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Abstract: The quality of ocular fundus photographs can affect the accuracy of the morphologic
assessment of the optic nerve head (ONH), either by humans or by deep learning systems (DLS). In
order to automatically identify ONH photographs of optimal quality, we have developed, trained,
and tested a DLS, using an international, multicentre, multi-ethnic dataset of 5015 ocular fundus
photographs from 31 centres in 20 countries participating to the Brain and Optic Nerve Study with
Artificial Intelligence (BONSAI). The reference standard in image quality was established by three
experts who independently classified photographs as of “good”, “borderline”, or “poor” quality.
The DLS was trained on 4208 fundus photographs and tested on an independent external dataset of
807 photographs, using a multi-class model, evaluated with a one-vs-rest classification strategy. In
the external-testing dataset, the DLS could identify with excellent performance “good” quality pho-
tographs (AUC = 0.93 (95% CI, 0.91–0.95), accuracy = 91.4% (95% CI, 90.0–92.9%), sensitivity = 93.8%
(95% CI, 92.5–95.2%), specificity = 75.9% (95% CI, 69.7–82.1%) and “poor” quality photographs
(AUC = 1.00 (95% CI, 0.99–1.00), accuracy = 99.1% (95% CI, 98.6–99.6%), sensitivity = 81.5% (95%
CI, 70.6–93.8%), specificity = 99.7% (95% CI, 99.6–100.0%). “Borderline” quality images were also
accurately classified (AUC = 0.90 (95% CI, 0.88–0.93), accuracy = 90.6% (95% CI, 89.1–92.2%), sensi-
tivity = 65.4% (95% CI, 56.6–72.9%), specificity = 93.4% (95% CI, 92.1–94.8%). The overall accuracy
to distinguish among the three classes was 90.6% (95% CI, 89.1–92.1%), suggesting that this DLS
could select optimal quality fundus photographs in patients with neuro-ophthalmic and neurological
disorders affecting the ONH.

Keywords: retinal image quality assessment; artificial intelligence; deep learning; optic nerve
head; papilledema

1. Introduction

Optic neuropathies cause visual loss from various pathophysiologic mechanisms, in-
cluding compression/infiltration, infectious and noninfectious inflammation, ischemia, tox-
icity, degeneration and disorders of intraocular (glaucoma) and intracranial (papilledema)
pressure. Appropriate detection of optic neuropathies is essential, requiring visual exami-
nation of the optic nerve head (ONH) at the back of the eye. The ONH (or optic disc) is
the visible interface between the optic nerve and the ocular globe and can be evaluated
clinically by standard ophthalmoscopy or by ocular imaging (i.e., fundus photographs).
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The visual appearance of the ONH is typically altered in optic neuropathies: it can be
swollen at the acute stage, then evolve towards pallor or atrophy. Papilledema is a particu-
lar type of bilateral ONH swelling specifically from raised intracranial pressure, resulting
from potential vision- or life-threatening lesions (brain tumours, venous sinus thrombosis,
idiopathic intracranial hypertension, etc). The early detection of papilledema is essential
to avoid blindness or neurological disability. Identification of ONH abnormalities (by
ophthalmoscopy or on fundus photographs) can be challenging, with misdiagnosis rates
by non-specialists, even when using high-quality fundus photographs, reported as high
as 69% [1,2]. This high error rate can be attributed to various factors, including technical
difficulties visualizing the ONH and lack of expertise in interpreting the ONH appearance,
resulting in mismanagement and delayed referrals [3].

Recently, deep learning (DL) methods have been successfully used to accurately
classify papilledema and other ONH conditions on standard ocular photographs [4–7].
These DL systems identify optic disc abnormalities (and in particular papilledema) with
higher performance than non-expert healthcare providers, achieving an accuracy which is
similar to that of expert neuro-ophthalmologists. [8]. The performance of these algorithms
has been evaluated on highly curated datasets including excellent-quality photographs
obtained after pupil dilation. Such performance evaluation on highly curated datasets
introduces a potential bias, compared to real-life conditions, by suppressing an important
intermediate processing step, the selection of non-interpretable photographs. The real
prevalence of poor quality or non-interpretable ocular fundus photographs is difficult to
estimate in real conditions, since pre-filtering is usually performed during image acquisition,
by the camera operators, who acquire a new image, until a “good” quality image can be
achieved. After this preliminary step, the prevalence of non-suitable fundus photographs
remains high, typically above 10% [9–13], depending on multiple factors (type of camera,
pupillary dilation, transparency of the ocular media, patient’s cooperation, operator’s
skill, etc.). Altogether, the process of selection and suppression of non-suitable photographs
is time-consuming and labour-intensive; if not performed accurately, it can cause patient
inconvenience and increased costs from unnecessary referrals related to the suboptimal
quality of ocular fundus photographs.

To mitigate these shortcomings, various DL-based retinal image quality assessment
systems (RIQAS) have been recently developed, in order to automatically identify high-
quality photographs in common ophthalmic conditions such as diabetic retinopathy (DR)
or glaucoma [14–23]. In these conditions, “poor quality” has been specifically defined,
depending on the region of interest (i.e., poor identification of third-generation branches
within one optic disc diameter around the macula in DR [9], or obscuration of more than
50% of the optic disc, in glaucoma [24]). These disease-specific systems are not generalizable
and therefore cannot be applied to neuro-ophthalmic or neurological conditions affecting
the appearance of the ONH.

In order to address this question, we aimed to develop, train and test a deep learning
system (DLS) able to automatically classify the quality of ONH fundus photographs in
neuro-ophthalmic and neurological conditions, based on data from a large, international,
multi-ethnic population, using multiple cameras. A DL-driven algorithm for the quality
assessment of ONH images could reduce the frequency of diagnostically unusable datasets,
especially in neuro-ophthalmology where data are scarce [25,26].

2. Materials and Methods
2.1. Study Design

A total of 5015 ocular photographs, retrospectively collected from 31 international
neuro-ophthalmology centres in 20 countries participating in the BONSAI (Brain and Optic
Nerve Study with Artificial Intelligence) Consortium [7], were used for this study. Among
them, 4208 fundus photographs (including 480 optic discs with papilledema, 332 optic discs
with glaucoma, 881 optic discs with other abnormalities, 2509 normal discs and 6 images
with unknown diagnosis, due to no visible optic disc) were randomly selected and used for
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training, validation, and internal-testing. Using a standard 80/20 split-training approach,
3356 images were included in the training and validation datasets, while the internal-testing
dataset contained the rest of 20% of the images (852 images). An independent, multi-ethnic
external-testing dataset included 807 ocular fundus photographs collected from three
expert centres in two countries (Atlanta, USA and Singapore). The external-testing dataset
included 57 optic discs with papilledema, 25 optic discs with glaucoma, 146 optic discs
with other abnormalities and 579 normal discs.

The study was approved by the centralized institutional review board of SingHealth,
Singapore, and by each contributing institution. The study was conducted in accordance
with the principles of the Declaration of Helsinki.

2.2. Image Acquisition

The study included both mydriatic and non-mydriatic fundus photographs, obtained
with multiple cameras, including handheld cameras [27] (Appendix A Table A1). Of the
5015 photographs used in the training and external-testing datasets, 2663 photographs
(53%) were obtained with a handheld camera. Data was collected in normal individuals
and in patients with various conditions affecting the ONH photographs (i.e., papilledema
and “other” ONH abnormalities including optic atrophy, optic disc drusen, optic disc
swelling unrelated to raised intracranial pressure, etc.), based on robust ground truth
criteria, detailed elsewhere [7].

2.3. Generation of the Quality Reference Standard

The quality reference standard (QRS) was generated from results provided post hoc
by three expert clinicians who evaluated the dataset (5015 retinal photographs). Discordant
labels provided by the first two graders (a fellowship-trained neuro-ophthalmologist and a
senior glaucoma specialist) were subsequently adjudicated by the third grader, a senior
neuro-ophthalmologist, to obtain a majority consensus. During the classification process,
the three graders used the same computer, with identical screen characteristics, in identical
illumination conditions. All images were labelled using the Classif-Eye semi-automated
application, which facilitates visualisation and labelling of digital photographs [28]. The
graders classified the images according to the following three-class QRS:

• Good quality photographs: defined as clear retinal images, including 100% of the ONH
and peripapillary area, allowing for a confident assessment of the ONH appearance.

• Borderline quality photographs: defined as those with features allowing uncertain
visual assessment of the ONH health, due to suboptimal image clarity, exposure, or
partial obstruction of the image.

• Poor quality photographs: defined as images not allowing an ONH evaluation, due
to various limitations, such as defocus, under- or overexposure, artefacts, poorly
identifiable ONH features, or partially visible ONH. Similarly, photographs that were
not compatible with the images used in the training dataset (e.g., fundus autofluores-
cence, wide-field retinal image) were included in this category. Examples of “good”,
“borderline”, and “poor” images are shown in Figures 1–3.

2.4. Cross-Validation

Using 5-fold cross-validation, we evaluated the generalized performance of the model.
The 4208 images in the training dataset, containing 2512 “good” (60%), 1027 “border-
line” (24%), and 669 “poor” quality images (16%), were divided into 5 sets, with each
set distributed with 57–62% “good”, 22–26% “borderline”, and 15–17% “poor” quality
images. In the 5-fold cross-validation, one unique set was chosen as a testing dataset
while the remaining four sets were designated as the training dataset. The model was
fitted on the training dataset and then evaluated on the external-testing dataset. This
was repeated for each part of the iteration, for a total of five times, thereby reducing
the risk of selection bias.
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2.5. Image Pre-Processing and Development of Model

The 3356 images (80%) in the main dataset were used for training/validation and
852 images (20%) in the main dataset were used for the internal testing of the model. The
model was then tested on an independent external-testing dataset consisting of 807 images
collected from three participating centres from Singapore and Atlanta, USA.

Our model employed the state-of-the-art EfficientNets architecture. EfficientNets
possesses a scaling method optimizing the architecture of the convolutional neural network
(CNN) in terms of depth, width, and resolution, compared to any other CNNs [29].

Image standardization and pre-processing were conducted before deep learning.
The input images (456 × 456 pixels) were trained using EfficientNet-B5, pre-trained on
ImageNet [30] images. At the last convolutional layer of the EfficientNet-B5 architecture,
the feature vectors were fused into the fully connected neural network with a SoftMax
layer to optimize the performance. Data augmentation which involved random horizontal
rotations and cropping, adjustments to brightness and contrast, different degrees of zoom
and warping as representation of real-world acquisition conditions was applied to the
training dataset. The process of introducing data augmentation provides a heterogeneous
distribution of the training dataset and reduces the overfitting rate during the process of
deep learning [31,32].

For the training process, the QRS data was used to optimize the performance of the
DLS. Cross-entropy was used as a loss function for optimizing the models. The training
started with multiple iterations with a batch size of 32 images, with an initial learning
rate of 0.01 and stopped at 50 epochs. For each training iteration, a stochastic gradient
descent algorithm was used to optimize the loss function to train neuron weights via
backpropagation; at every epoch, the performance of the CNN was assessed using the
validation dataset. Subsequently, the best-predicted model from the preliminary evaluation
of the internal-testing dataset was evaluated on an independent external-testing dataset.
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2.6. Statistical Analyses

The performance of the DLS was evaluated using the one-versus-rest strategy by
various performance metrics which included the area under the receiver operating charac-
teristic curve (AUC), accuracy, sensitivity, and specificity according to our classification
model (one vs. rest approach): “good” quality vs. (“borderline” and “poor”) quality, “bor-
derline” quality vs. (“good” and “poor”) quality, and “poor” vs. (“good” and “borderline”)
quality images. The overall accuracy was used to measure the performance of the model.

Bootstrapping sampling, repeated 2000 times, was used to estimate the 95% confidence
intervals (CI) of the performance metrices.

3. Results
3.1. Characteristics of Dataset

The total of 5015 fundus photographs included 3211 “good” quality photographs, 1108
“borderline” quality photographs, and 696 “poor” quality photographs. The main dataset
(used for training, validation, and internal testing) included 4208 images: 2512 images with
“good” quality (60%), 1027 images with “borderline” quality (24%) and 669 images (16%)
with “poor” quality. The external-testing dataset (807 fundus photographs) included 699
(87%) “good” quality photographs, 81 (10%) “borderline” quality photographs and 27 (3%)
“poor” quality photographs (Table 1). The distribution of the training and validation data,
according to diagnosis and quality, is summarized in Table 1.

Table 1. Summary of Training, Validation, Internal-Testing and External-Testing Data Sets, According
to Diagnosis of Fundus Images.

Good Borderline Poor Total

Diagnosis number of images
Main dataset (training, validation, and internal-testing)

Normal Discs 1472 637 400 2509
Optic Discs with Papilledema 394 76 10 480

Optic Discs with Other Abnormalities 646 314 253 1213
Unknown Diagnosis Due to No Visible

Optic Disc - - 6 6

External-testing dataset
Normal Discs 488 67 24 579

Optic Discs with Papilledema 56 1 0 57
Optic Discs with Other Abnormalities 155 13 3 171

3.2. Grading Duration

The total average time spent by the two experts to grade the 807 photographs in the
external-testing dataset was 1687 s; the same task was performed by the DLS in 9.13 s. The
average time required by the two experts to grade one fundus photograph was 2.09 s.

3.3. Cross-Validation

Figure 4 displays the performance of the model obtained on each cross-validation
dataset. The AUCs of the testing dataset in the cross-validation range from 0.94 to 0.98 when
discriminating “good” quality from (“borderline” and “poor” quality) images, 0.89–0.93
when discriminating “borderline” quality from (“good” and “poor”) images, and 0.98 when
discriminating “poor” quality from the (“good” and “borderline” quality) images. The
average overall accuracy of the 5-fold cross-validation was 85.0% (81.5–88.3%).

3.4. Overall Classification Performance

In the internal-testing dataset, using a one-vs-rest approach, the model discriminated
“good” quality vs. (“borderline” and “poor” quality) with an average AUC of 0.99 (95%
CI, 0.99–1.00), an accuracy of 95.8% (95% CI, 94.8–96.8%), a sensitivity of 95.4% (95% CI,
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94.0–96.8%), and specificity of 96.3% (95% CI, 94.9–97.8%) (Table 2). The model discrim-
inated “borderline” quality vs. (“good” and “poor” quality) with an average AUC of
0.99 (95% CI, 0.99–1.00), an accuracy of 95.8% (95% CI, 94.8–96.8%), a sensitivity of 92.9%
(95% CI, 90.3–95.6%), and specificity of 96.8% (95% CI, 95.8–97.9%). Lastly, the model
discriminated “poor” quality vs. (“good” and “borderline” quality) with an average AUC
of 1.00 (95% CI, 0.99–1.00), an accuracy of 98.8% (95% CI, 98.3–99.4%), a sensitivity of 98.4%
(95% CI, 97.3–100.0%), and specificity of 98.9% (95% CI, 98.4–99.6%). The overall accuracy
of the model was 95.2% (95% CI, 94.1–96.3%) in the internal-testing dataset.
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Table 2. Classification Performance of the Deep-Learning System on the Internal-testing and External-
testing Dataset.

One-vs.-Rest
Classification Total Good Borderline Poor AUC

(95% CI)
Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

No. of images % (percentage)
Internal-testing dataset

Good vs.
(Borderline + Poor) 852 500 225 127 0.99

(0.99–1.00)
95.4

(94.0–96.8)
96.3

(94.9–97.8)
95.8

(94.8–96.8)
Borderline vs.
(Good + Poor) 852 500 225 127 0.99

(0.99–1.00)
92.9

(90.3–95.6)
96.8

(95.8–97.9)
95.8

(94.8–96.8)
Poor vs.

(Good + Borderline) 852 500 225 127 1.00
(0.99–1.00)

98.4
(97.3–100.0)

98.9
(98.4–99.6)

98.8
(98.3–99.4)

External-testing dataset
Good vs.

(Borderline + Poor) 807 699 81 27 0.93
(0.91–0.95)

93.8
(92.5–95.2)

75.9
(69.7–82.1)

91.4
(90.0–92.9)

Borderline vs.
(Good + Poor) 807 699 81 27 0.90

(0.88–0.93)
65.4

(56.6–72.9)
93.4

(92.1–94.8)
90.6

(89.1–92.2)
Poor vs.

(Good + Borderline) 807 699 81 27 1.00
(0.99–1.00)

81.5
(70.6–93.8)

99.7
(99.6–100.0)

99.1
(98.6–99.6)

In the external-testing dataset, the model discriminated “good” quality vs. (“bor-
derline” and “poor” quality) with an AUC of 0.93 (95% CI, 0.91–0.95), the accuracy of
91.4% (95% CI, 90.0–92.9%), a sensitivity of 93.8% (95% CI, 92.5–95.2%), and specificity
of 75.9% (95% CI, 69.7–82.1%) (Table 2). The model discriminated “borderline” quality
vs. (“good” and “poor” quality) with an AUC of 0.90 (95% CI, 0.88–0.93), an accuracy of
90.6% (95% CI, 89.1–92.2%), a sensitivity of 65.4% (95% CI, 56.6–72.9%), and specificity of
93.4% (95% CI, 92.1–94.8%). Lastly, the model discriminated “poor” quality vs. (“good”
and “borderline” quality) with an AUC of 1.00 (95% CI, 0.99–1.00), accuracy of 99.1% (95%
CI, 98.6–99.6%), a sensitivity of 81.5% (95% CI, 70.6–93.8%), and specificity of 99.7% (95%
CI, 99.6–100.0%). The overall accuracy of the model was 90.6% (95% CI, 89.1–92.1%) in the
external-testing dataset. Figure 5 shows the confusion matrix plots and receiver operating
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characteristic curve (ROC) and AUC of image quality tasks on the internal-testing and
external-testing datasets.
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external-testing dataset.

4. Discussion

The objective of this study was to train, develop, and test the performance of a DLS
to discriminate among three quality classes of ONH photographs (“good”, “borderline”,
and “poor” quality). For this purpose, we used a large number of fundus photographs,
acquired from multiple international expert centres, using a large variety of desktop and
handheld digital fundus cameras. The main result of this study is that this DLS could
accurately classify fundus photographs as “good”, “borderline”, and “poor” quality, with
an overall accuracy of 90.6% (95% CI, 89.1–92.1%). More specifically, the DLS had an
excellent performance in identifying “poor” quality photographs, with an accuracy of
99.1% (95% CI, 98.6–99.6%) on the external-testing dataset.

In order to provide a more granular view of the reality in clinics, we avoided the
use of a simple, yet classic, binary classification system (i.e., “good” vs. “poor” quality
photographs). Instead, we used a three-class system, including also a “borderline” quality
category, hypothesizing that this class may still allow clinical interpretation of the ONH by
humans, despite potential challenges posed to RIQAS [17,33]. Indeed, in a recent image
quality study applied to DR, 21% of fundus photographs were deemed ungradable by the
RIQAS, but a significant number were still considered as interpretable by humans [34].
Similarly, an image quality evaluation study using a binary classification system for train-
ing, achieved high performance (AUC = 100%) on an external dataset which included
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only images with 100% intergrader agreement. However, when “ambiguous” fundus pho-
tographs (i.e., with discordant intergrader evaluation) were added to the testing dataset, the
model’s performance (i.e., ‘accept’ vs. ‘reject’) dropped to an AUC of 54.48% and 55.11%,
respectively [17].

Several images in our dataset were misclassified by the DLS. However, no “good” qual-
ity image was misclassified as “poor”, suggesting that this DLS system does not misclassify,
and therefore “lose”, clinically acceptable fundus photographs. The opposite was also true:
no “poor” quality photographs were misclassified as “good” quality, suggesting that a large
majority of low-quality photographs can be accurately identified by this DLS with the aim
to be subsequently discarded prior to the analysis. Twenty-six photographs with a ground
truth of “borderline” quality were misclassified by the DLS as of “good” quality, but only
2 “borderline” quality photographs were misclassified as of “poor” quality. “Borderline”
quality images were defined (during the QRS evaluation by the graders) as images that
are still useful for the evaluation of the ONH morphology; therefore, misclassification
of a “borderline” image as a “good” quality image is not surprising and hopefully not
detrimental. On the other end of the spectrum, 43 “good” quality images were misclassified
as “borderline” quality, and 5 “poor” quality images were misclassified as “borderline”.
Altogether, these results suggest that (1) the DLS allows for accurate identification of images
of “poor” quality since only five images were included as “borderline” images and none as
“good” quality; and (2) the DLS does not inappropriately reject relevant images, since the
misclassification rate of “good” and “borderline” images as “poor” images is very low. A
crucial follow up work that would be required is to evaluate the diagnostic performance
(of humans or by a dedicated DLS) on datasets that have been pre-processed, in terms of
image quality, by the presented DLS.

Our study has a few limitations, including the relatively small number of “borderline”
and “poor” photographs in the external-testing dataset (13%), although this distribution is
consistent with the reality in clinics, where 8–24% of images acquired from desktop and
handheld fundus cameras have been reported as ungradable [35]. Additionally, half of the
photographs used in this study were obtained with mydriatic cameras; the presented results
may not apply to datasets using larger proportions of nonmydriatic cameras, including
wide-field cameras.

If further validated, our DLS may serve in the real world by providing immediate
feedback on an image’s quality without the need to manually assess an individual image’s
suitability, a process which can be time costly. Even for seasoned ophthalmologists who
assess fundus photographs for diagnostic suitability daily and reflexively, it still requires
a few seconds for a decision to be made. In contrast, our DLS could screen through and
classify the image quality of an entire dataset of fundus photographs 187 times faster than
experienced ophthalmologists. The automation of image quality screening, when applied
in neuro-ophthalmology clinics, can reduce the cognitive load on both the camera operators
and ophthalmologists, allowing for more focus to be spent on patient-centric care and
expeditious evaluations. If further validated, such a DL system might be used in the future
for screening fundus photographs in suspected ophthalmic or neurologic patients. These
DL-based pre-selected patients will be subsequently referred for confirmatory, human
evaluation, which can provide high liability levels.

5. Conclusions

A DLS can accurately evaluate the quality of ONH fundus photographs in neuro-
ophthalmic conditions and could potentially function as an automated screening tool
prior to the automated classification of photographs. This process can help clinicians to
photographically document their fundus findings, a practice that is not yet a standard
procedure in neuro-ophthalmology. Beyond documentation, the appropriate automated
deep-learning-based assistance for image diagnosis will represent an opportunity for
professional improvement and improved healthcare.
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Identification of poor-quality photographs by such a system (which can be embedded
in a camera or available on the cloud) could facilitate higher-quality image acquisition,
reducing the frequency of unusable images and improving the efficiency of image acquisi-
tion in clinics. Further studies are needed to evaluate the relative performance of humans
or diagnostic DLS, when applied to the DL-based quality pre-selection of “good” and
“borderline” quality photographs in neuro-ophthalmic and neurological conditions.
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Appendix A

Table A1. Summary of Training, Validation, and Testing Data Sets, According to Location of Center
and Camera Model.

Location of Center Camera Model

Primary Training and Validation Datasets
Amsterdam, Netherlands Topcon-TRC-50DX

Angers, France Topcon-TRC-NW6S
Atlanta, GA, United States Topcon-TRC-50DX

Baltimore, MD, United States Carl Zeiss-FF4
Bordeaux, France Carl Zeiss-VISUCAM
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Table A1. Cont.

Location of Center Camera Model

Calgary, Canada Carl Zeiss-VISUCAM 224
Carl Zeiss-VISUCAM 524

Chennai, India Carl Zeiss-FF450 Plus IR
Coimbra, Portugal Topcon-TRC-NW7SF Mark II

Copenhagen, Denmark Topcon–TRC-50DX/TRC-NW8
Eskisehir, Turkey Kowa-Alpha-DIII

Freiburg, Germany Carl Zeiss-SF 420
Geneva, Switzerland Carl Zeiss-FF450 Plus
Hong Kong, China Topcon–TRC-50DX

Kinshasa, Democratic Republic of Congo Carl Zeiss-VISUCAM

Kobe, Japan Topcon-TRC-50DX
Kowa-Nonmyd-WX

Lille, France Nidek-AFC330

London, United Kingdom Topcon–TRC-50DX
Canon-CR2

Manila, Philippines Carl Zeiss-VISUCAM 500
Meditec-NMFA

Nagpur, India Carl Zeiss–FF450

Ontario, Canada Topcon–TRC-50DX
Heidelberg-Spectralis

Paris, France Canon-CRDGI
Heidelberg–no model available

Rochester, NY, United States Topcon–TRC-50DX
Seoul, South Korea Kowa-VX-10a

Singapore, Singapore

Topcon–TRC-50DX/DRI OCT Triton Plus
Canon-CR-Dgi

Kowa-Nonmyd-WX3D
Optomed-Aurora

Sydney, Australia Carl Zeiss-VISUCAM 500

Syracuse, NY, United States Topcon-TRC-NW8/TRC-NW400
Carl Zeiss-FF 450

Tehran, Iran Canon-CR2
Toronto, Canada Carl Zeiss-VISUCAM 500

Ufa, Russia Carl Zeiss-VISUCAM 500
External-Testing Dataset

Atlanta, GA, United States Topcon-TRC-50DX

Singapore, Singapore

Topcon-TRC-50DX/DRI OCT Triton Plus
Canon-CR-Dgi

Kowa-Nonmyd-WX3D
Optomed-Aurora
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