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Abstract: Comet assay is a simple and precise method to analyze DNA damage. Nowadays, many
research studies have demonstrated the effectiveness of buccal mucosa cells usage in comet assays.
However, several software tools do not perform well for detecting and classifying comets from a
comet assay image of buccal mucosa cells because the cell has a lot more noise. Therefore, a specific
software tool is required for fully automated comet detection and classification from buccal mucosa
cell swabs. This research proposes a deep learning-based fully automated framework using Faster
R-CNN to detect and classify comets in a comet assay image taken from buccal mucosa swab. To train
the Faster R-CNN model, buccal mucosa samples were collected from 24 patients in Indonesia. We
acquired 275 comet assay images containing 519 comets. Furthermore, two strategies were used to
overcome the lack of dataset problems during the model training, namely transfer learning and data
augmentation. We implemented the proposed Faster R-CNN model as a web-based tool, GamaComet,
that can be accessed freely for academic purposes. To test the GamaComet, buccal mucosa samples
were collected from seven patients in Indonesia. We acquired 43 comet assay images containing
73 comets. GamaComet can give an accuracy of 81.34% for the detection task and an accuracy of
66.67% for the classification task. Furthermore, we also compared the performance of GamaComet
with an existing free software tool for comet detection, OpenComet. The experiment results showed
that GamaComet performed significantly better than OpenComet that could only give an accuracy
of 11.5% for the comet detection task. Downstream analysis can be well conducted based on the
detection and classification results from GamaComet. The analysis showed that patients owning
comet assay images containing comets with class 3 and class 4 had a smoking habit, meaning they
had more cells with a high level of DNA damage. Although GamaComet had a good performance,
the performance for the classification task could still be improved. Therefore, it will be one of the
future works for the research development of GamaComet.

Keywords: comet assay image; buccal mucosa; Faster R-CNN; detection and classification; DNA damage

1. Introduction

The comet assay or single-cell gel electrophoresis (SCGE) is a simple and precise
method to analyze DNA damage [1]. Lymphocytes have been utilized widely in human
investigations of DNA damage, but these are difficult to obtain, and the procedure is
invasive and may cause discomfort to patients. As a result, researchers began to investigate
buccal mucosa cells, which may be obtained through less invasive techniques [2]. Compared
to comet assay images obtained from lymphocytes cells, the images produced from buccal
mucosa cells contain a lot more noise. Therefore, analyzing comet assay images from buccal
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mucosa cells is harder than analyzing comet assay images from lymphocytes cells. The
buccal cell model can provide essential information on the risk assessment of environmental,
occupational, and lifestyle exposures in human biomonitoring research. Buccal mucosa
cells are a suitable biomatrix for measuring the degree of personal genotoxicity since they
are the first to come into direct contact with substances following exposure to xenobiotics
and endogenous damage inductors, such as exposure to dental radiography exams [3,4].

Comet assay analysis can be decomposed into two main tasks. The first task is comet
detection from a comet assay image which can consist of some valid comets. In this task,
the main objective is judging whether an object in the image is a comet or not. The task is
essential since DNA damage is represented as comets in this method. The second task is
comet classification which determines the level of DNA damage from the given cell.

Currently, several software tools have been developed for automatic comet detection.
Tools such as Comet Assay III [5], Komet version 5.5 [6], Comet Assay Software Project
(CASP) [7,8], and a free software, OpenComet [9] can be employed to perform the comet
detection automatically. However, the tools cannot be used for the classification task. Hence,
the classification is performed manually by experts. Other software tools, CometQ [10]
and DeepComet [11] can be used for both comet detection and classification automatically.
Nonetheless, the tools are only indented specifically for performing comet assay analysis
from lymphocytes cells. Accordingly, the software tool’s performance will drop significantly
if the buccal mucosa comet assay images are used which contain a lot of noise. Therefore,
a specific software tool is required for automatic comet detection and classification from
buccal mucosa comet assay images.

In our previous work, we focused on developing a better tool intended for the comet
classification task from comet assay images obtained from buccal mucosa cell using compu-
tational methods. First, we used the combination of convolutional neural network (CNN)
and transfer learning for the classification task [12]. However, because of the tiny datasets,
the performance of CNN was not optimal. Subsequently, we improved the performance of
our classifier using a hybrid method of CNN and Extreme Learning Machine (ELM) [13].
The hybrid CNN and ELM increased the performance of the classification since the ELM
could minimize the risk of the vanishing gradient problem during the training process.
However, in that research, we still had an unsolved problem in which the buccal mucosa
comet detection was still performed manually by experts. Therefore, a software tool for
fully automated buccal mucosa comet detection and classification is not dispensable.

To solve the problem in our previous work [12,13], in this paper, we propose a deep
learning-based tool which can perform both the detection and the classification of comets
in each comet assay images obtained from buccal mucosa cell automatically. We refer to
Rosati et al. [14] who proposed the usage of a deep learning model, Faster R-CNN [15], to
detect and classify comets since the method is superior to other deep learning architectures
for both tasks. Even so, we focus on optimizing the deep learning model for comet assay
analysis from buccal mucosa cell that is much harder to perform compared to the comet
assay analysis from the cell cultures conducted by Rosati et al. [14].

We have implemented our work in a web-based tool, named GamaComet, that
can be accessed freely for academic purposes at https://bioinformatics.mipa.ugm.ac.id/
gamacomet/. To train and validate the deep learning model in this work, we used data
taken from the buccal swab of 24 patients who underwent panoramic radiography for
diagnosis and treatment in Prof. Soedomo Dental Hospital, Universitas Gadjah Mada,
Indonesia. To test the model, we used data taken from the buccal swabs of seven patients
from the same dental hospital. The main contributions of this paper are summarized
as follows:

1. We propose a fully automated comet assay analysis tool that can detect and classify
comets from buccal mucosa comet assay images. Major improvements are made upon
our previous work [12,13] that could only perform the comet assay analysis manually;

2. Our proposed software tool, GamaComet, has been released and can be accessed freely
for academic purposes only at https://bioinformatics.mipa.ugm.ac.id/gamacomet/;

https://bioinformatics.mipa.ugm.ac.id/gamacomet/
https://bioinformatics.mipa.ugm.ac.id/gamacomet/
https://bioinformatics.mipa.ugm.ac.id/gamacomet/
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3. We used data taken from 24 Indonesian patients to train and validate our proposed
deep learning model for GamaComet. Our research tries to tackle the challenge of
creating a deep learning model using a small dataset;

4. We also conducted experiments for the testing dataset which had slightly different
characteristics from the training and validation datasets. It supposedly can demon-
strate the general ability of GamaComet. The testing dataset was taken from seven
Indonesian patients;

5. GamaComet can produce better results compared to an existing free tool for comet
assay analysis;

6. Downstream analysis can be well conducted based on the detection and classification
results from GamaComet.

The remainder of this paper is structured as follows: Section 2 describes the details
of the dataset used; Section 3 describes the methodology and the experiment scenario for
training the deep learning model; Section 5 provides the discussion of downstream analysis
and GamaComet’s performance for the testing data; and Section 6 provides conclusions
and future work.

2. Dataset

Buccal mucosa samples were collected after radiation exposure from a total of 24 pa-
tients in 2018. We had already obtained the ethic committee approval with number
KE/FK/0649/EC/2018 related to the sample collection process. The comet assay was
performed using an Oxiselect Comet Assay Kit STA-351 (Cell Biolabs, San Diego, CA, USA)
with a modified protocol [4]. The comet slide was observed under fluorescence microscopy
(Leica, Germany) connected to the optilab and computer. The general outline of the comet
assay acquisition process is shown in Figure 1.
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Figure 1. General outline of the comet assay acquisition process.

This acquisition resulted in the comet assay’s microscope slide image dataset (comet
assay images) with a total of 275 images, where each image consisted of some valid comets.
All comet assay images acquired were normalized to a size of 1500 × 1125 pixels for
reducing the computation and memory load of the deep learning model during the training
process [16]. An example of a comet assay image in our dataset is shown in Figure 2. As
can be seen in Figure 2, there were five classes (class 0, class 1, class 2, class 3, and class 4)
of comet which represent the level of DNA damage of a given cell. Class 0 represents the
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lowest DNA damage while class 4 represents the highest DNA damage. To develop the
deep learning model in this study, the comet assay image dataset was divided into training
and validation sets with a ratio of 70% and 30%, resulting in 193 images for the training set
and 82 images for the validation set, respectively.
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Figure 2. (a) An example of a comet assay’s microscope slide image acquired; (b) an example of
comet classification (five classes).

The class distribution of the comet assay image in our dataset is listed in Table 1. We
acquired 519 comets from 275 comet assay images. The training set consisted of 193 comet
assay images with 365 comets while the validation set consisted of 82 comet assay images
with 154 comets.

Table 1. Details of the comet class distribution in our dataset.

Class Full Set
(275 Images)

Training Set
(193 Images)

Validation Set
(82 Images)

0 127 comets 88 comets 39 comets
1 197 comets 143 comets 54 comets
2 128 comets 90 comets 38 comets
3 48 comets 31 comets 17 comets
4 19 comets 13 comets 6 comets

Total 519 comets 365 comets 154 comets

3. Methods

Before proceeding to train a deep learning model, several challenges related to the
dataset needed to be tackled in our study. The first one was regarding the number of
images that we used for the deep learning model training. Usually, to produce a good and
robust deep learning model, a large number of datasets (hundred thousand to millions) are
required in the training process [15]. However, in this work, we only had 275 comet assay
images. Then came the second challenge in our dataset. The number of comet samples for
each class was also very unbalanced. For example, there was a 1:10 difference between class
1 and class 4. Accordingly, we tried to use two kinds of approach to solve these challenges.
The first approach was the use of transfer learning in the deep learning model to give a
head start in the deep learning model training process [17]. The second approach was
the use of data augmentation to increase the number of images in the dataset [18]. Both
approaches will be discussed in more detail in the following sections. In this paper, we
used Faster R-CNN [15] as it was the current state-of-the-art deep learning algorithm for
the object detection and classification task at the time this research was conducted.

3.1. Faster R-CNN

Faster R-CNN (Faster Region-Based Convolutional Neural Network) is an improved
version of R-CNN [19] and Fast R-CNN [20]. Figure 3 shows the Faster R-CNN architecture
used in our study. In this research, we used the Faster R-CNN provided in TensorFlow



Diagnostics 2022, 12, 2002 5 of 19

Object Detection API [21]. The Faster R-CNN architecture consists of Feature Extrac-
tor/Backbone Network, Region Proposal Network (RPN), Filters, RoI Pooling, and a Fully
Connected Layer. While R-CNN and Fast R-CNN use selective search to generate regional
proposals from the input image, Faster R-CNN uses a module called Region Proposal
Network (RPN) that works much faster than selective search. RPN works by sliding a small
network over a feature map which outputs one or more box coordinate (regression) and the
probability of it being an object or not (classification) [15]. This modification in the region
proposal method resulted in a much faster network, with an equal or better performance
compared to R-CNN and Fast R-CNN. The feature extractor/backbone network will be
explained more detail in Section 3.2. Then, by performing max-pooling on the inputs, ROI
pooling generates the fixed-size feature maps from non-uniform inputs. ROI pooling layer
receive two inputs: (1) A feature map obtained from Feature Extractor/Backbone Network
and (2) Region of Interest (RoI) from RPN.

Diagnostics 2022, 12, x FOR PEER REVIEW 5 of 19 
 

 

3.1. Faster R-CNN 
Faster R-CNN (Faster Region-Based Convolutional Neural Network) is an improved 

version of R-CNN [19] and Fast R-CNN [20]. Figure 3 shows the Faster R-CNN architec-
ture used in our study. In this research, we used the Faster R-CNN provided in Tensor-
Flow Object Detection API [21]. The Faster R-CNN architecture consists of Feature Extrac-
tor/Backbone Network, Region Proposal Network (RPN), Filters, RoI Pooling, and a Fully 
Connected Layer. While R-CNN and Fast R-CNN use selective search to generate regional 
proposals from the input image, Faster R-CNN uses a module called Region Proposal 
Network (RPN) that works much faster than selective search. RPN works by sliding a 
small network over a feature map which outputs one or more box coordinate (regression) 
and the probability of it being an object or not (classification) [15]. This modification in the 
region proposal method resulted in a much faster network, with an equal or better per-
formance compared to R-CNN and Fast R-CNN. The feature extractor/backbone network 
will be explained more detail in Section 3.2. Then, by performing max-pooling on the in-
puts, ROI pooling generates the fixed-size feature maps from non-uniform inputs. ROI 
pooling layer receive two inputs: (1) A feature map obtained from Feature Extractor/Back-
bone Network and (2) Region of Interest (RoI) from RPN. 

 
Figure 3. Architecture of the proposed Faster R-CNN for comet detection and classification. 

3.2. Feature Extractor/Backbone Network 
As can be seen in Figure 3, a feature map from feature extractor was used as the input 

in both the RPN and Region of Interest (RoI) pooling layer. In general, the feature map is 
usually extracted from the last convolution layer of a Fully Convolutional Network (FCN) 
that uses the training image as the input. However, the FCN-part of the Faster R-CNN can 
be altered using an existing CNN-based architecture that has been proven to perform well 
for extracting features of a given image. Therefore, in this research, we used two variants 

Figure 3. Architecture of the proposed Faster R-CNN for comet detection and classification.

3.2. Feature Extractor/Backbone Network

As can be seen in Figure 3, a feature map from feature extractor was used as the input
in both the RPN and Region of Interest (RoI) pooling layer. In general, the feature map is
usually extracted from the last convolution layer of a Fully Convolutional Network (FCN)
that uses the training image as the input. However, the FCN-part of the Faster R-CNN can
be altered using an existing CNN-based architecture that has been proven to perform well
for extracting features of a given image. Therefore, in this research, we used two variants of
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ResNet with a different number of layers, ResNet50 [22] and ResNet101 [22], as the feature
extractor. The difference between ResNet50 and ResNet101 is that ResNet50 uses a total of
50 convolution layers and ResNet101 uses a total of 101 convolution layers. Performance
wise, the combination of Faster R-CNN and ResNet101 scored 32 when tested on the COCO
dataset [23] using mean Average Precision (mAP) metric. On the other hand, Faster R-CNN
with ResNet50 only scored 30 when tested on the same dataset using the same metric [15].

3.3. Transfer Learning

Transfer learning is a technique that focuses on storing knowledge that has been
learned from solving a problem in the past and then applies it to another related problem.
In the case of object detection using machine learning approach, transfer learning can be
performed by training a machine learning model on a specific (source) dataset. Then, using
the learned features from the convolution kernels, the model is used to detect images in
another (destination) dataset. Several approaches can be used for implementing transfer
learning. Moreover, the approaches can be divided based on what model that is used
and how it will be used. The model can be made from scratch and then trained on some
source datasets until it produces reliable results. Using another approach, we could use the
available models from other research studies that had already been pre-trained at some
source datasets. Afterwards, we needed to decide whether the model could be directly
used to predict the destination dataset or continue performing the fine-tuning for the model
by training it more on our destination dataset. The fine-tuning approach is often used when
the destination dataset is either smaller or does not resemble the source dataset [17].

3.4. Data Augmentation

Data Augmentation is the process of creating new data using existing data. Augmen-
tation that can be performed for image data includes (1) basic image manipulations such
as geometric transformations, kernel filters, color space transformations, random erasing,
and mixing images, (2) deep learning approaches such as adversarial training, neural style
transfer, and GAN data augmentation, and (3) meta-learning such as neural augmentation,
auto augment, and smart augmentation [18].

In this research, we used the basic image transformations method, specifically geomet-
ric transformations. The method was used to augment the comet assay images, as deep
learning methods require a lot of data in the first place to produce a good result. Details on
the geometric transformations of our study will be discussed further in Section 3.5.2.

3.5. Experiment Scenario

The small size of the comet assay dataset was the main problem that needed to be
solved in our study. Thus, in this work, we tried several approaches that have been known
to produce or increase the model’s performance when it is used on a small dataset. We de-
signed two experiment scenarios which are described in detail in the following subsections.

3.5.1. Non-Pre-Trained Model vs. Pre-Trained Model

In this scenario, we tested and compared the performance between the pre-trained
model and the non-pre-trained model. The transfer learning approach we used in this
scenario is listed as follows: for the pre-trained model, we used the Faster R-CNN mod-
els that were already trained on the COCO dataset, a large dataset containing around
330,000 images with 1.5 million instances of common objects provided in the TensorFlow
object detection API. Afterwards, we fine-tuned the model by continuing the training using
our comet assay dataset. By default, the Faster R-CNN model came pre-trained from the
TensorFlow Object Detection API. However, with some modifications to the configura-
tion, we could train the Faster R-CNN from scratch using the same architecture as the
non-pre-trained model.
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3.5.2. Non-Augmented Dataset vs. Augmented Dataset

The augmentation method used in the second scenario was basic image manipulations,
specifically geometric transformations. The transformations consist of multiple methods,
such as image flipping, image cropping, image rotation, and image translation [18]. In our
research, we only used the image rotation method with ±5 degree of rotation. The reason
we only used such a small degree of rotation was that the direction of the comets matters in
deciding if a comet is valid or not.

For the same reason, we did not use the image flipping method. Image translation
and image cropping were also not used in this research as these methods do not really
increase the variety of comets in the image unlike the rotation method. We also did not use
other basic image manipulation methods such as color space transformation [18] due to the
comet assay image itself only containing one color.

To obtain more comprehensive results, we split the second experiment scenario into
two sub scenarios with the difference in which data were being augmented. Both sub
scenarios were then compared to the model trained on the non-augmented dataset shown
in Table 1. Since the objective of the augmentation process was to develop more robust
models, the augmentation process was conducted only for training sets.

In the first sub scenario, we considered the class imbalance problem in our dataset.
Therefore, we tried to augment the images to balance the dataset. For instance, In Table 1,
there was a class imbalance between class ‘3’ and ‘4’ compared to other classes. Thus, we
decided to augment those classes to balance the training set. We augmented 42 comet assay
images containing class ‘3’ and ‘4’ using the image rotation method with ±5 degree of
rotation. After the augmentation process, we had 277 comet assay images in the training set,
consisting of 193 original images and 84 augmented images. The comet class distribution
after performing the augmentation process is listed in Table 2.

Table 2. Comet class distribution after class ‘3’ and ‘4’ were augmented in the training set.

Class

Training Set
Validation Set

(82 Images)Before Augmentation
(193 Images)

After Augmentation
(277 Images)

0 88 comets 88 comets 39 comets
1 143 comets 143 comets 54 comets
2 90 comets 90 comets 38 comets
3 31 comets 217 comets 17 comets
4 13 comets 91 comets 6 comets

Total 365 comets 629 comets 154 comets

Even so, in the second sub scenario, we tried to augment all classes to increase the
overall amount of the training set. Here, the data augmentation of all classes was performed
equally without considering the class imbalance. As with the previous sub scenario, we
augmented all comet assay images using the image rotation method with ±5 degree
of rotation. After the augmentation process, we acquired 579 comet assay images in the
training set, consisting of 193 original images and 386 augmented images. Table 3 represents
the comet class distribution after all classes were augmented in the second sub scenario.

We mostly used the default configuration that came from the TensorFlow Object
Detection API for the Faster R-CNN model, with only slight modifications to some of
the parameters related to the dataset, such as the number of classes and the minimum-
maximum dimension of the images. For the stopping condition on all models, we decided
to stop the training at exactly 100,000 steps while saving checkpoints every 5000 steps.
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Table 3. Comet assay class distribution after all classes were augmented in the training set.

Class

Training Set
Validation Set

(82 Images)Before Augmentation
(193 Images)

After Augmentation
(579 Images)

0 88 comets 264 comets 39 comets
1 143 comets 429 comets 54 comets
2 90 comets 270 comets 38 comets
3 31 comets 93 comets 17 comets
4 13 comets 39 comets 6 comets

Total 365 comets 1095 comets 154 comets

3.6. Evaluation Metric

In this work, we separated the measurement for detection only and detection with
classification, as we needed to compare our results with previous tools designed for comet
assay analysis. Only comets with a confidence score higher than 0.5 were measured and
included in the confusion matrix. Classification accuracy and F1-score were then calculated
by Formulas (1) and (2).

Acuracy =
TP + TN

TP + TN + FP + FN
(1)

F1 − Score =
2 × TP

(2 × TP) + FP + FN
(2)

where TP, TN, FP, and FN stand for True Positive, True Negative, False Positive, and False
Negative, respectively. In the case of detection with classification, a confusion matrix was
made for each class in which TP represents comet(s) of the current class that is correctly
labelled, TN represents comet(s) of other classes, which is correctly labelled, FP represents
comet(s) of other class which is labelled the current class, and FN represents comet(s) of
current class which is labelled another class.

In the case of detection only, we decided to label previously invalid comets that could
not be used as ‘classless’ comets specifically to calculate the detection accuracy of the model.
Here, TP represents valid comet(s) with classes which are correctly detected, TN represents
invalid comet(s) which are not detected, FP represents invalid comet(s) that are detected,
and FN represents valid comet(s) with classes which are not detected.

4. Results
4.1. Non-Pre-Trained vs. Pre-Trained

As shown in Figure 4, the training process conducted on the non-pre-trained Faster
R-CNN models showed difficulties in reaching convergence due to the usage of feature
extractors with many convolution layers, ResNet50 and ResNet101. Meanwhile, even if
the non-pre-trained Faster R-CNN model with ResNet50 (represented as the blue dotted
line) as the feature extractor did converge at some points, the pre-trained Faster R-CNN
models with COCO dataset (represented as the orange solid line and the blue dashed line)
converged much faster compared to the non-pre-trained counterparts. Moreover, we can
clearly see that the pre-trained Faster R-CNN models converged at an early step of 10,000.
On the other hand, the non-pre-trained counterparts needed more steps to converge. As
can be seen in the figure, the non-pre-trained Faster R-CNN model (represented as the
green dotted line) did not even converge at all after 100,000 steps.
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An example of the predicted output from each model in the first scenario is shown
in Figure 5. In the first part of the figure, we show the comet assay input image and its
ground truth. Based on the ground truth, there should be five valid comets detected in the
given comet assay image: one comet for class 0, one comet for class 1, and three comets
for class 2. Moreover, the second part of the figure shows the prediction (detection and
classification) results obtained from four different models.
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trained models for the comet detection and the comet classification task are shown in Ta-
ble 4. In the table, there is N/A for the non-pre-trained Faster R-CNN model with Res-
Net101 because it did not predict anything. For the comet detection task, the pre-trained 
Faster-RCNN models achieved a higher overall score than the non-pre-trained Faster R-

Figure 5. Input Image, Ground Truth, and Non-Pre-Trained vs. Pre-Trained predicted results. (a) ResNet50
Feature Extractor: non-pre-trained; (b) ResNet50 Feature Extractor: pre-trained; (c) ResNet101 Feature
Extractor: non-pre-trained; (d) ResNet101 Feature Extractor: pre-trained.

The pre-trained Faster R-CNN model with ResNet50, as shown in Figure 5b, detected
and classified more valid comets than other models. Furthermore, the model could appro-
priately detect and classify four out of five valid comets (one comet for class 0, one comet for
class 1, and two comets for class 2). Meanwhile, the non-pre-trained Faster R-CNN model
with ResNet50, as shown in Figure 5a, could only appropriately detect and classify three
valid comets (one comet for class 0, one comet for class 1, and one comet for class 2). Even
though the pre-trained Faster R-CNN model with Resnet 101, as shown in Figure 5d, could
detect five comets, the model only classified three valid comets with two false positives.
Surprisingly, the non-pre-trained Faster R-CNN model with ResNet101 could not predict
anything, as shown in Figure 5c.

Furthermore, the confusion matrix of the classification task from each model can be
seen in Figure 6. Since the non-pre-trained Faster R-CNN model with ResNet101 did
not predict anything, the confusion matrix in Figure 6c shows zero values for all rows
and columns.
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The comparison of the evaluation metrics between the non-pre-trained and pre-trained
models for the comet detection and the comet classification task are shown in Table 4. In the
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table, there is N/A for the non-pre-trained Faster R-CNN model with ResNet101 because it
did not predict anything. For the comet detection task, the pre-trained Faster-RCNN models
achieved a higher overall score than the non-pre-trained Faster R-CNN models. Likewise,
for the comet classification task, the pre-trained Faster-RCNN models also achieved a
higher accuracy score than the non-pre-trained Faster R-CNN models. Nevertheless, the
non-pre-trained Faster R-CNN-ResNet50 model achieved the highest F1-Score (60.18%).
After conducting further analysis, we realized that even though the pre-trained model
did achieve convergence in early steps, it produced many more False Positives and False
Negatives compared to the non-pre-trained Faster R-CNN with ResNet50 late convergence.
As a result, the misclassifications reduced the pre-trained Faster R-CNN models’ F1-Score.
In this scenario, the COCO pre-trained Faster R-CNN model with ResNet50 produced
the best overall results, followed by the COCO pre-trained Faster R-CNN model with
ResNet101 and non-pre-trained Faster R-CNN model with ResNet50.

Table 4. Comparison of the evaluation metrics between thr non-pre-trained models and pre-
trained models.

Detection Classification

Accuracy F1-Score Accuracy F1-Score

Faster R-CNN-ResNet50 93.66% 62.24% 41.56% 60.18%
Faster R-CNN-ResNet50-COCO 95.49% 76.54% 62.99% 57.42%

Faster R-CNN-ResNet101 N/A N/A N/A N/A
Faster R-CNN-ResNet101-COCO 94.51% 70.34% 52.60% 54.47%

4.2. Non-Augmented Dataset vs. Augmented Dataset

Since the Faster R-CNN models which were pre-trained with COCO dataset were
superior to the non-pre-trained models in our previous experiment scenario, we only
conducted experiments using the pre-trained Faster R-CNN models for this scenario. The
pre-trained Faster R-CNN models using the non-augmented dataset (the original dataset)
were taken from Section 4.1. The Faster R-CNN models trained in this scenario also reached
convergence in early steps.

Figure 7 represents the loss comparation chart of all models. There were six models in
this experiment scenario: (1) the pre-trained Faster R-CNN with ResNet50 (Faster R-CNN-
RN50), (2) the pre-trained Faster R-CNN with ResNet50 using augmented dataset for class
‘3’ and ‘4’(Faster R-CNN-RN50-3&4 Aug), (3) the pre-trained Faster R-CNN with ResNet50
using augmented dataset for all classes (Faster R-CNN-RN50-All Aug), (4) the pre-trained
Faster R-CNN with ResNet101 (Faster R-CNN-RN101), (5) the pre-trained Faster R-CNN
with ResNet101 using Augmented dataset for class ‘3’ and ‘4’(Faster R-CNN-RN101-3&4
Aug), (6) the pre-trained Faster R-CNN with ResNet101 using Augmented dataset for
all classes (Faster R-CNN-RN101-All Aug). From Figure 7, we can conclude that models
fine-tuned on comet assay dataset with augmented class ‘3’ and ‘4’ (represented as the
blue and purple dotted lines) seem to have reached an overfit stage in the latter steps. The
result shows that augmenting a dataset with a low variety will not always increase the
performance of a model [18].

Figure 8 represents an example of each model’s prediction from a given comet assay
image using the dataset augmentation strategy. As with the previous experiment scenario,
the ground truth image contained five valid comets. Here, the pre-trained Faster R-CNN
model with ResNet50 and augmented data for class ‘3’ and ‘4’, as shown in Figure 8a,
appropriately detected and classified the five valid comets with two false positives. Mean-
while, the pre-trained Faster R-CNN model with ResNet50 and augmented data for all
classes, as shown in Figure 8b, appropriately detected and classified three valid comets
with one false positive. On the other hand, the pre-trained Faster R-CNN model with
ResNet101 and augmented data for class ‘3’ and ‘4’, as shown in Figure 8c, appropriately
detected and classified two valid comets with one false positive. Moreover, the pre-trained
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Faster R-CNN model with ResNet101 and augmented data for all classes, as shown in
Figure 8d, appropriately detected and classified four valid comets with one false positive.
In addition, the confusion matrix of the classification task from each model trained with
the dataset augmentation strategy can be seen in Figure 9.
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R-CNN with ResNet101 Feature Extractor: class 3 and class 4 data were augmented.

Diagnostics 2022, 12, x FOR PEER REVIEW 13 of 19 
 

 

Augmented dataset 
for all classes 

  

Figure 8. Input Image, Ground Truth, and prediction results of the Pre-Trained Faster R-CNN with 
the dataset augmentation strategy. (a) Faster R-CNN with ResNet50 Feature Extractor: class 3 and 
class 4 data were augmented; (b) Faster R-CNN with ResNet50 Feature Extractor: all classes were 
augmented, (c) Faster R-CNN with ResNet101 Feature Extractor: non augmented dataset; (d) Faster 
R-CNN with ResNet101 Feature Extractor: class 3 and class 4 data were augmented. 

 
Figure 9. Confusion matrix comparison between 3 and 4 augmented vs. all augmented datasets. (a) 
ResNet50 Feature Extractor: 3 and 4 augmented; (b) ResNet50 Feature Extractor: all augmented da-
tasets; (c) ResNet101 Feature Extractor: 3 and 4 augmented; (d) ResNet101 Feature Extractor: all 
augmented datasets. 

Moreover, the evaluation metrics comparison is shown in Table 5. The pre-trained 
Faster R-CNN with ResNet 50 using augmented datasets for all classes (Faster R-CNN-
RestNet50-COCO-All Aug.) produced the best results for both the detection and classifi-
cation tasks. The performance of the Faster R-CNN with ResNet 50 using augmented da-
taset for class ‘3’ and ‘4’ was worse than the model without the augmented dataset. On 
the other hand, the performance of the Faster R-CNN with ResNet 101 using the aug-
mented datasets, both the augmented dataset for class ‘3’ and ‘4’ and the augmented da-
taset for all classes, produced better results than the model without the augmented da-
taset. From these results, we conclude that Faster R-CNN models with more convolution 
layers produce better results if they are trained with an augmented dataset. 

  

Figure 9. Confusion matrix comparison between 3 and 4 augmented vs. all augmented datasets.
(a) ResNet50 Feature Extractor: 3 and 4 augmented; (b) ResNet50 Feature Extractor: all augmented
datasets; (c) ResNet101 Feature Extractor: 3 and 4 augmented; (d) ResNet101 Feature Extractor: all
augmented datasets.

Moreover, the evaluation metrics comparison is shown in Table 5. The pre-trained
Faster R-CNN with ResNet 50 using augmented datasets for all classes (Faster R-CNN-
RestNet50-COCO-All Aug.) produced the best results for both the detection and classifica-
tion tasks. The performance of the Faster R-CNN with ResNet 50 using augmented dataset
for class ‘3’ and ‘4’ was worse than the model without the augmented dataset. On the
other hand, the performance of the Faster R-CNN with ResNet 101 using the augmented
datasets, both the augmented dataset for class ‘3’ and ‘4’ and the augmented dataset for all
classes, produced better results than the model without the augmented dataset. From these
results, we conclude that Faster R-CNN models with more convolution layers produce
better results if they are trained with an augmented dataset.
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Table 5. Comparison of the evaluation metrics between the non-augmented dataset and the aug-
mented dataset.

Detection Classification

Accuracy F1-Score Accuracy F1-Score

Faster R-CNN-ResNet50-COCO 95.49% 76.54% 62.99% 57.42%
Faster R-CNN-ResNet50-COCO-3&4 Aug. 95.00% 72.31% 55.19% 55.78%
Faster R-CNN-ResNet50-COCO-All Aug. 95.85% 78.50% 63.64% 58.03%

Faster R-CNN-ResNet101-COCO 94.51% 70.34% 52.60% 54.47%
Faster R-CNN-ResNet101-COCO-3&4 Aug. 94.45% 71.64% 62.34% 59.42%
Faster R-CNN-ResNet101-COCO-All Aug. 95.37% 75.23% 59.74% 57.95%

4.3. Faster R-CNN Models vs. OpenComet

In this section, we show the comparison results of an existing free comet assay analysis
tool, called OpenComet [9] to our proposed Faster R-CNN models. OpenComet uses
conventional segmentation methods for the comet detection task. Since OpenComet was
only developed for the comet detection task, we only compared the performance of the
detection task in this scenario.

Table 6 shows that the Faster R-CNN models which were fine-tuned with buccal
mucosa comet assay images dataset performed better compared to the OpenComet. The
result is reasonable since the OpenComet was calibrated more for comet assay images
obtained from cell cultures. When we tested the OpenComet on buccal mucosa comet
assay images, it produced many False Positives, reaching five times the amount produced
by the proposed Faster R-CNN models. Therefore, we can conclude that, compared to
conventional segmentation methods used in the OpenComet, machine learning-based
detection could perform better in differentiating between objects in a messy environment if
there are sufficient data to learn with.

Table 6. Comparison of the evaluation metrics between our Faster R-CNN models and OpenComet.

Accuracy F1-Score

Faster R-CNN-ResNet50 93.66% 62.24%
Faster R-CNN-ResNet50-COCO 95.49% 76.54%

Faster R-CNN-ResNet50-COCO-3&4 Aug. 95.00% 72.31%
Faster R-CNN-ResNet50-COCO-All Aug. 95.85% 78.50%

Faster R-CNN-ResNet101 N/A N/A
Faster R-CNN-ResNet101-COCO 94.51% 70.34%

Faster R-CNN-ResNet101-COCO-3&4 Aug. 94.45% 71.64%
Faster R-CNN-ResNet101-COCO-All Aug. 95.37% 75.23%

OpenComet [9] 76.52% 29.87%

Figure 10 shows an example of the comparison between the output from our proposed
model and the output from the OpenComet [9]. Here, we can see that our proposed model
appropriately detected three out of five valid comets with only one false positive. On the
other hand, even though the OpenComet appropriately detected four out of five valid
comets, the tool also detected 20 false positives. Therefore, we can conclude that our
proposed model is superior to the OpenComet since it can reduce the false positive rate in
the comet detection task.

4.4. Implementation of GamaComet

We implemented the proposed Faster R-CNN model as a web-based tool, GamaComet,
that can be accessed freely for academic purposes at https://bioinformatics.mipa.ugm.ac.
id/gamacomet/. We used the Faster R-CNN with ResNet50 model (which was previously
pre-trained on the COCO dataset and fine-tuned on the augmented comet assay dataset),
as it produced the best overall results in our experiments.

https://bioinformatics.mipa.ugm.ac.id/gamacomet/
https://bioinformatics.mipa.ugm.ac.id/gamacomet/
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Figure 10. (a) A ground truth image; (b) the output from our proposed model; (c) the output
from OpenComet.

The system was implemented using Django as a Python web framework, Nginx as
a web server, and Gunicorn as an interface between Nginx and the Python application.
The basic process of how the system works is shown in Figure 11. A registered user may
upload a comet assay image to the GamaComet via a web browser. Afterwards, comets in
the given comet assay image will be detected and classified using our model in the cloud
server. Finally, the GamaComet will give the detection and classification results to the user.
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5. Discussion
5.1. Downstream Analysis

Our GamaComet used the Faster R-CNN with ResNet50 model (which previously
pre-trained on the COCO dataset and fine-tuned on the augmented comet assay dataset),
as it produced the best overall results at our experiments. Based on the experiment results
as represented at Figure 9b, there were some comets with class 3 and class 4 detected
by GamaComet.

Table 7 represents the data of 24 patients involved for collecting buccal mucosa samples
to obtain the training and validation datasets of comet assay images. We conducted analysis
about the relation between the detected comets and the clinical data of patients. Surprisingly,
patients owning comet assay images that contained comets with class 3 and class 4 had a
smoking habit (patient number 19 to patient number 24). It can be interpreted that patients
with a smoking habit had more cells with high levels of DNA damage (comet with class 3
and class 4), meaning that the downstream analysis could be well conducted based on the
detection and classification results from GamaComet.
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Table 7. Details of the comet class distribution in the testing dataset.

PatientNo Sample ID Collection Date Sex Age (Years) Smoking Habit

1 07092018_1 7 September 2018 Female 24 No
2 07092018_2 7 September 2018 Female 22 No
3 07092018_3 7 September 2018 Female 22 No
4 07092018_4 7 September 2018 Female 27 No
5 07092018_5 7 September 2018 Female 21 No
6 07092018_6 7 September 2018 Male 22 No
7 07092018_7 7 September 2018 Female 22 No
8 13092018_1 13 September 2018 Female 23 No
9 13092018_2 13 September 2018 Female 22 No

10 13092018_3 13 September 2018 Female 21 No
11 13092018_4 13 September 2018 Female 22 No
12 13092018_5 13 September 2018 Female 22 No
13 13092018_6 13 September 2018 Female 22 No
14 13092018_7 13 September 2018 Female 24 No
15 13092018_8 13 September 2018 Female 25 No
16 14092018_1 14 September 2018 Male 18 No
17 14092018_2 14 September 2018 Female 25 No
18 14092018_3 14 September 2018 Female 23 No
19 14092018_4 14 September 2018 Male 23 Yes
20 14092018_5 14 September 2018 Male 24 Yes
21 14092018_6 14 September 2018 Male 25 Yes
22 14092018_7 14 September 2018 Male 24 Yes
23 14092018_8 14 September 2018 Male 20 Yes
24 14092018_9 14 September 2018 Male 23 Yes

5.2. Performance of GamaComet for Another Dataset

In order to demonstrate the generalization performance of our GamaComet, we
conducted an experiment for another dataset (testing dataset). The testing dataset was
obtained from buccal mucosa samples collected after the radiation exposure from a total
of seven patients in 2016. We had already obtained the ethic committee approval with
number 00679/KKEP/FKG-UGM/EC/2016 related to the sample collection process. The
testing dataset was obtained using different optilab and different modified protocols with
the training and validation dataset. Therefore, the comet assay images from the testing
dataset had slightly different characteristics from the training and validation dataset. The
testing dataset contained more noises and greener background, represented in Figure 12.
Using the testing dataset with different characteristics could demonstrate the general ability
of GamaComet.
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The testing dataset contained 43 comet assay’s microscope slide images, where each
image consisted of some valid comets. The class distribution of the comet assay images in
the testing dataset is listed in Table 8. We acquired 73 comets from 43 comet assay images.

Table 8. Details of the comet class distribution from the testing dataset.

Class Testing Dataset
(43 Images)

0 12 comets
1 15 comets
2 11 comets
3 25 comets
4 10 comets

Total 73 comets

GamaComet was run for the testing data. Table 9 represents the accuracy of Gama-
Comet for the testing data. We also compared the performance of GamaComet with
OpenComet. Since Open-Comet is only developed for the comet detection task, we only
compared the performance of the detection task. GamaComet outperformed OpenComet
for the detection task. GamaComet also had a good enough accuracy for the classification
task. Although GamaComet had a good performance for the testing dataset both for the
detection and classification task, the performance for the testing dataset was slightly less
than for the validation dataset, as represented in Table 6. This might have been because the
testing dataset had slightly different characteristics from the training and validation dataset.
Overall, GamaComet had a good performance for the validation and testing datasets.

Table 9. Accuracy comparison between GamaComet and OpenComet for the testing dataset.

Accuracy

Detection Classification

GamaComet 81.34% 66.67%
OpenComet [9] 11.5% -

6. Conclusions and Future Work

In this work, we presented the implementation of the Faster R-CNN model for de-
tecting and classifying comets from buccal mucosa swabs. In our experiments, transfer
learning and pre-training helped in training a deep learning model using a small dataset.
Not only did it produce an overall better result, but it also requiresd smaller numbers of
steps to reach convergence in training. We also concluded that the data augmentation
also improved the overall performance of the model, although not significantly. We im-
plemented the proposed Faster R-CNN model, GamaComet, that can be accessed freely
for academic purposes at https://bioinformatics.mipa.ugm.ac.id/gamacomet/. We also
conducted experiments for the testing dataset with slightly different characteristics from
the training and validation datasets. Overall, GamaComet had a good performance for the
validation and testing datasets both for the detection and classification task. The detection
performance of GamaComet clearly performed better compared to an existing free comet
assay detection tool, OpenComet. Downstream analysis could be well conducted based
on the detection and classification results from GamaComet. The analysis showed that
patients owning comet assay images containing comets with class 3 and class 4 had a
smoking habit, meaning that patients with a smoking habit had more cells with high levels
of DNA damage.

Although GamaComet had a good performance, the performance for the classification
task could still be improved. The classification accuracy of GamaComet for both the
validation and testing dataset was less than 70%. Therefore, this will be the next focus for
the research development of GamaComet.

https://bioinformatics.mipa.ugm.ac.id/gamacomet/
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For our future works, we intend to improve the performance of GamaComet, especially
for the classification task, by increasing the size of our comet assay dataset, as more data
clearly improve the performance of a deep learning model. Besides, we also intend to try
data augmentation methods that we have not explored yet, such as image mixing or other
geometric transformations, adversarial training, and meta-learning.
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