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Abstract: Atherosclerosis is known as the leading factor in heart disease with the highest mortality
rate among the Malaysian population. Usually, the gold standard for diagnosing atherosclerosis is by
using the coronary computed tomography angiography (CCTA) technique to look for plaque within
the coronary artery. However, qualitative diagnosis for noncalcified atherosclerosis is vulnerable
to false-positive diagnoses, as well as inconsistent reporting between observers. In this study, we
assess the reproducibility and repeatability of segmenting atherosclerotic lesions manually and
semiautomatically in CCTA images to identify the most appropriate CCTA image segmentation
method for radiomics analysis to quantitatively extract the atherosclerotic lesion. Thirty (30) CCTA
images were taken retrospectively from the radiology image database of Hospital Canselor Tuanku
Muhriz (HCTM), Kuala Lumpur, Malaysia. We extract 11,700 radiomics features which include the
first-order, second-order and shape features from 180 times of image segmentation. The interest
vessels were segmentized manually and semiautomatically using LIFEx (Version 7.0.15, Institut Curie,
Orsay, France) software by two independent radiology experts, focusing on three main coronary
blood vessels. As a result, manual segmentation with a soft-tissuewindowing setting yielded higher
repeatability as compared to semiautomatic segmentation with a significant intraclass correlation
coefficient (intra-CC) 0.961 for thefirst-order and shape features; intra-CC of 0.924 for thesecond-order
features with p < 0.001. Meanwhile, the semiautomatic segmentation has higher reproducibility as
compared to manual segmentation with significant interclass correlation coefficient (inter-CC) of
0.920 (first-order features) and a good interclass correlation coefficient of 0.839 for the second-order
features with p < 0.001. The first-order, shape order and second-order features for both manual
and semiautomatic segmentation have an excellent percentage of reproducibility and repeatability
(intra-CC > 0.9). In conclusion, semi-automated segmentation is recommended for inter-observer
study while manual segmentation with soft tissue-windowing can be used for single observer study.

Keywords: atherosclerosis; CCTA; radiomics; repeatability; reproducibility

Diagnostics 2022, 12, 2007. https://doi.org/10.3390/diagnostics12082007 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12082007
https://doi.org/10.3390/diagnostics12082007
https://doi.org/10.3390/diagnostics12082007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-3654-3333
https://orcid.org/0000-0002-4645-7917
https://orcid.org/0000-0002-5357-4193
https://orcid.org/0000-0002-0497-8597
https://doi.org/10.3390/diagnostics12082007
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12082007?type=check_update&version=1


Diagnostics 2022, 12, 2007 2 of 17

1. Introduction

According to a report from the World Health Organization, in 2019, ischemic heart
disease (IHD) was the number one silent killer worldwide, including in Malaysia, with
17.9 million people dying every year due to cardiovascular disease (CVD) [1]. IHD occurs
when there is a reduction in the oxygen content carried by the blood vessels to the heart.
This can be caused by a blockage by plaque inside the wall area of the blood vessels,
known as atherosclerosis. There are three types of atherosclerosis—calcified, semi calcified,
and noncalcified plaque [2]. Generally, patients with suspected acute coronary syndrome
(ACS) or even without symptoms can undergo the health-screening procedure of coronary
computed tomography angiography (CCTA), the invasive coronary angiography (ICA)
procedure, and intravascular ultrasound (IVUS) [3]. The radiologist will analyze the image
and based on the percentage of blood vessel blockage, classify it as grades 0, 1, 2, 3, or
4 or use the standard reporting system in CCTA, which is CADRADS [4]. CADRADS
was developed to standardize the reporting of CCTA, improve communication, and guide
therapy. It was published in 2016 by the Society of Cardiovascular Computed Tomography
(SCCT), the American College of Radiology (ACR), and the North American Society for
Cardiovascular Imaging (NASCI) and has been endorsed by the American College of
Cardiology (AC). CCTA has been acknowledged as a noninvasive technique to diagnose
and detect atherosclerotic plaques [5,6]. CCTA can highlight the main vessels and iden-
tify the plaque morphology, enabling the planning of treatment and estimating the risk
stratification in patients with CVD [5–9]. In clinical practice, the radiologist will visualize
and interpret the CCTA by assessing the qualitative features of the images. However,
this subjective evaluation requires full attention to detail, which may be overlooked if
there is too much diagnostic study [10]. As the diagnosis is a subjective assessment highly
dependent on the expertise level of the readers, interobserver reproducibility has been
found to be low [4]. Hence, precision medicine was established, enabling more precise
tools to detect and characterize diseases [11].

In medical imaging, radiomics is a technique that extracts various features from
medical images using data algorithms and usually represents them as tumor patterns and
other disease characteristics [12,13]. The radiomics process starts with data acquisition,
image preprocessing, image segmentation, feature extraction, feature selection, and image
classification, as shown in Figure 1. In this research, we were focused more on the first four
phases of radiomics study.
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The use of radiomics in CCTA radiographs is considered vital as a diagnostic tool,
due to its minimal requirements for acquisition and postprocessing [14]. It improves
the characterization of plaque-containing blood vessels by using complex and potential
algorithms to facilitate the radiologist’s decision regarding prospective patient treatment.
The use of texture analysis or the so-called part of artificial intelligence (AI) technology is
also a promising alternative quantitative analysis to identify and characterize the lesion by
using medical imaging information such as from CCTA images [15–19]. Despite its ability,
reproducibility in extracting radiomics features remains a concern.

Radiomics has an important role in machine-learning (ML) development and is re-
garded as the only high-throughput feature for medical images [20]. Radiomics is also
subject to the limitation of visual image interpretation, as it covers most of the DICOM
format images [21]. Previously, researchers found that data mining from radiographs and
predictive analysis widened the scope of medical imaging [22–25]. This can enable prog-
nostic models to classify the pattern and properties of the disease. However, according to
Wang et al., the only obstacle to the use of the models is the reliability of their outcome [26].

Challenges during segmentation process of coronary artery in CCTA is inevitable,
as the coverage area of the vessel is small and can cause variability in the segmentation
result [27]. In addition, conventional manual segmentation is tedious and exhausting,
which calls for faster and more reliable segmentation techniques. Previous works evaluated
the semiautomatic segmentation methods and found their reliability similar to manual
segmentation [28–30]. A work on mammography found that the flood-filling algorithm
yields the best result, compared to the watershed and k-means algorithms [31]. Furthermore,
the semiautomatic segmentation of the grow-cut algorithm on lung computed tomography
(CT) was also found to have high reproducibility and robustness, compared to manual
segmentation [32].

Feature extraction is essential to obtain relevant information on input images and
represent that information in the lower-dimensionality space [33]. These features are
extracted by using an advanced mathematical algorithm that describes phenotypes of
lesions that might not be visible to the naked eye. Apart from the selection of segmentation
algorithms, medical-image-segmentation accuracy will also be affected by other extrinsic
factors such as image analysis, the observers’ educational background, image-segmentation-
related experience, and the level of familiarity with the segmentation software [27,34].
To obtain accurate data regarding lesion characteristics, a robust image segmentation
algorithm is required. Manual segmentation is widely used in clinical settings, especially for
tumour contouring in the oncology sector and volume measurement in the radiology field.
However, such segmentation performed through human observation and interpretation
was shown to be susceptible to variation, apart from being time-consuming. Hence, this
study aimed to evaluate the reproducibility and repeatability of manual and semiautomatic
segmentation the atherosclerotic lesions in atherosclerosis of CCTA images. This work aims
to identify the most appropriate CCTA image segmentation method for radiomics analysis
to quantitatively extract the atherosclerotic lesion.

2. Materials and Methods

The CCTAs with contrast images (axial plane) were retrieved retrospectively from
the picture archiving communicating system (PACS) system of Hospital Canselor Tuanku
Muhriz (HCTM), Cheras, Kuala Lumpur, Malaysia. The images were collected randomly
from December 2019 to March 2021. This observational clinical study was approved by the
ethical-committee members on 4 January 2021 (vide approval No. UKM PPI/111/8/JEP-
2020-751). Patient consent was waived due to the research involving no more than minimal
risk to subjects. Thirty (30) CCTA images of coronary blood vessels (including calcified,
noncalcified, and normal blood vessels) were selected using the rule of thumb in the relia-
bility study [35]. The normal coronary artery was identified as a control group. Data were
recorded based on random sampling, which is better in reducing bias and more random for
optimal data collection results, including radiologist reports and patient demographic data.



Diagnostics 2022, 12, 2007 4 of 17

This research used a single-blinded type of study whereby only the researcher knows
the report of the patient. The report was used in the first place to distribute the patient
selection based on patient diagnosis. The sample was taken randomly including normal
patients, calcified plaque, and noncalcified plaque. Then, two radiology experts were
blinded by not knowing the patient’s diagnosis and they were both not among those who
carried out the reporting on the sample of images. Patient identifications were voided to
reduce bias during the image segmentation process. The CCTA images were renamed into
sequence of number to avoid patient identification being revealed during the segmentation
process. Both manual and semiautomatic segmentation processes were carried out using
Local Image Feature Extraction (LIFEx) software (version 7.0.16, Orsay, France) [36]. LIFEx
is a free and open-source software platform for analyzing 3-dimensional (3D) medical
images, intended for research purposes only, and has not been reviewed or approved by
the Food and Drug Administration (FDA) for clinical purposes. Figure 2 shows the overall
research workflow in comparing and analyzing the radiomics features that were extracted.
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The inclusion criteria included contrast enhanced CCTA with atherosclerosis con-
firmed by radiologists based on the radiologist report. The exclusion criteria were coronary
artery bypass graft (CABG) patients or patients under treatment, stenting, or ballooning, as
well as poor-quality CCTA images (with artefacts) and extremely obese patients (body mass
index (BMI) more than 35). All the patients were scanned using 320-Multidetector Com-
puted Tomography (CT) Toshiba Aquilion One (Canon Medical Systems, Tochigi, Japan)
with a standard prospective electrocardiogram (ECG) protocol. The protocols were pre-set
with a tube voltage of 120 kVp, a tube current of 600 mA with automatic mA modulation
technique enabled, a gantry rotation time of 350 ms with half gantry turn (half segment
reconstruction), a collimation aperture of 0.5 mm × 160, and 0.537 mm-thickness slices
with an overlap distance of 0.5 mm. Ensuring a noise index of 10, the scan size area was
16 cm2 to allow the entire heart image to be scanned in one gantry rotation in one heartbeat
(dynamic volume scan). The scanning range was set between a Z-axis of 120 cm and 160 cm,
starting at the bifurcation branch of the trachea until the diaphragm. Throughout the scan,
the ECG detection technique was set at 70–80% at the peak of the R-R interval (the interval
between one heartbeat and another) [37]. In addition, no table movement per gantry round
(pitch) was used because the scan mode used was sequential (step-and-shoot). There was
no table movement and overlap of scans during the radiation emitted.
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Radiomics feature extractions for manual and semiautomatic segmentation were com-
pared and analyzed. To measure the reproducibility of both (manual and semiautomatic)
segmentations, two different methods of viewing bone windows (labeled as: R1; window
width (WW): 2500; window level (WL): 480) and soft-tissue windows (labeled as R2-1:
window width (WW): 450–1000; window level (WL): 100–300) by two radiology experts
were carried out. Then, the manual and semiautomatic segmentations were repeated
by the 2nd radiology expert so that we could measure the repeatability using the intra-
class correlation (ICC). We labelled it as R2-2 (soft-tissue window setting; window width
(WW): 450–1000; window level (WL): 100–300). Both radiologists viewed the coronary
blood vessels and segmentized the image relating to the areas of calcified atherosclero-
sis, noncalcified atherosclerosis, and normal vessels independently. The soft-tissue- and
bone-windowing techniques were used by each radiology expert accordingly based on
the windowing technique that they commonly used for viewing the CCTA images in their
radiology reporting workstation.

Based on the lesion (volume of interest: VOI) areas of the CCTA images on the axial
plane, only 3 axial slices of images were chosen to be segmentized. This is to standardize
the VOI techniques of segmentation area on each vessel. The LIFEx software extracted
the features of atherosclerosis and non-atherosclerosis using a radiomics application into
first-order features, shape order features and secondorder features. The interclass and
intraclass correlation (ICC) was counted as poor (ICC < 0.5), moderate (0.5 < ICC < 0.75),
good (0.75 < ICC < 0.9), and excellent (ICC > 0.9), as referred to in [35]. The details of the
research workflow are presented in Figure 3 below.
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2.1. Manual Segmentation (Pencil 2D Technique) Protocol

The loading axial plane of the CCTA data images through the digital imaging and
communications in medicine (DICOM) module was loaded into the LIFEx software. Patient
identification was removed to reduce any bias-related factors. The observation was con-
ducted under a good room light setting in a private room. Technically, a Windows 10 (64-bit)
GPU unit of Intel® Core i7 processor with 16GB RAM was used to run these images. Soon
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after, the observers identified the location of atherosclerotic plaques and non-atherosclerotic
plaques. The DICOM axial images were adjusted with bone window setting (window
width (WW): 2500; window level (WL): 480) for radiologist R1. The soft-tissue window
setting was set to (WW: 450–1000; WL: 100–300), and was adjusted for radiologist R2-1 and
R2-2 (second attempt) independently.

Next, the image was zoomed to 10 times enlargement to focus more on the coronary
blood vessel. The pencil 2D technique (manual segmentation) was selected. The nodes
were added around the lesion region surrounding the coronary artery using the mouse
cursor. The region of interest was then colored in purple (as shown in Figure 4) once the
nodes were connected circularly to the first node. This step was repeatedly carried out on
two more slices (three slices of axial CCTA in total). The same technique was implemented
on two more vessels of coronary arteries.
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setting on RCA (b) The area of segmentation covered after manual segmentation with soft-tissue-
windowing setting was performed on RCA.

2.2. Semiautomatic Segmentation (Circle 3D Technique) Protocol

The same technique was repeated using semiautomatic (circle 3D technique also
known as growth from seed) segmentation. The chosen nodes were able to adjust the
size according to the circular shape of the coronary blood vessel size. The nodes were
added around the lesion region surrounding the coronary artery, using the mouse cursor.
Subsequently, the flood fill effects were activated, and VOI segmented according to similar
voxels’ intensity (as shown in Figure 5). To finalize the output, the segmented lesion was
manually edited either to delete some extra covered area or to add an area not covered by
the semiautomatic cursor in finalizing the semiautomatic segmentation.

The flood-filled algorithm is capable of connecting the area in the multidimensional
array by allowing the related intensity voxels to access the selected node, which is decided
by the users. This algorithm is comparable with the bucket tool in paint programs, which
fills connected, similar-intensity voxels with a different color [31]. The algorithm was
initiated with the first node during the selection of the volume of interest (VOI). The
pixels were connected directionally from the first node to the former. Subsequently, the
intensity voxels were decided, and the algorithm detected the identified path and switched
to a different color. To reduce the leakage effect, the VOI was manipulated using the
neighborhood size parameter.
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Figure 5. Semiautomatic segmentation using circle 3D technique in LIFEx software in bone window
setting on the coronary blood vessel.

2.3. Feature Extraction

Once the segmentation process was finished, the feature was extracted using the
textural extraction analysis in the LIFEx software, with a bin size of 10. All features were
extracted based on the mathematical algorithm predicated on pixel intensities. The first-
order, shape order, and second (2nd)-order features were extracted to a Microsoft Excel
worksheet (CSV. formatted file). Of each of the 30 images, we repeated 6 times the image
segmentation where each technique produced three types of radiomics features which were
shape, texture, and lesion intensity. We managed to extract 11,700 radiomic features of the
CCTA images to allow quantification of the atherosclerotic and non-atherosclerotic lesion
characteristics. Table 1 summarizes the composition of features which are divided into
three groups: (I) intensity (1st-order features), (II) shape order features, and (III) textural
(2nd-order features). The total features extracted from the volume of interest for lesion
intensity, shape, and texture were 29, 5, and 31, respectively.

Table 1. Composition of 11,700 radiomic features extracted using LIFEx software.

Features (n = 180) Radiomics Features

Lesion intensity (1st-order features) 29 × 180

Shape order features 5 × 180

Texture (2nd-order features) 31 × 180

The first-order statistics could distinguish the histogram of voxel intensity within
the atherosclerotic lesion region on CCTA images. Furthermore, the shape features were
able to describe the volume properties of the lesion. The patterns or spatial distributions
of voxel intensities derived from the gray-level dependence matrix (GLDM), gray-level
co-occurrence matrix (GLCM), and gray-level run-length matrices (GLRLM) were defined
by the textural features. The features from the co-occurrence and run-length matrices were
estimated by averaging all the 13 symmetric directions in three dimensions [38].

Several interest features, such as entropy, contrast, uniformity, and correlation, are
presented in the equation below:

Entropy = −∑Ng
i=1 p(i) log2(p(i) + ε) (1)
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Entropy measures the average amount of information required to encode the image
values, where Ng = the number of non-zero bins and p(i) = normalized first-order histogram.

Contrast = ∑Ng
i=1 ∑Ng

j=1(i − j)2p(i, j) (2)

Contrast determines the local intensity variation present in the image. A larger value
correlates with the greater disparity in intensity values among neighboring voxels.

Uniformity = ∑Ng
i=1 p(i)2 (3)

Uniformity measures the sum of squares of each intensity value. A greater uniformity
implies greater homogeneity. Correlation defines the linear dependency of gray-level values
to their respective voxels in GLCM. The value for correlation is between 0 (uncorrelated)
and 1 (perfectly correlated). The equation of correlation is shown below:

Correlation =
∑

Ng
i=1 ∑

Ng
j=1 p(i, j)ij − µxµy

σx(i)σy(j)
(4)

where µx, µy and σx, σy are mean gray-level intensity and standard deviation of px and py,
respectively. Table 2 summarizes the radiomic characteristics derived in this investigation
in detail.

2.4. Statistical Analysis

The intraclass correlation coefficient (intra-CC) represents the correlations within the
class of data and is used to determine the repeatability of the extracted features, while the
reproducibility, which was determined by the interclass correlation (inter-CC) analysis,
was used in this study. Briefly, the relationship between the observer was measured
and categorized into three models which can be chosen appropriately, depending on
the experimental situation. In this study, variance values were estimated to define the
interobserver segmentations by using a two-way mixed-effect model of analysis of variance
(ANOVA) [24]. Mathematically, ICC is defined as:

ICC (A, 1) =
MSR − MSE

MSR + (k + 1)MSg +
k
n (MSC − MSE)

(5)

One-way analysis of variance (ANOVA) was used to obtain the ICC values for intra
observer segmentation [14,15]. The equation below defines ICC (C,1):

ICC(C, 1) =
MSR − MSW

MSR + (k − 1)MSW
(6)

where MSR = mean square for rows, MSW = mean square for residual sources of variance,
MSE = mean square error, MSC = mean square for columns, and k and n are the numbers of
observers involved and subjects.

The reproducibility evaluation was performed by letting one observer segmentize
30 images 2 weeks apart. The measurement was based on multiple initializations of
the segmentation algorithm from the same observer. Interobserver reproducibility was
determined from several observers according to the segmentation technique and the degree
of agreement between observers. The Wilcoxon rank-sum test with a p-value set at 0.05
was used to define the differences in reproducibility. We used the Statistical Package for
Social Sciences (SPSS, also known as IBM SPSS statistics) version 25 (SPSS, Chicago, IL,
USA) to analyze the data and all data were expressed in (mean ± standard deviation).
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Table 2. List of first-order features (n = 29), second-order features (n = 31), and shape features (n = 5).
Reprinted/adapted with permission from Ref. [15].

First-Order Features (n = 29) Second-Order Features (n = 31) Shape Order Features (n = 5)

Conventional:
CONVENTIONAL_min
CONVENTIONAL_mean
CONVENTIONAL_std
CONVENTIONAL_max
CONVENTIONAL_Q1
CONVENTIONAL_Q2
CONVENTIONAL_Q3
CONVENTIONAL_Skewness
CONVENTIONAL_Kurtosis
CONVENTIONAL_Excess_Kurtosis
CONVENTIONAL_peak_Sphere_0.5mL
CONVENTIONAL_peak_Sphere_1mL
CONVENTIONAL_calcium_AgatstonScore

Discretized:
DISCRETIZED_min
DISCRETIZED_mean
DISCRETIZED_std
DISCRETIZED_max
DISCRETIZED_Q1
DISCRETIZED_Q2
DISCRETIZED_Q3
DISCRETIZED_Skewness
DISCRETIZED_Kurtosis
DISCRETIZED_ExcessKurtosis
DISCRETIZED_peakSphere0.5 mL
DISCRETIZED_peakSphere1 mL
DISCRETIZED_HISTO_Entropy_log10

DISCRETIZED_HISTO_Entropy_log2

DISCRETIZED_HISTO_Energy
DISCRETIZED_AUC_CSH

Gray-Level Co-Occurrence Matrix (GLCM):
GLCM_Homogeneity
GLCM_Energy
GLCM_Contrast
GLCM_Correlation
GLCM_Entropy_log10

GLCM_Entropy_log2

GLCM_Dissimilarity

Gray-Level Run Length Matrix (GLRLM):
GLRLM_Short Run Emphasis (SRE)
GLRLM_Long Run Emphasis (LRE)
GLRLM_Low Gray Run Emphasis (LGRE)
GLRLM_High Gray Run Emphasis (HGRE)
GLRLM_hort Run Low Gray-Level Emphasis
(SRLGE)
GLRLM_Short Run High Gray-Level
Emphasis (SRHGE)
GLRLM_Long Run Low Gray-Level
Emphasis (LRLGE)
GLRLM_Long Run High Gray-Level
Emphasis (LRHGE)
GLRLM_GLNU (Gray-Level
Non-Uniformity)
GLRLM_Run-Length Non-Uniformity
(RLNU)
GLRLM_Run Percentage (RP)

Neighborhood Gray-Level Differences
Matrix (NGLDM):
NGLDM_Coarseness
NGLDM_Contrast
NGLDM_Busyness

Gray-Level Zone Length Matrix (GLZLM):
GLZLM_Short Zone Emphasis (SZE)
GLZLM_Long Zone Emphasis (LZE)
GLZLM_Low Gray-level Zone Emphasis
(LGZE)
GLZLM_High Gray-level Zone Emphasis
(HGZE)
GLZLM_Short Zone High Gray-Level
Emphasize (SZHGE)
GLZLM_Long Zone Low Gray-Level
Emphasize (LZLGE)
GLZLM_Long Zone High Gray-Level
Emphasize (LZHGE)
GLZLM_Gray-Level Non-Uniformity
(GLNU)
GLZLM_Zone-Length Non-Uniformity
(ZLNU)
GLZLM_Zone Percentage (ZP)

Shape Features:
SHAPE Volume (mL)
SHAPE_Volume (vx)
SHAPE_Sphericity
SHAPE_Surface (mm2)
SHAPE_Compacity
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3. Results
3.1. Descriptive Analysis

Of 30 images of CCTA, 50% were categorized as coronary artery disease—reporting
and data system (CADRADS)-4, 30% as CADRADS 2, 10% as CADRADS 1, and 10% as
CADRADS 5. In total, 36.7% were calcified atherosclerosis, 23.3% were noncalcified plaque,
and 40% were normal.

3.2. ICC for Manual and Semiautomatic Segmentation for First (1st)-Order and Shape
Order Features

Both inter- and intra class coefficients (ICC) for manual and semi-automatic segmen-
tation of the first-order and shape order radiomics features were compared by the means
and standard deviation, as shown in Figures 6 and 7. The first 29 radiomics features
were categorized as the first-order features followed by five types of shape order features.
These radiomics features were then compared to their ICC to find their reproducibility
and repeatability on both types of segmentation which were manual and semiautomatic.
As we can visually analyze from the pattern of the bar chart graphs, we can see that the
majority (52.9% (18/34)) of semiautomatic segmentation was higher in reproducibility as
compared to manual segmentation, while the majority of the first-order and shape order
features showed higher repeatability on manual segmentation (82.4% (28/34)).
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3.3. ICC for Manual and Semiautomatic Segmentation for Second-Order Features

The ICC for manual and semiautomatic segmentation of the second-order radiomics
features was compared by the means and standard deviation as shown in Figures 8 and 9.
There were 31 radiomics features of the second order which were extracted from the
CCTA images. These radiomics features were then compared to their ICC to find their
reproducibility and repeatability on both types of segmentation which were manual and
semiautomatic. The bar chart graphs show the majority (71% (22/31)) of semiautomatic
segmentation was higher in reproducibility as compared to manual segmentation, while
the majority of the second-order radiomic features showed higher repeatability on manual
segmentation (83.9% (26/31)).
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Figure 10 shows the overall result in a boxplot graph of comparing the reproducibility
and repeatability between manual and semiautomatic segmentation for all radiomics
features. It is clearly shown that the highest repeatability was in manual segmentation for
the first-order and shape order features with an excellent median of ICC = 0.961 (p < 0.001),
and ICC = 0.924 (p < 0.001) for the second-order features. The average mean of repeatability
and reproducibility for the first-order and shape features’ (Cronbach’s alpha) measured
ICC was 0.979 (p < 0.001) and 0.859 (p < 0.001) for the second-order features. Meanwhile,
the highest reproducibility in semiautomatic segmentation for the first-order and shape
order features had an excellent median of ICC 0.920 (p < 0.001).
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3.4. ICC Level on Reproducibility and Repeatability for Manual and Semiautomatic Segmentation

We categorized both ICCs as poor (ICC < 0.5), moderate (0.5 < ICC < 0.75), good
(0.75 < ICC < 0.9), or excellent (ICC > 0.9) [35]. Table 3 shows the reproducibility and re-
peatability of manual and semi-automatic segmentation for the first-order, shape order, and
second-order features. Consequently, semiautomatic segmentation had the highest percent-
age of excellent (ICC > 0.9) reproducibility for the segmentation of coronary blood vessels
with atherosclerotic lesions and normal blood vessels for first-order features. Meanwhile,
manual segmentation had the highest percentage of excellent (ICC > 0.9) reproducibil-
ity for second-order features. Meanwhile, manual segmentation also gained the highest
percentage of (ICC > 0.9) repeatability for segmentation with 74% for first-order features
and 68% (excellent ICC > 0.9) for second-order features. Comparably, the manual and
semiautomatic segmentations both yielded a majority of excellent (ICC > 0.9) repeatability
and reproducibility based on the first-order, shape order, and second-order features.

Table 3. Comparison of reproducibility and repeatability of Manual and Semiautomatic Segmentation
based on ICC levels (* shows the highest % for excellent ICC).

Radiomics
Features ICC Level Type of ICC Manual Semi-

Automatic

First-order
and

shape order

Excellent
(ICC > 0.9)

Reproducibility (inter-CC) 19 (56%) 20 (59%) *

Repeatability (intra-CC) 25 (74%) * 18 (53%)

Good
(0.75 < ICC < 0.9)

Reproducibility (inter-CC) 4 (12%) 7 (21%)

Repeatability (intra-CC) 5 (15%) 5 (15%)

Moderate
(0.5 < ICC < 0.75)

Reproducibility (inter-CC) 5 (15%) 4 (12%)

Repeatability (intra-CC) 4 (12%) 9 (26%)

Low
(ICC < 0.5)

Reproducibility (inter-CC) 6 (18%) 3 (9%)

Repeatability (intra-CC) 0 (0%) 2 (6%)

Second order

Excellent
(ICC > 0.9)

Reproducibility (inter-CC) 11 (35%) * 10 (32%)

Repeatability (intra-CC) 21 (68%) * 13 (42%)

Good
(0.75 < ICC < 0.9)

Reproducibility (inter-CC) 10 (32%) 9 (29%)

Repeatability (intra-CC) 10 (32%) 12 (39%)

Moderate
(0.5 < ICC < 0.75)

Reproducibility (inter-CC) 6 (19%) 8 (26%)

Repeatability (intra-CC) 0 (0%) 6 (19%)

Low
(ICC < 0.5)

Reproducibility (inter-CC) 4 (13%) 4 (13%)

Repeatability (intra-CC) 0 (0%) 0 (0%)

4. Discussion

This study shows that manual segmentation yielded a high repeatability result since
the same observer was using the same method and windowing technique during the image
segmentation process. This result shows that using a soft-tissue-windowing setting in
viewing the CCTA images for image segmentation purposes was able to produce high
repeatability. Yet, there are still some disadvantages to the manual technique which is
monotonous, time-consuming, and did affect the interobserver variability [39] as shown in
the result above.

Meanwhile, semi-automatic segmentation is proven to have higher reproducibility in
CCTA images segmentation, using two different windowing techniques. Other than higher
reproducibility result, semi-automatic segmentation also taking less time in segmentation
as compared to the manual segmentation [39]. This result also shows that the windowing
technique also gave impact on reproducing the same segmentation result in manual seg-
mentation. It is suggested to maintain a standard image viewing setting as it may affect
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the image visualization, especially in detecting atherosclerosis. This result is supported
by the previous study conducted on other imaging modalities, diseases, and techniques of
segmentation [40].

Although semiautomated segmentation was proved less susceptible to intra- and inter-
observer variability compared to manual delineation [41,42], it may still cause contrasting
results even using the same segmentation approach. This may be due to the requirement
of human interaction in semiautomated segmentation; different initialization points’ loca-
tions and sizes may cause different outcomes [43]. This was also supported by Owen in
2013 [44] who found that with less human interaction during the segmentation process,
a more reproducible result could be obtained. Other than that, they suggested using the
same segmentation software and approach in obtaining radiomics information because
significant inter-software variability was observed in their study. The same suggestion was
also mentioned in theother study [45].

The advantages of semiautomated segmentation include allowing the viewer to detect
those areas of interest which have about the same pixel value beside it. This has been
proven beneficial to apply, especially in detecting disease in small areas [34]. This will be
one of the reasons why semi-automated segmentation has lower repeatability as compared
to manual segmentation.

Notably, the majority of the first-order, shape order and second-order features for both
manual and semiautomatic segmentation had excellent reproducibility and repeatability
with (ICC > 0.9). Yet, the average percentage of excellent level of reproducibility and
repeatability (ICC > 0.9) was higher in the first-order and shape order features. This is
due to the technical approach of measuring the first-order and second-order features itself,
where the first-order features only focus on the mathematical calculation of the Hounsfield
unit in one single pixel, while the second-order features are prone to measure the pixel
next to another pixel of the image to be measured. Yet, these radiomics features will be
highly beneficial in supervising various automated machine-learning models, especially
in detecting any diseases in medical images particularly at the small area. This result is
supported by the previous study [15,16,46].

The segmentation process is very crucial in radiomics study. If the area of segmentation
is carried out wrongly, it may affect the machine-learning codes to classify diseases from
the CCTA images. Therefore, this research is very prominent to enhance the importance
of choosing the best segmentation technique in comparing with two different windowing
techniques in CT scan. The data that we managed to extract out from the CCTA images
were consisted of large number of patients’ diagnostic informations which will be very
helpful in predicting the disease quantitatively by usingproper image windowing and
segmentationtechnique.

Meanwhile, this research simulated the segmentation techniques in two different
centers in Malaysia. With reference to this study, it is hoped that future research can
apply the semi-automated segmentation in soft-tissue windowing setting accordingly. A
previous study also was conducted on CT lung images as a reference [47]. This may help
radiologists to refer to the standard guideline in viewing the CCTA images, especially
in image segmentation of coronary blood vessels. This will give a large contribution
to patient management, hospital management, and finally, to the nation in detecting
atherosclerosis. It is suggested for future research to further analyze the radiomics features
of two different segmentation techniques by measuring the accuracy of image classification
in detecting atherosclerosis using a machine-learning algorithm. Therefore, it may give a
higher impact in terms of the accuracy in detecting atherosclerosis before implementation
to a real prospective patient.

The limitation of this study is that it involved only two radiology experts from two
different centers. It can also be improved in the next reliability research study by adding
a minimum of three radiologists to interpret the images [35]. Yet, this research is highly
impactful in studying the method and protocol that can be implemented in a future study.
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5. Conclusions

This study demonstrated the manual radiomics feature extraction with soft-tissue-
windowing setting yielded higher repeatability as compared to semiautomatic segmen-
tation, with 82.4% for first-order/shape Features and 83.9% for second-order features.
Meanwhile, semiautomatic segmentation had higher reproducibility as compared to man-
ual segmentation, with 71% for first-order/shape features and 52.9% for second-order
features. The majority of the first-order and second-order features for both manual and
semiautomatic segmentation had an excellent repeatability and reproducibility (ICC > 0.9).
In conclusion, semiautomated segmentation is recommended for interobserver study while
manual segmentation with soft-tissue windowing can be used for single-observer study.
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