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Abstract: As the brain standard template for medical image registration has only been constructed
with an MRI template, there is no three-dimensional fMRI standard template for use, and when the
subject’s brain structure is quite different from the standard brain structure, the registration to the
standard space will lead to large errors. Registration to an individual space can avoid this problem.
However, in the current fMRI registration algorithm based on individual space, the reference image is
often selected by researchers or randomly selected fMRI images at a certain time point. This makes the
quality of the reference image very dependent on the experience and ability of the researchers and has
great contingency. Whether the reference image is appropriate and reasonable affects the rationality
and accuracy of the registration results to a great extent. Therefore, a method for constructing a
3D custom fMRI template is proposed. First, the data are preprocessed; second, by taking a group
of two-dimensional slices corresponding to the same layer of the brain in three-dimensional fMRI
images at multiple time points as image sequences, each group of slice sequences are registered and
fused; and finally, a group of fused slices corresponding to different layers of the brain are obtained.
In the process of registration, in order to make full use of the correlation information between the
sequence data, the feature points of each two slices of adjacent time points in the sequence are
matched, and then according to the transformation relationship between the adjacent images, they
are recursively forwarded and mapped to the same space. Then, the fused slices are stacked in order
to form a three-dimensional customized fMRI template with individual pertinence. Finally, in the
classic registration algorithm, the difference in the registration accuracy between using a custom
fMRI template and different standard spaces is compared, which proves that using a custom template
can improve the registration effect to a certain extent.

Keywords: fMRI template; fused slices; custom; sequences

1. Introduction

In medical image registration, the two images involved in the registration are called the
reference image and floating image, respectively [1–3]. Among them, the reference image
will not change before and after registration. After registration, each meaningful anatomical
point on the floating image will correspond to the corresponding anatomical point of the
reference image one by one. Medical image registration is to find the corresponding optimal
spatial transformation to make the anatomical points in the floating image consistent with
the spatial position of the anatomical points in the reference image. The result of medical
image registration should make the anatomical points of the two images, or at least all the
points with diagnostic significance, match correspondingly [4–6].

The current brain image registration algorithm based on deep learning focuses on
how to achieve spatial structure consistency between the image to be registered and the
reference image of the same mode through transformation, which is more reasonable for
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the images to be registered from different subjects with high spatial resolution, such as MRI,
which can be registered to the publicly available standard brain template for comparison,
However, there is no standard template in the fMRI mode. In addition, for subjects whose
brain structures are quite different from the standard template, such as the elderly and
children, there will be a large error in registration to the standard space, and registration to
the individual space can avoid this problem [7]. However, the individual template currently
used is usually the fMRI image at a certain point in time selected by experts or researchers,
which is highly accidental and depends heavily on the experience of researchers, which is
not very reasonable.

As the brain standard template for medical image registration has been built only
with an MRI template, there is no three-dimensional fMRI standard template to use, and
when the brain structure of the subjects is quite different from the standard brain structure,
registration to the standard space will lead to large errors, and registration to the individual
space can avoid this problem.

For different subjects, there are often huge differences in the brain structures among
the different individuals, and the spatial positions of corresponding points are obviously
different. If not aligned, it is often impossible to carry out subsequent research and an
analysis, such as determining the location of the focus by comparing the brain structure of
patients with a disease with that of healthy controls [8–10]. Even for the same subject, due to
the time interval of the image acquisition, different viewing angles, and different equipment,
the corresponding points between the images will be different, such as the changes in the
region of interest on the image before and after the time interval in the process of functional
magnetic resonance imaging (fMRI) image scanning [11]. The emergence of medical image
registration can well solve the above problems, effectively reduce the influence of position
change during multiple imaging, and even correct the differences caused by the imaging
mode itself [12].

At present, fMRI image registration algorithms can be divided into standard space-
based registration and individual space-based registration [13]. Registration based on
standard space is usually used for image registration among different subjects, and there is
no published standard fMRI template at present [14], so most of them need to introduce the
MRI standard template. However, it has great limitations for subjects with great differences
in brain shape and structure from a standard brain, such as children and the elderly.
Registration based on individual space effectively avoids this problem and is more suitable
for fMRI data that usually help determine active brain areas by comparing the differences
between the sequence data of the same subject. However, in the current registration
methods based on individual space, most of the reference templates are randomly selected
from data sequences, selected by researchers according to experience, or directly selected
from the first effective time-point data, which leads to such methods being too dependent
on researchers and having strong randomness [15]. Therefore, the registration of fMRI
data needs a reasonable fMRI template based on individual space as a reference image for
intra-individual registration.

Because fMRI can obtain four-dimensional data by scanning the brain many times
in a time period, that is, a sequence composed of three-dimensional fMRI images at
multiple time points, in which each three-dimensional fMRI image contains multiple
two-dimensional slices corresponding to different layers of the brain, fMRI sequences often
show the characteristics in large numbers and timing. Because fMRI speculates on the
functional state of the brain by observing the active areas of the brain over a period of
time, it is of great significance to change the position of features in images at different time
points [16]. In order to keep as much information as possible in the registration of the 3D
fMRI image sequences at different time points, it is necessary that the reference images used
in the registration process contain more effective sequence information, so the template is
constructed by using all effective fMRI data sequences at different time points.

As a group of fMRI image sequences generated by scanning the same position in a
certain period of time by the functional nuclear magnetic resonance instrument, it often
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shows the characteristics in a large number, the orderly image itself, and the large corre-
lation between two adjacent sequence images. The characteristics can indirectly reflect
the movement trend of the object in the positions of different sequence images and have
certain significance. The data at different time points have a certain correlation and do not
exist independently. If we want to register a batch of fMRI images to a template, the more
relevant feature information between the batch of images to be registered, the better. In
order to make full use of the effective information between the fMRI sequences of the data
to be registered, in the process of constructing the fMRI template, the transformation model
is obtained by matching the two feature points of the two adjacent images based on the
method of feature points. Then, by considering the relationship between the sequence data,
the whole image is mapped to the reference image, so as to retain the effective information,
such as the correlation between all the data, to the greatest extent, Finally, the matching
results are fused to construct a custom fMRI template.

Therefore, a method for constructing a 3D custom fMRI template is proposed. First, the
data are preprocessed. Second, by taking a group of two-dimensional slices corresponding
to the same layer of the brain in three-dimensional fMRI images at multiple time points
as image sequences, each group of slice sequences are registered and fused. Third, a
group of fused slices corresponding to different layers of the brain are obtained. In the
process of registration, in order to make full use of the correlation information between
the sequence data, the feature points of each two slices of adjacent time points in the
sequence are matched. Fourth, according to the transformation relationship between
adjacent images, they are recursively forwarded and mapped to the same space. Finally,
the fused slices are stacked in order to form a three-dimensional customized fMRI template
with individual pertinence.

The contributions of this paper can be summarized as follows.

- A custom 3D fMRI template construction method based on time-series fusion is
proposed to retain the correlation information in the time series to the greatest extent.

- The reference image is constructed to effectively improve the registration effect of the
existing registration algorithm.

- Finally, the effectiveness of the proposed method is tested on a large number of
real datasets.

The rest of paper is structured as follows. Section 2 introduces the custom template
construction process. In Section 3, three groups of experiments are performed to verify the
effectiveness of the proposed method. The purpose and results of the study are discussed
in Section 4. Section 5 summarizes the methods and effects.

2. Method

Referring to the method for constructing human brain template for fMRI, it can be seen
that the construction process of human brain template usually includes three parts: image
preprocessing, image registration, and image fusion. Therefore, the process of building a
custom fMRI template in this chapter is shown in Figure 1.
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Figure 1. Custom fMRI template construction processes.

Firstly, the fMRI dataset images are collected and preprocessed. The preprocessing
steps include time layer correction and head movement correction. Time layer correction
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is used to correct the difference of acquisition time points between the middle layer and
the layer in each three-dimensional brain process. Head movement correction is used to
reduce noise interference. The preprocessed fMRI data can be regarded as multiple aligned
three-dimensional brains. Secondly, for the registration and fusion of multiple groups
of slices on the same layer in each three-dimensional fMRI image, the image registration
method based on feature points is adopted. In the registration process, in order to make
full use of the effective information between sequence data, the transformation model is
obtained by matching two feature points of adjacent time-point slices, so as to retain the
effective information between adjacent data as much as possible, and then by considering
the relationship between sequence data, all effective slices are mapped to the same space
by recursion. Next, the same layer slices of each group were fused to obtain a group of
fused slices corresponding to different layers of the brain. Finally, the fused slices were
stacked into three-dimensional custom fMRI templates in order.

2.1. fMRI Sequence–Feature Point Mapping Relationship Model

The registration method based on image feature points has the advantages of small
amount of data, stability, and easy extraction. It can effectively and quickly process fMRI
image sequences with large amount of data. Therefore, the image registration method
based on feature points will be used to register fMRI image sequence data.

2.1.1. Feature Point Extraction

Feature point extraction is the extraction and abstraction of the effective content in
the image. It is the first link of image registration using feature points. Extracting stable,
effective, and robust feature points is very important for image registration. Poor feature
points or feature points extracted by noise interference will affect the determination of
geometric–transformation relationship in subsequent registration. The feature points of
fMRI slice images are extracted by SIFT method [17]. Sift method establishes multiple
different scale spaces, obtains the key information such as the position and scale of feature
points, and describes the point on the vector through these features, so as to achieve the
purpose of extracting feature points. The process of extracting feature points using SIFT
includes: constructing scale space, key point extraction, direction allocation, feature point
description, and matching.

Constructing scale space: Convolving the original image with a two-dimensional
Gaussian function at different scales can generate multiscale Gaussian space, the mathe-
matical formula is expressed as follows.

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (1)

L(x, y, σ) represents multiscale Gaussian space. G(x, y, σ) represents Gaussian kernel
function, I(x, y) represents image matrix. ∗ represents convolution operator, σ represents
scale-space factor.

First, we downsample the image and Gaussian blur at different scales, establish
multiple sets of multi-scale-space sequences to form the image Gaussian pyramid. Then,
subtract adjacent images in each set of scale-space sequences, forming a difference of
Gaussian pyramid (DOG) [18].

The mathematical expression is as follows.

D(x, y, σ) = (G(x, y, kσ)− G(x, y, σ)) ∗ I(x, y) (2)

which leads to:
D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (3)

Figure 2 shows an example of a Gaussian pyramid. Figure 3 shows an example of
the differential Gaussian pyramid. Although the image looks generally composed of black
areas and can only see the subtle outline, it contains a lot of key information.
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Figure 2. An example of Gauss pyramid.

Figure 3. An instance of difference of Gaussian pyramid.

Key point extraction: Key point is the local extreme point of DOG. To form a local
three-dimensional space, we compare the pixel at the core position with 8 same surrounding
scale neighboring points and 9× 2 different scale points with upper and lower neighboring
points. Then, set the maximum or minimum point in each local stereo space as key point,
fit the scale-space DOG function with a three-dimensional quadratic function in scale space,
remove key points with poor stability.

D(X) = D +
∂DT

∂X
X +

1
2

Xτ ∂2D
∂X2 X (4)

X = (x, y, σ)T and obtain the offset of extreme points as follows.

X̂ = −∂2D
∂X2

∂D
∂X

(5)

X̂ = (x, y, σ)T represents the offset from the interpolation center. When the offset
in any dimension is greater than 0.5, it means that the interpolation center has shifted,
change the current key point position and interpolate at the new position to convergence.
Then, obtain the precise location and scale information of feature points, find the principal
curvature through Hessian matrix to eliminate unstable edge response points. The specific
formula is as follows.

Tr(H)

Det(H)
=

(α + β)2

αβ
=

(rβ + β)2

rβ
=

(r + 1)2

r
(6)

The eigenvalues α and β of the H represent the gradients in the x and y directions.
Tr(H) represents the sum of the diagonal elements of matrix H. Det(H) represents the
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determinant of matrix H. Assume α is the larger eigenvalue, and assume β is the smaller
eigenvalue, let α = rβ, stable feature points will satisfy formula below.

Tr(H)2

Det(H)
<

(r + 1)2

r
(7)

Keep the feature points that meet the above formula, otherwise eliminate them to
complete the extraction of key points. The key point extraction results of fMRI slices at two
different time points are shown in Figure 4. It can be observed that there are both the same
key points, which can be matched as features, and different key points in the two images,
which need further correction.

Figure 4. Examples of feature point extraction of t0 image and t1 image.

Key points direction assignment: In Gaussian pyramid image, we calculate the
gradient modulus and direction of all pixels in a circular area with a radius of 3σ around
each key point, use this as a reference to assign a reference direction for each key point.
The magnitude and direction of the gradient are calculated, respectively. Using formula:

m(x, y) =
√
(L(x + 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y− 1))2 (8)

θ(x, y) = tanh−1 L(x, y + 1)− L(x, y− 1)
L(x + 1, y)− L(x− 1, y)

(9)

θ(x, y) represents the gradient direction angle of the feature point (x, y), m(x, y) repre-
sents the gradient modulus of the feature point (x, y), L(x, y) is the pixel value of the feature
point (x, y) in the Gaussian pyramid. Set feature point as the center, rotate feature points
within its neighborhood, keep the main direction at zero degrees. Then, use the gradient
histogram to count the above information, divide the gradient direction into 36 columns,
each column is divided by a span of 10 angles as abscissa, gradient magnitude as ordinate.
Take the largest gradient amplitude as the main direction of feature points.

2.1.2. Feature Point Description

To perform feature matching, a feature vector needs to be defined as the feature
descriptor of each feature point as a unique “label” for each feature point. The feature
vector can be regarded as an abstraction of the feature point and the information in the area
is unique. Gradient location and orientation histogram (GLOH) [19] is used as a feature
descriptor, as shown in Figure 4. We chose to use GLOH descriptors for the following
reasons: Compared with PCA-SIFT and standard SIFT descriptors, it has better results on
both edge features and smooth image processing. Secondly, compared with Speeded-Up
Robust Features (SURF) [20], GLOH has a better processing result on blurred images.
GLOH descriptor is robust and unique which reduces dependence on sample images.
GLOH descriptors use a logarithmic polar hierarchy to replace the 4-quadrant traditional
descriptor. Take a radius of 6, 11, 15 in space, and divide it into 8 intervals in angle (except
for the middle area), and obtain 136 (17× 8)-dimensional vector as the final feature vector.
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2.1.3. Feature Point Matching

Match every feature point of the reference image and every feature point of the image
to be matched one-to-one. Calculate the Euclidean distance between the feature vectors
corresponding to each pair of feature points, use this to determine the correspondence
between them. The closer the Euclidean distance between two point feature vectors, the
greater the chance of successful matching. The formula for calculating the Euclidean
distance in n-dimensional space is as follows.

d(x, y) =

√
n

∑
i=1

(xi − yi)
2 (10)

The specific method of feature point matching is as follows. First, select the feature
point B in the image to be matched. Calculate the Euclidean distance between b and each
feature point of the reference image and find the feature point with the smallest distance
B′. Then, find the nearest feature point C and the second nearest point D to point B′ in
the reference image. Calculate the ratio of the distance between points B and C to the
distance between points C and D to obtain the correct matching point. The specific formula
is as follows.

d(B, C)
d(B, D)

< Threshold (11)

The practical application in fMRI data is shown in Table 1. By comparing the number
of matching successful feature points under different thresholds, this paper selects 0.9 as
the given threshold.

Table 1. Image matching quality evaluation.

Threshold of Distance Ratio No. Feature Point Pairs Matched

1.0 109
0.9 113
0.8 105
0.6 100
0.4 93
0.2 70

When the ratio is less than the given threshold (Threshold = 0.9), the match succeeded;
otherwise, it failed. An example of the feature point matching effect is shown in Figure 5.

Figure 5. Example of feature point matching of t0 image and t1 image.

2.1.4. Mapping Model Evaluation and Image Sequence Matching

Through the above steps, the feature matching is realized, and the feature points
matching each other in the two images are obtained. Then, this paper selects random
sample consensus (RANSAC) algorithm to evaluate the mapping model and calculates the
geometric–transformation relationship between the image to be registered and the reference
image, according to the matching results. The transformation relationship between adjacent
frames is obtained in two steps.
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The specific implementation steps are as follows:

• Randomly extract four sample data from the feature point matching set M (the four
samples cannot be collinear), calculate the transformation matrix, and record it as
Model T;

• Calculate the projection error between all data in the feature point matching set M and
Model T. If the error is less than the threshold TR, it will be added to the successfully
matched feature point set G;

• If the number of elements of the current successfully matched feature point set G is
greater than the optimal matched feature point set GBest, then update BBest = B, and
the number of iterations K is updated at the same time;

• If the number of iterations exceeds the upper limit or the number of successfully
matched feature points exceeds the critical value, exit the iteration; otherwise, the
number of iterations is increased by 1, and steps 1–3 are repeated;

• Output the final transformation model T.

Set B is a set of matching point pairs that comply with epipolar constraints. The more
elements in set B, the more accurate the estimation of the transformation model. RANSAC
algorithm is to randomly select the matching items and ensure the transformation model
with the largest number of elements in set B as the best result through iteration. The fea-
ture points that can adapt to the model results are called “local points”, and the feature
points that do not adapt to the optimal model results are called “external points”. These
external points may come from wrong measurement methods, wrong assumptions, wrong
calculations, or extreme values of noise. In the process of iteration, the iteration round K
is constantly updated rather than fixed when the number of iterations does not reach the
limit value. The specific calculation method is as follows:

k =
log(1− p)

log(1− wm)
(12)

where p represents the probability that the points randomly selected from the dataset are
all local points in some iterative processes.

At this time, the model is likely to be useful, so p can also represent the probability
that the results obtained by the algorithm are useful. As a confidence degree, it is usually
taken as 0.995; m is the minimum number of samples required for the calculation model,
which is 4 in this experiment; w represents the probability of selecting one local point from
the dataset each time, as shown in the following formula:

w = f /n (13)

where f represents the number of local points and n represents the number of feature points
of the dataset.

In the process of overall registration of fMRI image sequence, all images need to be
mapped to the coordinate system of the same reference image. However, if each frame
image is directly registered to the reference image, the correlation information between the
front and rear adjacent frame images in the image sequence will be lost, which is quite fatal
to the function-based sequence data of fMRI.

According to the comparison between the feature point matching similarity between
the sequence image to be registered and the fixed reference image in Tables 2 and 3 and the
feature point matching similarity between adjacent frame images (only part is shown), it
can be seen that the feature point matching similarity between adjacent frame images is
generally higher than that of all images registered to the reference image at the first time
point (after removing the data of the first n time points). This is also in line with the theory
that there is a certain correlation between adjacent frame data, so the global registration of
every two adjacent frame images is given priority. Firstly, starting from the transformation
relationship between a pair of adjacent images, the relationship between each frame image
and the previous image is recursively deduced. After the adjacent recursion is completed,
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the matching relationship between each image and the first time-point image is obtained
according to the corresponding recursion relationship. It is assumed that ti is the matrix
representation of the matching relationship between the relevant images between the
i− th frame image and the i + 1st frame image. The specific relationship representation is
as follows:

T = T1 × T2 · · · Ti−1 × Ti (14)

Table 2. Similarity of feature points matching between sequence image to be registered and fixed
reference image.

Reference Image-to-Register Feature Points of Feature Points of Number of Matching Matching Similarity (%)Reference Image Image-to-Register

t0 t1 137 129 119 92.25
t0 t2 137 126 112 88.89
t0 t3 137 140 122 89.05
t0 t4 137 139 121 88.32
t0 t5 137 129 113 87.60
t0 t6 137 130 110 84.62
t0 t7 137 129 115 89.15
t0 t8 137 142 121 88.32

Table 3. Similarity of feature point matching between adjacent frame images.

Reference Image-to-Register Feature Points of Feature Points of Number of Matching Matching Similarity (%)Reference Image Image-to-Register

t0 t1 137 129 119 92.25
t0 t2 129 126 114 90.48
t0 t3 126 140 113 89.68
t0 t4 140 139 125 89.93
t0 t5 139 129 122 94.57
t0 t6 129 130 116 89.92
t0 t7 130 129 118 91.47
t0 t8 129 142 119 92.25

2.2. Construction of Custom Template Based on Sequence Fusion

Next, each set of slices in the same layer after registration is regarded as a sequence,
and the sequence is fused. According to the level of fusion process, image fusion algorithm
can be divided into signal-level fusion, pixel-level fusion, feature-level fusion, and decision-
level fusion. Among them, the signal-level image fusion fuses the unprocessed signal
in the signal domain, and the fused signal is a random variable mixed with different
correlation noise. This method can be regarded as a rough estimation of image fusion
and cannot realize image fusion accurately. Feature-level image fusion extracts the feature
information contained in the source image as the region of interest or target. However,
because the feature information needs to be analyzed, processed, and integrated in the
fusion process, many details are often lost. Decision-level image fusion is more targeted
and less computational than the first two methods, but it is too dependent on the previous
level, resulting in the blurred image. In contrast, pixel-level image fusion can retain as
much information as possible in the source image. After fusion, the image has increased
both in content and detail and is superior to other methods in accuracy and robustness.
Therefore, pixel-level image fusion method is the most widely used in the field of medical
images, and it is also a research hotspot in this field.

In the pixel-level fusion of the image, the direct average method is the simplest. It
can directly sum and average the pixel values of the overlapping area, so as to avoid the
problem that the overflow may lead to the failure of the normal representation of the image.
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Let f (x, y) be the fused image of f1(x, y) and f2(x, y), then the calculation expression of the
direct average method is:

f (x, y)


f1(x, y) (x, y) ∈ f1

[ f1(x, y) + f2(x, y)]/2 (x, y) ∈ ( f1 ∩ f2)
f2(x, y) (x, y) ∈ f2

(15)

Although the direct average method can perform simple and fast operations, the qual-
ity of the fused image is relatively poor because the direct average algorithm will weaken
the contrast of the image, especially when the effective signal only exists in one image.

Therefore, the weighted average method is used to improve the direct average method,
by weighting the two source images, rather than simply adding and summing to obtain the
average. Let f (x, y) be the image generated after the fusion of f1(x, y) and f2(x, y), and the
calculation formula of the weighted average method is:

f (x, y)


f1(x, y) (x, y) ∈ f1

ω1 f1(x, y) + ω2 f2(x, y) (x, y) ∈ ( f1 ∩ f2)

f2(x, y) (x, y) ∈ f2

(16)

In the above formula, ω1, ω2 are the weights corresponding to the pixel gray val-
ues of images f1 and f2 in the calculation process, and ω1 + ω2 = 1, 0 ≤ ω1 ≤ 1 and
0 ≤ ω2 ≤ 1, the gradual-in and gradual-out method is generally adopted ω1 and ω2. De-
termine two weights:

ω1 =
x2 − xi
x2 − x1

, ω2 = 1−ω1 =
xi − x1

x2 − x1
(17)

where x1 and x2 are the left and right boundary coordinates of the part to be fused, respec-
tively, Xi is the abscissa of the pixel to be fused, x1 ≤ xi ≤ x2. The weighted average method
with added weight avoids the defects of the direct average method, and the operation is
relatively simple, and the processing speed is very fast, so it is also widely used.

In addition, pixel-level fusion methods based on multi-scale transform, such as image
fusion based on pyramid transform and image fusion based on wavelet transform, although
they have their own uniqueness, the operation is more complex and takes longer time,
which does not meet the short-term requirements of building a user-defined template for
the subjects in this experiment, so they are not adopted. After the weighted average method
is adopted to complete the sequence image fusion, a group of fused slices corresponding to
the number of brain layers are obtained, and these slices are stacked in order to construct a
three-dimensional custom fMRI reference template.

The custom template finally constructed in this paper retains as much informa-
tion as possible in the sequence image, and the original size of fMRI sequence data is
w× h× s× t, where w and h, respectively, represent the length and width of the scanned
brain, s represents the number of layers of the brain scanned from top to bottom, and t
represents the number of scans of the complete brain during the experiment. After pre-
processing, the size is w × h × s × (t − n) four-dimensional fMRI sequence (the first n
unstable time-point data are removed in the preprocessing process) converted into t− n
three-dimensional fMRI sequences with the size of w× h× s NII format file, and then put
each in 3D. The NII file is sliced into q two-dimensional files with the size of w, according to
the z-axis. The DICOM format image of h saves the DICOM metadata of all slices regarded
as the reference image at the first time point. Then, add a total of s × (t − n) DICOM
data converted into PNG format, and t− n slices belonging to the same layer of the brain
are matched and fused to form a set of two-dimensional slice images with the number of
s. Then, dicom-concert software is used to convert the s PNG format slices into DICOM
format, and the DICOM metadata of some important reference images, such as subject
number and age, are embedded. Then, it will be stacked in three dimensions of NII format
to become a user-defined reference template.
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3. Experiments
3.1. Data

The data used in this article come from the Autism Brain Imaging Data Exchange
(ABIDE) project [21]. This project aims to accelerate the understanding of the deep brain
mechanism of autism spectrum disorder (ASD), which integrates the brain structure and
functional imaging data from many laboratories around the world. The abide I and abide II
datasets were used. The abide I data were collected from 17 centers, including 1112 subjects,
including 539 ASD patients and 573 normal controls; the abide II dataset was collected from
19 centers, including 1114 subjects, including 521 ASD patients and 593 normal controls.

To construct a 3D custom fMRI template using fMRI time-series data, we first need to
preprocess the data. The basic idea of fMRI data preprocessing is to eliminate the timing
error of the interlayer scanning and the head movement error caused by the subject’s
head movement in the scanning process, and then carry out the time-layer correction and
head movement correction for the fMRI functional image. Because the custom template
constructed for the subjects is eager to retain the individual specificity of the subjects, it
does not need to be standardized. Therefore, the steps of the MRI structural image and
the fMRI functional image registration and applying the corresponding MRI registration
parameters to the fMRI functional images after the timing and head movement correction
do not need to be introduced in the preprocessing process, and the data do not need to
be smoothed. Therefore, this chapter only uses the time-horizon correction and head
movement correction to process the data.

The SPM12 plug-in in the MATLAB 2020A environment is used for the data prepro-
cessing in this experiment. The fMRI sequence registration algorithm based on the feature
point extraction and the template construction algorithm based on image fusion can be
applied to the template construction task of various single-subject medical image sequences.
The relevant experimental environment is shown in Table 4.

Table 4. Related experimental condition.

Item Version/Model

CPU Intel 4210R × 2
GPU Nvidia RTXA6000 × 2

Memory 256 G DDR4 ECC REG
Operating system Ubuntu20.04

CUDA 11.2

3.2. Experiment Results

Taking an 8-year-old girl with autism, numbered 50,795 in the Autism Brain Imaging
Data Exchange (ABIDE) dataset, as an example, this paper analyzes the custom template in
the form of slices. The fMRI data size of the subject is 96× 96× 47× 156. After discarding
the data images of the first four time points and eliminating the invalid data whose head
movement exceeds the limit at two time points, the final effective data are 96× 96× 47× 156,
and the size of the final built custom template is 96× 96× 47, as shown in Figure 6.

The custom template has individual pertinence, that is, it is constructed by using
the subjects’ fMRI sequence. Therefore, the constructed custom template is related to the
subjects’ age and brain structure, and the subjects are different from each other. Figure 7
shows the fMRI data of four example subjects with autism at five different time points and
the custom built template in which sub50795 is an 8-year-old girl, sub50625 is a 7-year-
old boy, sub51581 is a 64-year-old man, and sub50526 is a 50-year-old man. According
to the sagittal diagram of the fMRI data of the four subjects, it can be found that there
are very obvious differences in the brain structure, size, and development between the
children and the adults. The user-defined fMRI template constructed for each subject
retains the information contained in the images at different time points in the sequence
data of the subjects to the greatest extent, especially for sub51581 and sub50526 of the two
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adults. Therefore, in the registration based on a single subject, it is more appropriate and
reasonable to register the fMRI sequence data to the user-defined fMRI template than to
randomly select the data at a certain time point as the reference image.

Figure 6. Display of custom template-instance slices of subjects of ABIDE50795.

Custom templateSagittal diagram of five time segments

sub50795

sub50625

sub51581

sub50526

Figure 7. Display of customized templates for different subjects.

In order to verify the accuracy and rationality of the custom fMRI template, this
paper uses several classical registration algorithms to evaluate the accuracy of the custom
fMRI template. Under the two conditions of using the randomly selected time-point
image as the reference image (in this experiment, the image of the first effective time
point is directly used as the randomly selected time point) and using the user-defined
fMRI template as the reference image, the registration accuracy of the fMRI sequence
registration of the same subject is compared. In the experiment, the measurement value
between the two images after the registration is calculated. And then, the average value
is taken for display. Because both the image to be registered and the reference image are
fMRI modes, the registration effect is evaluated by using the Mean Square Error (MSE),
Advanced Normalized Correlation (NCC), Advanced Mattes Mutual Information (MI),
and Normalized Mutual Information (NMI), commonly used to evaluate a single-mode
registration. The matching criteria are to find the maximum correlation between the
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template and each subgraph, that is, the registered image. All the valid time-point data
of 1114 subjects were registered with templates, and the average value of the evaluation
indexes was displayed.

The smaller the mean square error (MSE), the better the registration effect. It can be
observed from Table 5 that the self-defined fMRI template is used as the reference template
for registration on the Affine, SyN of ANTs [22], and VoxelMorph registration algorithms
based on deep learning [23]. The registration accuracy has been improved to varying
degrees compared with using the randomly selected image at a certain t0 fMRI volume
(the first effective time point is directly used in this experiment) as the reference template
for registration.

Table 5. The comparison of registration results of registration algorithms.

Methods Reference Image MSE NCC MI NMI

Affine t0 slice 0.91± 0.27 0.57± 0.21 0.62± 0.27 0.61± 0.13
Custom template 0.88± 0.20 0.59± 0.18 0.63± 0.13 0.64± 0.15

SyN t0 slice 0.65± 0.19 0.61± 0.15 0.60± 0.22 0.66± 0.12
Custom template 0.58± 0.14 0.67± 0.11 0.62± 0.16 0.69± 0.10

VoxelMorph t0 slice 0.78± 0.22 0.52± 0.23 0.63± 0.21 0.63± 0.14
Custom template 0.73± 0.17 0.57± 0.12 0.65± 0.27 0.68± 0.12

The registration based on a standard MRI structural image is the traditional method
of fMRI registration. Because the spatial resolution of a fMRI image is relatively low, it is
often difficult to define the similarity or difference between images intuitively, and when
collecting fMRI data, the MRI structure image of the subject can usually be obtained at
the same time, which has a high spatial resolution and richer structural details. Therefore,
fMRI is registered with the help of an MRI image.

Most of the standard MRI structural images used in this process are selected from
the standard human brain template database, mainly including the Talairach standard
template [24], MNI305 standard template, ICBM152 template, and Colin27 template [25].
Among them, the Talairach standard template is corresponding to the Talairach standard
space [24]; other brain templates correspond to the MNI standard space [26]. At present,
the most commonly used standard MRI brain template is the MNI305 standard template,
which is based on the brain structure of 305 adult subjects with an average age of 23.4 years.
Here, the registration errors under the above standard templates are compared according
to the Voxelmorph algorithm, as shown in Table 6. In the comparison experiment between
the self-defined reference template construction algorithm for the fMRI sequence and the
standard space method, which reduces noise interference, the correlation between the
sequence images is preserved to the greatest extent. At the same time, the individual
pertinence is retained, which effectively avoids the error caused by the large difference in
shape and size when using the standard template to match the brains of patients, such as
children and the elderly, and eliminates the contingency caused by the existing individual-
based registration algorithm using randomly selected images at any time point as reference
templates. The results show that the effect of a custom template is better than that of a
standard template.

Table 6. The comparison of registration results of standard human brain template.

Reference Image MSE NCC MI NMI

Talairach 0.83± 0.21 0.53± 0.19 0.66± 0.21 0.63± 0.33
MNI305 0.82± 0.24 0.54± 0.14 0.65± 0.18 0.65± 0.13
ICBM152 0.77± 0.32 0.63± 0.21 0.62± 0.15 0.67± 0.14
Colin27 0.72± 0.20 0.56± 0.19 0.64± 0.23 0.66± 0.19

Custom template 0.73± 0.17 0.57± 0.12 0.65± 0.27 0.68± 0.12
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4. Discussion

At present, brain image registration algorithms focus on how to make the image to be
registered consistent with the reference image in spatial structure through transformation.
This is reasonable for images with high spatial resolution, such as MRI, from different
subjects, which can be registered to publicly available standard brain templates for com-
parison, but there is no standard template with the fMRI mode at present. In addition,
for the elderly, children, and other subjects whose brain structure is quite different from
the standard template, there will be a big error in registration to the standard space, but
registration to the individual space can avoid this problem. However, the individual tem-
plate used at present is usually fMRI images selected by experts or researchers at a certain
time point, which is accidental and depends on the experience of researchers, so it is not
very reasonable.

Only an MRI template has been constructed for medical image registration, and there
is no three-dimensional fMRI standard template available. When the brain structure of
the subject is quite different from the standard brain structure, registration to the standard
space will lead to large errors, but registration to the individual space can avoid this
problem. However, in the current fMRI registration algorithm based on individual space,
the reference image is often selected by researchers or randomly selected fMRI images
at a certain time point, which makes the quality of the reference image depend on the
experience and ability of researchers and has great contingency.

From the perspective of brain imaging, the imaging results of MRI and fMRI belong to
two types of brain imaging, namely structural brain imaging and functional brain imaging.
MRI is structural imaging, usually used in the study of the brain structure, such as for the
diagnosis of brain tumors. MRI data are three-dimensional images. It can be regarded
as infinite-time resolution, often with extremely high spatial resolution, and can provide
abundant structural detailed information. In MRI brain imaging, we can distinguish the
morphological structure of gray matter, white matter, and cerebrospinal fluid and also see
the tiny details of various structures, such as anatomical boundaries, so as to judge whether
there are lesions or injuries. fMRI data are a four-dimensional fMRI sequence with time
dimension. As functional brain imaging, it is usually used to study cognitive and emotional
processes. Imaging is obtained by scanning the brain several times over a period of time.
fMRI specializes in studying blood flow in the brain and has very high time resolution,
which is equivalent to the real-time log of the brain and is four-dimensional data containing
time-dimension information.

Because of the inherent weakness of the MRI technology, the corresponding cost of
high temporal resolution is the reduction in spatial resolution, so fMRI images cannot
clearly observe the anatomical structure of the brain, so it is difficult to directly define the
differences between the images.

According to the information contained in the image, the concept of fMRI-oriented
medical image registration can be divided into two categories: function-based and structure-
based. Among them, in the function-based fMRI image registration method, the registration
based on the function signal needs to ensure the synchronization and consistency of differ-
ent individual function signals, and many data are difficult to meet the requirements. The
fMRI image registration method based on the global functional connection mode is based
on the principle that the functional signals in the same fMRI data must be synchronized,
consistent, and comparable. The whole brain–functional connection matrix is used to
describe the functional information, but when some pixels in the matrix are disturbed by
space, all points in the matrix will be affected, which leads to the lack of robustness of
this method.

Because the function-based fMRI image registration methods require extremely high
data and have strong application limitations, most of the existing fMRI image registration
methods are structure-based. In this paper, fMRI registration is also based on structure, and
the structure-based image registration is to align the floating image with the reference image
in the anatomical structure. In order to ensure that the anatomical structures corresponding
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to the same voxel positions of two images are consistent, the structure-based registration
first needs to map two images into the same space and use a common reference coordinate.
There are two reference coordinate systems in the field of fMRI registration, which are
standard space based on a large number of subjects and individual space based on a
single subject.

fMRI registration based on standard space is to register the anatomical points of the
brain images of subjects into the standard space constructed according to a large number of
subjects. At present, the most common standard space is the MNI standard space. This
method can be used for inter-individual registration or intra-individual registration. The
images to be registered are registered into the standard space, and the standard human
brain template is selected as the reference image, and then the differences between the
images to be registered are determined by comparative analysis. There are two main
methods for fMRI registration based on the standard space of a large number of subjects:
registration based on standard MRI structural images and registration based on reference
standard fMRI templates.

Registration based on standard MRI structural images is the traditional method of
fMRI registration. Because the spatial resolution of fMRI images is relatively low, it is
often difficult to define the similarity or difference between images intuitively. When
collecting fMRI data, the MRI structural images of the subjects can usually be obtained at
the same time, which has high spatial resolution and richer structural details. Therefore,
fMRI registration is carried out by using MRI images. However, fMRI measures blood flow
signals, while MRI measures tissue structure, which are of different orders of magnitude
and cannot be directly compared. Moreover, due to the influence of noise and other factors,
they may have different shapes. The advantage of this method is that it uses MRI images
with high spatial resolution to estimate the deformation in standard space, but this method
assumes that affine transformation can correct any difference between fMRI and MRI
images of the same subject and does not take into account the influence of geometric
distortion on fMRI data.

Most of the standard MRI structural images used in this process are selected from
the standard human brain template database, mainly including the Talairach standard
template, MNI305 standard template, ICBM152 template, and Colin 27 template. Among
them, except that the standard space corresponding to the Talairach standard template is the
Talairach standard space, other brain templates all correspond to the MNI standard space.
At present, the most widely used standard MRI human brain template is the MNI305
standard template, which is constructed from the brains of 305 adult subjects with an
average age of 23.4 years.

The registration of the reference standard fMRI template is to directly register the fMRI
image to be registered with the selected three-dimensional standard fMRI template with
low spatial resolution, which is the main problem solved by the single-mode registration
based on depth learning at present. This method does not need MRI structural images,
but because of the lack of adjustment of image details according to the MRI images, the
registration results obtained are worse than the traditional two-step registration based on
structural images, and there is no standard 3D fMRI template available publicly at present.

Brain image registration based on standard space selects the constructed standard
space as the reference coordinate system. However, fMRI data are often used for the early
diagnosis and treatment of mental diseases and many functional brain diseases, such as
autism spectrum disorder and Alzheimer’s disease. Their onset period is often childhood
or old age. As shown in Figures 8 and 9, it can be found that the brains of such subjects
are often quite different from the MRI standard general template made according to adult
brains in size and brain structure, and the method of registering them into the standard
space may cause large errors, which limits the application of this method to a certain extent.
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Figure 8. The sagittal plane of standard MRI templates: average305, colin27, ICBM152 T1,
NLICBM152 T1 (from left to right).

Figure 9. The sagittal plane of fMRI in children’s brains.

In the analysis of a single-subject data sample, the above situation can be effectively
avoided. Instead of normalizing the data into the standard space, the fMRI registration
method based on the subject’s individual space is adopted, and the individual-specific
fMRI template is used as the reference image. This method directly registers the image
to be registered with the selected reference image, which is usually randomly selected by
researchers from the image sequence, choosing a relatively standard fMRI image with a
relatively standard shape and structure or choosing the fMRI image corresponding to the
first effective time point as the reference image. The advantage of this method is that it
retains the individual specificity of the reference image, which makes the registration based
on a single subject more accurate. However, due to the randomness of the reference image
selection or the dependence on the ability and experience of researchers, the method has
great contingency.

A self-defined reference template construction algorithm for an fMRI sequence is
proposed. The noise interference is reduced, the correlation between the sequence images is
preserved to the greatest extent, and at the same time, the individual pertinence is retained,
which effectively avoids the error caused by the large difference in shape and size when
using the standard template to match the brains of patients, such as children and the
elderly, and eliminates the contingency caused by the existing individual-based registration
algorithm using randomly selected images at any time point as reference templates. By
improving the rationality and accuracy of the reference template, the registration accuracy
of the existing registration algorithm is further improved.

5. Conclusions

In this paper, a method for constructing a custom template for fMRI is proposed.
Firstly, based on the acquisition of the ABIDE autism dataset, the preprocessing of the
time-layer correction and head movement correction is carried out to prevent the data noise
from affecting the quality of the custom fMRI reference image construction. Secondly, for
the initial registration of the fMRI sequence images, the first time-point data are selected as
the preliminary reference image, the feature points are extracted by the SIFT method, and
the better GLOH descriptor is used to describe the feature points. After the evaluation of the
feature points, the spatial–transformation relationship between the feature points is used to
guide the geometric transformation of the fMRI sequence images to be registered. In this
process, because there is a certain correlation between the fMRI adjacent frame images, in
order to retain the correlation information of the adjacent frames to the greatest extent, give
priority to obtain the corresponding matching relationship between the adjacent images,
calculate the relationship matrix, then find the relationship between each time-point image
and the reference image through recursion, and map all these images to the coordinate
system of the reference image. Finally, the weighted average pixel-level fusion method is
used to fuse the image sequence to obtain a user-defined fMRI reference template. In the
classical registration algorithm, it is verified that in using the custom fMRI template instead
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of the random time-point image as the reference template, the registration accuracy has
been improved to a certain extent.
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