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Abstract: (1) Background: We aim to investigate age-related changes in cartilage structure and
composition in the metacarpophalangeal (MCP) joints using magnetic resonance (MR) biomarkers.
(2) Methods: The cartilage tissue of 90 MCP joints from 30 volunteers without any signs of destruction
or inflammation was examined using T1, T2, and T1ρ compositional MR imaging techniques on a
3 Tesla clinical scanner and correlated with age. (3) Results: The T1ρ and T2 relaxation times showed
a significant correlation with age (T1ρ: Kendall-τ-b = 0.3, p < 0.001; T2: Kendall-τ-b = 0.2, p = 0.01).
No significant correlation was observed for T1 as a function of age (T1: Kendall-τ-b = 0.12, p = 0.13).
(4) Conclusions: Our data show an increase in T1ρ and T2 relaxation times with age. We hypothesize
that this increase is due to age-related changes in cartilage structure and composition. In future
examinations of cartilage using compositional MRI, especially T1ρ and T2 techniques, e.g., in patients
with osteoarthritis or rheumatoid arthritis, the age of the patients should be taken into account.

Keywords: MRI; cartilage; metacarpophalangeal joints; relaxation times; T1ρ; age; musculoskeletal
imaging

1. Introduction

Magnetic resonance imaging (MRI) is suitable for assessing cartilage quality and
can therefore be used to evaluate cartilage disorders [1]. In particular, diseases such
as rheumatoid arthritis (RA) and osteoarthritis (OA) can be associated with cartilage
degeneration in the metacarpophalangeal (MCP) joints [2,3]. However, changes in cartilage
quality may also occur during the normal aging process [4,5]. Therefore, it is useful to
know whether and how age-related cartilage changes are reflected in magnetic resonance
biomarkers in MCP joints. This could allow better differentiation between age-related and
disease-related cartilage changes in the MCP joints.

Various magnetic resonance techniques allow the quantification of cartilage composi-
tion and structure. These methods include the determination of the longitudinal relaxation
time T1, the relaxation time in the rotating frame T1ρ and the transverse relaxation time
T2, chemical exchange saturation transfer (CEST) imaging, and sodium imaging [6–10].
Potential age-related changes in proteoglycan content and cartilage structure could affect
these parameters, as was already shown for T2 and T1ρ [11,12].
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The longitudinal relaxation time T1 could be sensitive to the cartilage structure, as it
represents the proton mobility, which, in turn, depends on the shape of the extracellular
matrix.

Change in the components in articular cartilage can also be detected with the relaxation
time in the rotating frame T1ρ. With T1ρ mapping, changes in proteoglycans can be
identified, as T1ρ relaxation times are negatively related to the proteoglycan content, as has
already been shown in various studies [13–15]. In addition, T1ρ was shown to correlate
moderately with water content [13], and in OA patients, T1ρ values were higher compared
to healthy volunteers [16].

Quantitative T2 mapping shows wide utility in the characterization of cartilage [17].
The transverse relaxation time T2 is dependent on the water content and its interaction with
the extracellular matrix [18]. Magnetic resonance experiments quantifying the T2 relaxation
time during the aging process in articular cartilage in the knee have been performed by
Mosher et al. [12]. They found an increase in T2 values in articular knee cartilage with
increasing age after the age of 45 in a cohort of asymptomatic women [12]. They proposed
that this increase is due to a reduction in the anisotropy of the collagen fibers or an increase
in the mobility of the cartilage water. In addition, they suggested that the aging of cartilage
collagen begins near the joint surface and progresses to the deeper cartilage layers with age.

In addition, there are various age-related changes in the cells and the extracellular
matrix of articular cartilage, such as proteolysis, reduction in cell density, or cellular
senescence with abnormal secretion profiles [19], of which, to our knowledge, no causality
to the T2 elevation has been proven so far, but which is conceivable due to the presumed
increase in extra- and intracellular water content.

In line with the results for knee articular cartilage by Mosher et al. [12,20], we can also
expect elevated T2 values for finger cartilage.

CEST imaging has already been shown to be related to the content of glycosaminogly-
cans [21]. However, the gagCEST effect in articular cartilage at a field strength of 3 Tesla
is very small [22]. In addition, CEST imaging is highly susceptible to artifacts due to field
inhomogeneities [23], making this method difficult to apply in MCP joints.

Sodium imaging of cartilage is based on the idea that the GAG side chains of proteo-
glycans create a negative fixed charge density (FCD) that attracts positively charged sodium
ions [10]. This makes sodium imaging very attractive for the assessment of degenerative
processes in articular cartilage since degeneration results in a decrease in sodium ions
in the tissue [14]. However, due to the low intrinsic resolution, long imaging times, and
special hardware requirements [24,25], this method is again difficult to perform in MCP
joints. In addition to MRI imaging, the MCP joints can also be examined using ultrasound.
Ultrasonography appears to increase the accuracy of assessment of the MCP joints in RA
compared to conventional radiography [26]. Joint changes such as osteophytes and erosions
can occasionally also be found in healthy subjects [27].

In comparison, both morphological MRI imaging and ultrasound are important be-
cause both can detect early disease stages in RA [28]. A direct comparison between
ultrasound and compositional MRI biomarkers is not known to us.

Our study aims to evaluate if the compositional magnetic resonance imaging tech-
niques T1, T1ρ, and T2 can detect age-related changes in articular cartilage in MCP joints.
Furthermore, compositional magnetic resonance measurements may indicate specific struc-
tural changes in the MCP joints, such as changes in water content or composition of the
extracellular matrix. Moreover, a possible age-related extent of T1, T1ρ, and T2 changes
should be compared with expected disease-related cartilage changes, such as OA or RA.

2. Materials and Methods
2.1. Study Population

This study was designed and conducted as a prospective compositional magnetic
resonance biomarker in vivo study of a general longitudinal cohort of adult volunteers.
The subjects were recruited from the study leader’s extended work environment and circle
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of friends. Our primary objective was to investigate the effectiveness of magnetic resonance
imaging biomarkers in assessing the health status of the cartilage in the metacarpopha-
langeal joints (MCP) of digits 2 to 4 in 30 healthy subjects and validate these biomarkers
with respect to age-related changes. This study was approved by the local ethics commit-
tee (Medical Faculty, University of Düsseldorf, Germany, study number 2021-1363), and
written informed consent was obtained from all participants.

Prior to enrollment in the study, all subjects were questioned about pre-existing
conditions and surgeries in the examination region and excluded if necessary. Based on
the morphological magnetic resonance images, they were carefully controlled to ensure
that they showed no signs of degenerative changes, particularly with regard to cartilage
or joints.

2.2. Hardware and Sequence Protocol

All volunteers were examined in a prone position with the right hand extended
over the head (‘superman position’) using a clinical 3 Tesla magnetic resonance scanner
(MAGNETOM Prisma, Siemens Healthcare, Erlangen, Germany) (see Figure 1). Signal
reception was performed with a dedicated 16-channel hand/wrist coil for high-resolution
hand and wrist imaging (Hand/Wrist 16, Siemens Healthcare, Erlangen, Germany).
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Figure 1. Positioning of the right hand of a volunteer in the ‘superman position’.

Figure 2 displays a flowchart summarizing the data acquisition and post-processing
steps of our study.

After performing a scout, a proton-density-weighted sequence was acquired to assess
the overall health of the MCP joint within a field of view of 140 × 140 × 44 mm3 in all study
participants. In addition to the proton density sequence, compositional magnetic resonance
sequences with an in-plane resolution of 0.5 × 0.5 mm and a slice thickness of 4.5 mm
were acquired. These compositional sequences include a T1, T1ρ, and T2 sequence. These
sequences were acquired in a single central slice planned on the scout, and the results of
the proton-density-weighted sequence provide detailed information about the MCP joint’s
composition. Details on the sequence parameters are provided in Table 1.
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Figure 2. Visualization of study design.

To obtain T1 mapping, an inversion recovering protocol including five different se-
quences with an inversion recovery preparation and a repetition time TR of 5190 ms was
acquired. These five different sequences were acquired with five different inversion times
(TI) ranging between 25 and 2000 ms, as detailed in Table 1. T1 mapping provides infor-
mation on the longitudinal relaxation time of the joint tissue, which can be used to assess
tissue composition and detect early degenerative changes.

For T2 relaxation time measurements, ten different T2 preparation pulses ranging from
0 ms to 90 ms with a step size of 10 ms were used. For T1ρ acquisitions, we used ten different
spin-lock times (TSL), which also range from 0 ms to 90 ms with a step size of 10 ms. T1ρ
and T2 sequences are highly sensitive to changes in the joint’s proteoglycan content and
fluid accumulation, respectively. By utilizing multiple compositional magnetic resonance
sequences, including T1, T1ρ, and T2, this study was able to provide a comprehensive
evaluation of the MCP joint’s composition, enabling the detection of even subtle changes in
the joint tissue.
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Table 1. Detailed sequence parameters.

Sequence Parameter T1 T1ρ T2 Proton Density

Resolution (mm3) 0.5 × 0.5 × 4.5 0.5 × 0.5 × 4.5 0.5 × 0.5 × 4.5 0.3 × 0.3 × 2
Flip Angle (◦) 180 15 15 150

Field of View (mm3) 140 × 140 × 4.5 140 × 140 × 4.5 140 × 140 × 4.5 140 × 140 × 44
Number of slices 1 1 1 20
Distance between

slices (mm) 0 0 0 0.2

TE (ms) 12 2.59 2.59 39.00

T2prep (ms) - - 0, 10, 20, 30, 40,
50, 60, 70, 80, 90 -

TR (ms) 5190 5000 5000 3160

TI (ms) 25, 100, 500,
1000, 2000 - - -

Averages 1 1 1 1
Duration (min:sec) 1:50 × 5 1:12 1:12 2:51

Grappa factor 2 - - -

TSL (ms) - 0, 10, 20, 30, 40,
50, 60, 70, 80, 90 - -

Abbreviations: TE—echo time; TR—repetition time; TI—inversion recovery time; GRAPPA—Generalized Auto-
calibrating Partially Parallel Acquisitions; TSL—time of spin-lock.

2.3. Data Analysis

Using ITK-SNAP software (v3.8.0, Cognitica, Philadelphia, PA, USA, www.itksnap.org
(accessed on: 29 April 2021)) [29], regions of interest (ROI) were drawn separately for MCP
joints of the index, middle, and ring finger (MCP2, MCP3, and MCP4) by two radiologists
(1. MF, six years; 2. BV, four years of musculoskeletal radiology). The first radiologist drew
the ROIs twice (4 weeks after the initial assessment) to assess intrareader reliability.

ROIs were transferred to the externally calculated relaxation maps. To produce re-
laxation maps, the fitting routines were implemented in Python (v3.9, Python Software
Foundation, Wilmington, DE, USA), and non-linear least-square fits were applied voxel-
wise to the exponential decay curves. To validate fit quality, coefficient of determination
(R2) statistics adjusted to the degrees of freedom were calculated, and only voxels with
R2-values ≥ 0.75 were included in the subsequent analysis.

For the calculation of T1 maps, the signal equation

S(TI) = S0(1 − 2 exp (−TI
T1

)) (1)

was used. According to Rauscher et al. [30], we determined T1ρ and T2 by fitting signal
intensities with the following equations [30,31]:

S(TSL) = S0 sin(α)
exp

(
− TSL

T1ρ

)(
1 − exp

(
− TR−TSL

T1

))
exp

(
− TE

T2∗

)
1 − exp

(
− TSL

T1ρ

)
exp

(
− TR−TSL

T1

)
cos(α)

+ const. (2)

S
(
T2prep

)
= S0 sin(α)

exp
(
− T2prep

T2

)(
1 − exp

(
−TR−T2prep

T1

))
exp

(
− TE

T2∗

)
1 − exp

(
− T2prep

T2

)
exp

(
−TR−T2prep

T1

)
cos(α)

+ const. (3)

For both calculations, we used TR = 5000 ms, α = 15◦, and TE = 2.59 ms, as shown
in Table 1. Furthermore, we corrected the fitting with respect to T1, as indicated in the
formula, using T1 = 900 ms.

2.4. Statistical Analysis

The statistical analyses were conducted by KLR using R software (v4.1.3, R Foundation
for Statistical Computing). The Kendall-τ-b rank correlation analysis was performed to

www.itksnap.org
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investigate the obtained mean T1, T1ρ, and T2 times as a function of age. Based on Cohen
et al., the tau effect size was classified as weak (0.1–0.3), moderate (0.3–0.5), and strong
(>0.5) [32].

In cases where a significant correlation was detected, we determined the dependence
between the corresponding relaxation time and age in the form of a straight-line equation.
With this foundation, we were then able to estimate the expected percentage of change in
these relaxation times between 20 and 30 years, 20 and 40 years, 20 and 50 years, 20 and
60 years, 30 and 40 years, 30 and 50 years, 30 and 60 years, 40 and 50 years, 40 and 60 years,
and 50 and 60 years.

To measure relative reliability, we calculated the intraclass correlation coefficient
(ICC) and adopted the classification according to Koo et al. ICC values were classified as
poor (ICC < 0.5), moderate (0.5 <= ICC < 0.75), good (0.75 <= ICC < 0.9), and excellent
(ICC >= 0.9) [33]. For the purpose of determining inter-rater reliability, we used ICC(2, 1),
whereas ICC(3, 1) was applied to assess intra-rater reliability [34].

All data are presented as median (min–max). To ensure the validity of our findings,
we considered p-values ≤ 0.05 as the threshold for statistical significance.

3. Results

In our study, 30 healthy volunteers were included (mean age: 44 ± 14 years, range:
20–68 years, 17 females, 13 males). Of these, 29/30 were Caucasian, 0/30 were Afro-
American, and 1/30 were of Asian descent.

Data acquisition was successfully performed in the whole study cohort. Table 2
provides the descriptive statistic of magnetic resonance parameters for all subjects and
MCP joints. With 918.8 (766.7–1090.2) ms, the longitudinal relaxation time was much higher
compared to the relaxation times T1rho 19.6 (15.0–32.6) ms and T2 15.6 (9.3–25.7) ms.

Table 2. Descriptive statistics of relaxation times T1, T1ρ, and T2.

Relaxation Time Mean Std Median Min Max

T1 (ms) 930.3 69.8 918.8 766.7 1090.2
T1ρ (ms) 20.0 4.1 19.6 15.0 32.6
T2 (ms) 15.7 3.0 15.6 9.3 25.7

For the relaxation times T1, our study results show no dependence on age (T1: Kendall-
τ-b = 0.12, p = 0.13). Significant positive correlations were shown between relaxation times
T2, and T1ρ and age (T2: Kendall-τ-b = 0.20, p = 0.01, weak positive correlation with age;
T1ρ: Kendall-τ-b = 0.30, p < 0.001, moderate positive correlation with age) (see Figure 3).
The straight-line equations for the relaxation times T1ρ and T2 result in

T1ρ(age) = (0.112 ± 0.029)
[

ms
years

]
∗ age[years] + (15.249 ± 1.285)[ms] (4)

and

T2(age) = (0.058 ± 0.022)
[

ms
years

]
∗ age[years] + (13.230 ± 0.988)[ms]. (5)
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Therefore, a higher increase in relaxation times with age is observed for T1rho com-
pared to the transverse relaxation time T2. The expected percentage increase in T1ρ and
T2 values with age is summarized in Table 3. Over a period of 40 years, for example, T1ρ
times are expected to increase by 25.6%, whereas transverse relaxation times T2 increase by
only 16.1% over this period.

Table 3. Percentage increase in T1ρ and T2 relaxation times with age.

Age 1
(Years)

Age 2
(Years)

Percentage Increase in T1ρ
between Age 1 and Age 2 (%)

Percentage Increase in T2
between Age 1 and Age 2 (%)

20 30 6.4 4.0
20 40 12.8 8.1
20 50 19.2 12.1
20 60 25.6 16.1
30 40 6.0 3.9
30 50 12.0 7.8
30 60 18.1 11.6
40 50 5.7 3.7
40 60 11.4 7.5
50 60 5.4 3.6

Weak and moderate changes can be visualized by quantitative mapping of T2 and T1ρ.
A 21-year-old subject and a 55-year-old subject exemplify this (Figure 4). Higher relaxation
times in the MCP joints can be observed for T1ρ and T2 relaxation times in the 55-year-old
volunteer compared to the 21-year-old participant.

Excellent intra-rater reliability and moderate inter-rater reliability was obtained for
T1ρ (intra-rater: ICC(3, 1) = 0.99 (95% CI = 0.99–0.99); inter-rater: ICC(2, 1) = 0.71 (95%
CI = 0.48–0.83)). We found excellent intra-rater reliability and good inter-rater reliability
for T2 (intra-rater: ICC(3, 1) = 0.98 (95% CI = 0.97–0.99); inter-rater: ICC(2, 1) = 0.75
(95% CI = 0.62–0.83)). We observed good intra-rater reliability but poor inter-rater reliability
for T1 (intra-rater: ICC(3, 1) = 0.91 (95% CI = 0.86–0.94); inter-rater: ICC(2, 1) = 0.39
(95% CI = −0.19–0.56)).
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Figure 4. Representative quantitative mapping of relaxation times T1ρ (a,b) and T2 (c,d) of a 21-year-
old (a,c) and a 55-year-old subject (b,d). Blue, i.e., low T1ρ and T2 values, can be seen in the MCP
joints of the younger volunteer. In contrast, yellow, i.e., high T1ρ and T2 values, predominate in the
MCP joints of the older participant.

4. Discussion

The main finding of this study is that age-related changes in cartilage structure and
glycosaminoglycan content of cartilage can be assessed by compositional magnetic reso-
nance imaging, even in small MCP-finger joints. Furthermore, our study results support
the concept of decreasing glycosaminoglycan content with age, even in healthy volunteers
in the cartilage of the MCP joints.

In this study, three different MR sequences were examined (T1, T1 ρ, and T2). Com-
pared to other studies, the T2 values obtained in our study in the MCP joints were relatively
low (range of 9.3 ms–25.7 ms). Higher T2 levels were predominantly observed in the
articular cartilage of patients with joint pain, osteoarthritis (OA), or rheumatoid arthritis
(RA), where higher T2 values were observed [35–37]. The higher T2 values observed in
these studies could, on the one hand, be due to the fact that, unlike the present study,
they involved patients with diseases or symptoms in the finger joints, such as pain, OA,
or RA. Meng et al. reported that in the case of cartilage damage, higher T2 values could
be expected in articular cartilage [38]. On the other hand, the magnetization-prepared T2
mapping sequence we used with T2 preparation could also explain the lower observed
T2 values, as studies have already reported that sequences with T2 preparation result in
lower T2 values compared to standard T2 mapping with multi-echo sequences [39,40]. The
advantage of T2 mapping with magnetization preparation is the robustness of the method
to B1 field inhomogeneities [39]. Since such field inhomogeneities are to be expected,
especially in the small metacarpophalangeal joints, we decided to use this B1-insensitive
sequence. Nevertheless, caution should be exercised when comparing transverse relaxation
times T2 between different studies using different magnetic resonance sequences [41].

Transverse relaxation (T2) times are dependent on both hydration status [42,43] and the
organization of collagen fibers [12]. In the present study, we observed a significant increase
in T2 relaxation times as a function of age. Similarly, an increase in T2 relaxation times
was also observed in the articular cartilage of the knee joint in patients with OA compared
to healthy volunteers [18]. Additionally, Mosher et al. showed increasing T2 values in
patellar cartilage with age in a cohort of thirty asymptomatic women who were between 22
and 86 years old [12]. Mosher et al. divided the cartilage into different anatomical regions
and examined the T2 values in relation to the different areas [12]. In the cartilage center,
they observed a 9.3% increase in T2 times between a cohort aged 18–30 years and a cohort
aged 45–65 years, whereas the increase was greater at the cartilage surface (20.6%) [12].
We observed a 12.09% increase in T2 between 20 and 50 years of age in our study, placing
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it well within the range expected by the literature. Due to the limited resolution and the
small size of the cartilage layer in the MCP joints, a separate measurement between the
surface and the center of the cartilage is not possible at this stage.

Different studies investigated the transverse relaxation times of T2 and their depen-
dencies in OA and RA. For example, Renner et al. showed that anticitrullinated-protein-
antibodies-positive RA patients have approximately 39–55% higher T2 relaxation times in
the metacarpal heads than anticitrullinated-protein-antibodies-negative patients [37]. In
comparison, age-dependent changes in the T2 transverse relaxation times observed in our
study are relatively small. Kretschmar et al. performed a study analyzing the cartilage of
OA patients in more detail and showed that even before the appearance of a lesion, there is
an approximately 10–12% increase in T2 values compared to the surrounding non-arthritis
knee cartilage [36]. This increase in T2 relaxation time is in the order of magnitude that we
expect to see in our study due to the aging process over about 30 years.

The second MR sequence we analyzed was T1ρ. This study showed a significant
increase in T1ρ values with age. T1ρ imaging depends on the GAG concentration and, to a
lesser degree, on the chemical exchange process between protons of GAG and
water [14,44,45]. Therefore, it is possible to consider T1ρ as a surrogate parameter for
GAG content. Keenan et al. and Wong et al. detected a negative correlation between
GAG content and T1ρ values in the cartilage of the knee joint [11,46]. In addition, Keenan
et al. observed a significant decrease in GAG content with age in all anatomical regions of
patellar cartilage of human specimens [11]. In this respect, the results of our study are in
line with the literature, and we hypothesize that our positive correlation between T1ρ and
age is caused by a decrease in GAG content.

In the literature, T1ρ is frequently applied to the study of RA and OA [11,47–50]. The
T1ρ values of these studies range from about 14 ms to 100 ms, where higher values are
associated with reduced GAG content [11,47–50]. Wang et al. observed significantly higher
T1ρ values in the knee of patients with advanced degeneration (whole-organ MR imaging
score (WORMS) = 5–6) compared to patients with doubtful or minimal degeneration
(WORMS = 0–1) [47]. Tsushima et al. performed a macroscopic grading of cartilage sample
tissues and compared the T1ρ values for similar macroscopic grades between patients
with OA and RA [48]. They could detect significantly higher T1ρ values for patients with
RA compared to patients with OA, whereby the changes in the superficial layer were
higher compared to the deep layer [48]. In RA patients, treatment by tumor necrosis
factor alpha (TNF alpha) inhibition can be used. Ku et al. were able to detect treatment-
associated cartilage changes by means of T1ρ imaging and classified the changes based
on the ‘European League Against Rheumatism’ treatment response criteria [49]. Thereby,
a good response caused a small reduction in T1ρ (about 2 ms), whereby non-responders
showed a small increase in T1ρ (about 2 ms) [49]. In consideration of the present study
and the studies in the literature, it must be concluded that T1ρ changes due to age are not
negligible and are in a range, which is clinically relevant.

Contrary to the transverse relaxation times T2 and the T1ρ relaxation times, we
observed no significant changes in longitudinal relaxation times T1 in the MCP joints as a
function of age. T1 and T2 mapping can measure different magnetic resonance relaxation
mechanisms, so T1 values provide complementary information about macromolecular
changes in cartilage [18]. In earlier studies, Buchbender et al. did not find any differences
in T1 values in the MCP joint of the index finger between healthy volunteers and RA
patients [51]. Although T1 imaging has been technically improved, for example, with
higher resolution, in our study, it still does not appear to be sensitive enough in the small
finger joints to detect age-related changes. To our knowledge, there are no other studies
to date in which T1 mapping has been performed in the finger joints. In the greater
shoulder joint, Cao et al. observed a significant correlation between T1 mapping and
MRI-based degeneration grading [52]. However, his study also showed a higher correlation
of T2 relaxation times than T1 times with MRI-based degeneration grading in the shoulder,
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suggesting that the T2 mapping value is most important for quantitative analysis of articular
cartilage degeneration [52].

We would like to emphasize that in this study, we were able to determine the cartilage
composition by quantitative relaxation time measurement in the very thin cartilage of
the MCP joints. This is challenging as partial volume effects can occur in small cartilage
structures. To be precise, there are two cartilage structures in the MCP joint, one of which
can be assigned to the Os Metacarpi and the other to the Phalanx proximalis. Between
these two cartilage structures, there is a small amount of physiological synovial fluid inside
the joint capsule to allow smooth movement within the joint [53]. We used a dedicated
hand/wrist coil for high-resolution magnetic resonance imaging to prevent partial volume
effects. Our acquired in-plane high-resolution (0.5 × 0.5 mm2) sequence may not have
been sufficient to completely separate the synovial fluid from the cartilage layer. Therefore,
the relaxation times of the synovial fluid may have influenced our results. In the future,
advanced techniques for partial volume correction, such as the driven equilibrium single-
shot observation of T1 and T2 (ms) [54], might be investigated. However, much longer
relaxation times are expected in synovial fluid compared to cartilage [55], so we can assume
that the influence of synovial fluid on our measured relaxation times is very small.

In the literature, dGEMRIC (delayed gadolinium-enhanced magnetic resonance imag-
ing of cartilage) is often used to quantify the GAG content of cartilage, and this technique
has also been successfully applied in RA and OA patients as well as in patients with pso-
riatic arthritis [56,57]. Although this technique has great potential to quantify cartilage
composition, we made a conscious decision not to use this technique in healthy subjects for
ethical reasons to avoid the use of contrast agents.

Our study has several limitations: 1. We performed no measurements of reproducibil-
ity. In our study, all subjects were placed in the prone position with the hand held out above
the head. Remaining in this position for the entire measurement time is strenuous for the
volunteers, which is why we did not measure reproducibility. 2. We did not measure the
biochemical imaging methods CEST and sodium MRI. There are various reasons for this:
the CEST effect in articular cartilage is very low [22]. Due to the high field inhomogeneities
to be expected, this technique is difficult to apply in MCP joints. For measurements with
sodium imaging, we would have had to modify the measurement setup, as dedicated
hardware is required for this purpose. In addition, sodium MRI acquisitions are usually
relatively long [25], so the overall measurement protocol would become too long. However,
it is conceivable to investigate the age dependence of sodium content using sodium MRI
in MCP joints in a future study. 3. All measurements were performed in the right hand,
independent of the handedness of the subjects. However, the handedness might affect
the observed results, as Solovieva et al. showed a protective effect of moderate hand use
in patients with OA [58]. In addition, handedness influences musculoskeletal structures
such as knee joint cartilage [59]. 4. The cartilage layer in the MCP joints is very small
(between 0.3 and 0.9 mm [60]); thus, partial volume artifacts might occur. Nevertheless,
we were able to demonstrate age-dependent changes in the relaxation times T2 and T1ρ,
indicating that the partial volume effect did not appear to have a significant impact on our
results. 5. We did not perform histological validation of GAG content because we could
not represent cartilage harvesting from healthy volunteers for ethical reasons. 6. This study
might have been improved by an increased number of volunteers. However, the acquisition
of volunteers is particularly difficult in older age groups since underlying diseases such
as arthrosis or arthritis are often already present. 7. Because of the small cohort size, we
did not consider sex-related differences in relaxation times. 8. It has now been proven
that smoking has a negative effect on cartilage, and this can be reflected in increased T2
values [61]. We have not yet addressed this in the current study.

5. Conclusions

This study shows a significant correlation between the compositional magnetic reso-
nance biomarkers T1ρ and T2 and age, but not for the compositional magnetic resonance
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biomarker T1. Our finding supports the idea that cartilage structure and composition in
the metacarpophalangeal joints change during the aging process and that these changes
are detectable by compositional magnetic resonance imaging. Henceforth, age-related
cartilage modifications should be considered when magnetic resonance imaging studies are
conducted in patients with cartilage diseases such as osteoarthritis or rheumatoid arthritis.
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