden patterns and associations that can be utilized to 

forecast generalized anxiety disorder, which leads to substantial insights. The Random 
Forest approach is one of the categorization data mining strategies that embeds good pre-
dictive properties for accurate prediction. 

  

Figure 31. Confusion Matrix of CNN Model.

Figure 32a shows the training and validation accuracy performance graph. The blue
graph shows the training accuracy and the orange graph shows the validation accuracy.
Similarly, Figure 32b shows the training and validation loss performance graph. Figure 31c
shows the ROC curve for the CNN Classification model.



Diagnostics 2023, 13, 1779 33 of 39

Diagnostics 2023, 13, x FOR PEER REVIEW 44 of 52 
 

 

 
Figure 31. Confusion Matrix of CNN Model. 

  
(a) (b) 

 
(c) 

Figure 32. (a) Training and Validation Accuracy Performance Graph; (b) Training and Validation 
Loss Performance Graph; (c) ROC Curve. 

5.6. Anxiety Disorder 
Data mining is able to find hidden patterns and associations that can be utilized to 

forecast generalized anxiety disorder, which leads to substantial insights. The Random 
Forest approach is one of the categorization data mining strategies that embeds good pre-
dictive properties for accurate prediction. 

  

Figure 32. (a) Training and Validation Accuracy Performance Graph; (b) Training and Validation
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5.6. Anxiety Disorder

Data mining is able to find hidden patterns and associations that can be utilized to
forecast generalized anxiety disorder, which leads to substantial insights. The Random
Forest approach is one of the categorization data mining strategies that embeds good
predictive properties for accurate prediction.

5.6.1. Random Forest Classifier Model

Figure 33a depicts the RF model’s confusion matrix, while Table 32 displays the
parameters for the RF classifier model.
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Table 32. Parameters of RF Classifier Model.

Model Accuracy Score Micro F1 Score Macro F1 Score Micro Recall
Score

Macro Recall
Score

Micro Precision
Score

Macro Precision
Score

RF 0.73 0.72 0.69 0.57 0.66 0.68 0.7

Figure 33b shows the ROC curve for the RF classifier model. There are two linear
graphs showing ROC curve and random curve.

5.6.2. XGBoost Model

The XGBoost model’s parameters are listed in Table 33, and Figure 34a provides the
model’s confusion matrix.

Table 33. Parameters of XGBoost Model.

Model Accuracy Score Micro F1 Score Macro F1 Score Micro Recall
Score

Macro Recall
Score

Micro Precision
Score

Macro Precision
Score

xgboost 0.77 0.75 0.78 0.81 0.83 0.84 0.86
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Figure 34b shows the ROC curve for the XGBoost classifier model. There are two linear
graphs showing ROC curve and random curve.

5.6.3. CNN Model

Table 34 displays the CNN model’s parameters, and Figure 35 displays the CNN
model’s confusion matrix.

Table 34. Parameters of CNN Model.

Model Accuracy Score Micro F1 Score Macro F1 Score Micro Recall
Score

Macro Recall
Score

Micro Precision
Score

Macro Precision
Score

CNN 0.94 0.97 0.98 0.91 0.95 0.98 0.99
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Figure 35. Confusion Matrix of CNN Model.

Figure 36a shows the training and validation accuracy performance graph. The blue
graph shows the training accuracy and the orange graph shows the validation accuracy.
Similarly, Figure 36b shows the training and validation loss performance graph. Figure 36c
shows the ROC curve for the CNN Classification model.
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6. Discussion

Electroencephalograms serve as an important point of reference and an objective
foundation for the detection and diagnosis of depression (EEGs). In order to improve the
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diagnostic accuracy, a high-performance hybrid neural network depression detection strat-
egy using deep learning technology is proposed in this research. This research considers
resting-state neurological signals via 128 channels. Data from both an advanced wearable
EEG collector and a traditional 128-electrode elastic cap are given. Results for categorization
accuracy from three models were inconsistent. When comparing CNN to the other two
models, it performs data classification more accurately. EEG signal data are collected from
the multi-modal open dataset MODMA, which is employed in the study of mental diseases.
The EEG dataset contains information from both a traditional 128-electrode elastic cap and
a cutting-edge wearable 3-electrode EEG collector for widespread applications. There are
three datastores for EEG. An EEG machine typically has a lot of electrodes. After obtaining
voltage from the patient’s scalp, the electrodes convert the voltage into signal data. For
instance, each electrode will generate a time series of voltage values if there are n electrodes.
The voltage in different areas of the brain varies.

A bandpass filter with a 50 Hz filter size is used to remove the power spectral dis-
tribution spikes. The programme not only removes these spikes but also converts the
EEG signal into a NumPy array since we cannot analyze signals directly for feature ex-
traction. The EEG signals are processed to reduce noise and converted to a NumPy array,
and feature engineering is applied to the data to extract useful features that will be used
to differentiate between the EEG power spectrum of a healthy individual and that of a
mentally ill person. We extract spectral entropy and singular-value deposition entropy, two
nonlinear characteristics, from the provided EEG signal datastore. The signal loses a lot of
important information, as evidenced by these two properties. A number of patients’ resting
EEG data were first used to derive characteristics. These statistics are now combined with
details about the patient’s condition and demographics. The gathered qualities will be
used as a predictor, and the patient’s current state of health will be the response. The two
fundamental groups into which the patient’s state can be separated are major depressive
disorder and healthy control. There are six additional MDD subtypes: Mental illnesses
such as, for example, obsessive-compulsive disorders, addiction disorders, disorders linked
to trauma and stress, mood disorders, schizophrenia, and anxiety disorders.

In this study, three machine learning models—Random Forest, XGBoost, and CNN-
based models—are used to analyze MODMA data in order to diagnose depression. The
study’s objective is to identify traits and link those qualities to the appropriate labels—in
this case, MDD and healthy controls. We translate these labels to 1 and 0. There are six
major depressive illnesses that fall under the MDD umbrella. Models will be trained using
attributes and particular labels from the MDD class. Three models produced results for
categorization accuracy that varied. Comparing CNN to the other two models, it is more
accurate in classifying data. CNN reported a 97% accuracy rate for training with 25-epoch
iterations.

The suggested strategy offers a number of advantages. First, it can more accurately
identify between persons with depression and healthy participants based on the same
dataset than previous methods. The network model also includes an attention mechanism
that considerably reduces training time. The results show that by focusing computing
resources on traits with high weights, the attention mechanism decreases overhead.

Comparative Analysis

Three key classification techniques—Xgboost, Random Forest, and CNN model—are
used in the design of our model. The best accuracy, 97%, was provided by the CNN model
over 25 training epochs. With a large number of layers, the CNN model is designed to learn
data trends with greater precision. In EEG diagnosis of depression based on multi-channel
data fusion and clipping augmentation and convolutional neural network, a maximum
accuracy of 90.02 is attained with the aid of the CNN model as compared to some prior work
for depression identification with the use of the MODMA dataset. Using the CNN + GRU
model, the minimum accuracy in comparable work is achieved of up to 89.63. In our model,
we employed a lower learning rate and a greater number of epochs, which assisted the
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CNN model in extracting the greatest number of features from the dataset and providing
the most accuracy. Table 35 lists some of the most recent works. Using a Deep Learning
CNN network, our technique had a 97% accuracy rate.

Table 35. List of a few Recent Works.

Previous Work Approach Accuracy

[38] CNN + GRU 89.63

[39] CNN 91.01

[40] ResNet-50 + LSTM 90.02

Proposed CNN network 97%

There are a number of useful aspects of the suggested model for EEG-based depression
detection using multiple ML techniques that could make it useful in practical applications.
The proposed model’s capacity to increase diagnostic precision for depression by fusing
EEG signals with demographic information such as age and gender is one of its main bene-
fits. Earlier and more efficient treatment might result from this, which would ultimately
improve patient outcomes. The proposed model’s use of open datasets, particularly the
MODMA dataset for gathering EEG signal data, is another practical feature. This broadens
the information available for studying mental illnesses and improves the approach’s usabil-
ity and applicability in the real world. This method is effective and reliable, automating the
diagnosis of depression through the use of machine learning and deep learning techniques
for automatic depression detection from EEG signals. This may lessen the amount of work
clinicians have to do and increase the speed and precision of diagnosis. Furthermore, the
proposed model can be applied widely with both conventional 128-electrode elastic caps
and cutting-edge wearable 3-electrode EEG collectors. This makes data collection more
flexible and convenient, increasing its accessibility to a wider range of patients.

7. Conclusions

In order to comprehensively examine the features of EEG signals and recommend a
high-performance technique for mental state detection, the researchers used DL algorithms
as the study object and EEG signals as the research object. After that, the model’s model
parameters and hyperparameters were adjusted via testing; comparison studies were con-
ducted to confirm the approach’s applicability and effectiveness. The approach indicated
in this study is more productive in terms of recognizing and diagnosing depression, based
on the trial data. In the case of a few repetitions, our algorithm might dynamically extract
the EEG signal features to outperform earlier methods in classification performance. This
method is implemented well on open datasets and establishes a technological foundation
for the evaluation and diagnosis of depression. The performance and effectiveness of the
methodology were validated through comparative experiments. The approach utilized in
this research has a 98% accuracy rate when applied to the public dataset.

Even if the model is successful in identifying mental states, the following problems
need to be fixed: Despite the fact that there were not enough negative samples, the dataset
used in this research can substantiate the observations made in this article. In the future,
we intend to gather more diagnostic data to enhance the generalization ability of the model.
Additionally, as the main objective of this research was to diagnose depression, future
studies on non-destructive treatments could be taken into consideration. Heavy electrode
caps that had to be forced on the scalp surface in order to fully connect with them were
employed to capture EEG data from the study’s participants. As a result, some users
might have felt pain. We can take into consideration employing fewer, lighter electrodes in
future studies with portable acquisition techniques such as ear-BCI. (3) Only a qualitative
analysis of the psychological state was carried out in this investigation. Future study might
involve quantitative assessments of psychological status. Depression may be diagnosed
depending on its intensity, which is further classified as normal, mild, moderate, or severe.
The functional form could be established as a confirmation to exhibit the concentration level.
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When diagnosing depression, it is beneficial to consider demographic factors other than
age and gender, like ethnicity and socioeconomic status. These elements may significantly
affect the prevalence and severity of depression, but our paper did not specifically address
them. Future studies can be carried out that take these factors into account.
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