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Abstract: The application of artificial intelligence (AI) algorithms in medicine could support diag-
nostic and prognostic analyses and decision making. In the field of dermatopathology, there have
been various papers that have trained algorithms for the recognition of different types of skin lesions,
such as basal cell carcinoma (BCC), seborrheic keratosis (SK) and dermal nevus. Furthermore, the
difficulty in diagnosing particular melanocytic lesions, such as Spitz nevi and melanoma, considering
the grade of interobserver variability among dermatopathologists, has led to an objective difficulty in
training machine learning (ML) algorithms to a totally reliable, reportable and repeatable level. In
this work we tried to train a fast random forest (FRF) algorithm, typically used for the classification
of clusters of pixels in images, to highlight anomalous areas classified as melanoma “defects” fol-
lowing the Allen–Spitz criteria. The adopted image vision diagnostic protocol was structured in the
following steps: image acquisition by selecting the best zoom level of the microscope; preliminary
selection of an image with a good resolution; preliminary identification of macro-areas of defect
in each preselected image; identification of a class of a defect in the selected macro-area; training
of the supervised machine learning FRF algorithm by selecting the micro-defect in the macro-area;
execution of the FRF algorithm to find an image vision performance indicator; and analysis of the
output images by enhancing lesion defects. The precision achieved by the FRF algorithm proved
to be appropriate with a discordance of 17% with respect to the dermatopathologist, allowing this
type of supervised algorithm to be nominated as a help to the dermatopathologist in the challenging
diagnosis of malignant melanoma.

Keywords: artificial intelligence; AI; malignant melanoma; skin; software; algorithms; fast random
forest (FRF)
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1. Introduction

After the foundations of artificial intelligence (AI) were established, as postulated by
the mathematician Alan Mathison Turing [1], the study and the analysis of AI underwent
an important halt under the weight of expectations until the end of the last century; from
these years, indeed, a new wave of technological development allowed the functional
enhancement of computers, which became more and more powerful and complex [2]. Even
today it is not clear whether a machine (computer) could be able to think, but certainly
the development of increasingly complex systems, such as convolutional neural networks
(CNNs) [3], has allowed a rapid increase in performance not only in fields of computer
science, but also in different fields, such as medical, pathological and even subclassified
dermatopathological fields [4,5].

The first attempts based on convolutional neural networks (CNNs) have already
proven to be up to expectations, but the objective difficulty in reproducibility of the criteria
for labeling a lesion as malignant or benign has also been reflected in the training of
AI applied to differential diagnostics of atypical pigmented lesions. [3,4]. Indeed, it is
not always easy to diagnose melanoma by analyzing the images with a “naked eye”
approach. The problem has been known for some time and is classically defined as the
“gray zone” of dermatopathology: in fact, beyond the extremes of the spectrum of benign
and malignant, there is a fairly large number of atypical pigmented lesions that it is
not easy to define “tout-court“ as having benign or malignant biological behavior. This
uncertainty is the consequence of the fact that the criteria normally used to define a lesion
as malignant melanoma become conflicting and blurred in certain situations; for example,
nevi with severe dysplasia, Spitz nevi with dysplastic aspects (so-called SPARK nevus)
or melanocytic lesions with an uncertain potential for malignancy such as MELTUMP or
SAMPUS. The loss of criteria defined and recognized by all, as well as the interpretative
subjectivity, has repercussions on the reduction or, sometimes, loss of agreement between
dermatopathologists, and also (as some studies have highlighted) even on intraobserver
agreement over time [2–4].

In this work we tried to train the proposed fast random forest (FRF) algorithm to be
able to support the specialist to highlight automatically the “anomalous pixel regions” and
to estimate a possible risk by quantifying the percentage of these regions with atypical
morphological features starting from routine histopathological images (digital pathology).

2. Materials and Methods
2.1. Data Acquisition

For training, validation and testing, we used a dataset of 125 photomicrographs of
63 patients suffering from malignant melanoma, originally taken at 1280 × 1080 pixels
(SONY® Sensor IMX185, Tokyo, Japan) at 10× magnification, obtained from blocks of ma-
terial fixed in formaldehyde and embedded in paraffin (FFPE) from 1 January 2020 to 1 Jan-
uary 2021. For each patient, demographic and clinical characteristics, including the Breslow
thickness and other histopathological features, were recorded for routine clinical practice.
Informed consent was obtained from all patients involved and the study was approved
by the local ethical committee. In total, 63 specimens (mean length ± SD 1.64 ± 0.93 cm)
were processed. For all specimens, hematoxylin and eosin (H&E) staining was used for
histopathological analysis and, in some cases, ancillary immunohistochemical techniques
were performed for a final correct diagnosis. For each of them, each individual case
was analyzed and a more representative slide was chosen by two dermatopathologists
with a lot of experience in skin histopathology (G.C. and A.C.). After collecting all the
slides, we proceeded to identify at least 5 potential defects (hotspots) normally used in
routine dermatopathological diagnostics to differentiate a dysplastic nevus from a malig-
nant melanoma. The defects analyzed were divided into architectural (disposition of the
single and aggregates of melanocytes, symmetry/asymmetry of the lesion in question)
and cytological (nuclear atypia, pagetoid spreading of the melanocyte, possible necrosis)
groups following the Spitz–Allen criteria [6] (Table 1).
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Table 1. Summary of these criteria.

Dysplastic Nevus Malignant Melanoma

Architectural criteria (mandatory, major)

Lentiginous or contiguous melanocytic
hyperplasia

Poor circumscription of the intraepidermal
melanocytic component of the lesion

Focal melanocytic atypia

Increased number of melanocytes, solitary and
in nests, within and above the epidermal basal
cell layer and within adnexal epithelia
(pagetoid spreading)

Marked variation in size and shape of the
melanocytic nests

Absence of maturation of melanocytes with
descent into the dermis

Melanocytes in mitosis

Architectural criteria (minor, at least 2)

“Shoulder phenomenon” Melanocytes with nuclear atypia

Fusion of epithelial cones Necrosis or degeneration of melanocytes

Subepidermal concentric lamellar fibrosis

2.2. Fast Random Forest (FRF) Image Classification

The artificial intelligence image processing algorithm used to classify and to enhance
anomalies contained in the microscope image is the fast random forest (FRF) algorithm. The
algorithm was designed by using a Java-based script framework. The learning process of the
algorithm is based on a preliminary classification of clusters of pixels of the same image [5]
including possible melanoma areas: the preliminary identification of melanoma morpho-
logical features represents the labeling approach typical of machine learning-supervised
algorithms. The FRF testing provides as output the processed image with color-enhanced
melanoma pixel clusters (each class selected in the learning step is represented by a color),
probabilistic maps (high probability highlighted with white to identify an anomaly in a
specified image region) and algorithm performance indicators (precision, recall, and re-
ceiver operating characteristic (ROC) curves [5]). The FRF algorithm executes an ensemble
of decision trees able to classify clusters of pixels constituting an image with good accuracy,
low computational cost and performing a multiclass segmentation [7–12]. The classification
process is addressed by labeling clusters of pixels defined by the same features (clusters of
gray pixel intensities). At the beginning, decision trees randomly select clusters of pixels
by splitting the features at each node. The final classification of image areas are a result of
the average classification of all the trees constructed during the algorithm iterations. The
method is sketched in Figure 1, where it is possible to distinguish the following phases:

• Different clusters of pixels (features) are used for the training model;
• A marked region is distinguished as the features to find in the same image to process;
• The RF is executed by finding similar features in the same image (similar features of

similar clusters having a similar gray pixel intensity distribution).

The training model can be constructed by setting the following tools or procedures
(algorithm parameters):

• Gaussian blur filtering, obtaining a blurred image to process;
• Sobel filtering, which is able to approximate the image by a gradient of the intensity;
• Hessian filtering, defined as:

H =

(
h1 h2
h3 h4

)
(1)
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where h1, h2, h3 and h4 are the elements of the Hessian matrix formed by the second-order
partial derivatives stating the variation of the intensity of each pixel (derivative at the pixel
point) in the x, y and xy direction (plane directions of the 2D image).
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Figure 1. Image processing procedure based on pixel feature training and random forest classifier.

Defined by a Trace, a determinant (Det), a first eigenvalue (Fe), a second eigenvalue (Se),
an orientation (Or; angle of the maximal second derivative), a Gamma, and a Square Gamma:

Trace = h1 + h4 (2)

Det =
√

h1
2 + h2h3 + h4

2 (3)

Fe =
h1 + h4

2
+

√
4h22 + (h1 − h4)

2

2
(4)

Se =
h1 + h4

2
−

√
4h22 + (h1 − h4)

2

2
(5)

Or =
1
2

arccos(4h2
2 + (h1 − h4)

2) (6)

Gamma = t4(h1 − h4)
2((h1 − h4)

2 + 4h2
2) with t = 13/4 (7)

Square Gamma = t2((h1 − h4)
2 + 4h2

2) with t = 13/4 (8)

• Difference of Gaussian functions;
• Membrane projections due to the rotation of the original image kernel;
• Main pixel parameters (mean, minimum, maximum, etc.);
• Anisotropic diffusion filtering preserving sharp edges;
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• Bilateral filtering preserving edges;
• Lipschitz filtering (preserving edges and decreasing noise);
• Gabor filtering (mainly adopted for texture analysis);
• Derivative filtering estimating high order derivatives;
• Structured filtering estimating the eigenvalues;
• Shifting of the image in different directions.

The optimized hyperparameters and filter properties applied for the image FRF pro-
cessing (feature training) are: the Gaussian blur filter, Hessian matrix filter, membrane
projections, membrane thickness equal to 1, membrane patch size equal to 19, minimum
sigma equal to 1, and maximum sigma equal to 16.

In the proposed approach, the same image is adopted both for the training and for
the testing: each image is converted into a grayscale image, and in the same image [12] the
classes training the model are identified (classes of similar features including those of the
Spitz nevi).

Different algorithms can be applied to calculate automatically the different areas [13].
In order to enhance classified clusters in the probabilistic image, a threshold filtering adjust-
ing the intensities of the output grayscale image was adopted (see example of Appendix A):
this setting is important to estimate with good precision the areas enclosing dermatological
defects. The testing images were preliminary selected, taking into account images with
certain defects in order to train the FRF algorithm efficiently.

The adopted method is summarized by the following steps:

- A preliminary selection of images focusing the attention on the characteristics of
dysplastic nevi and malignant melanoma (validation of the training model focusing
on this classification);

- Performing of a training of the selected images (FRF training model based on the classi-
fication of anomalous image areas embedding features of dysplastic nevi and MM, and
the identification of other no-risk areas as structures of clusters of grayscale pixels);

- Setting the optimization of the FRF algorithm parameters for the best identification of
classes of the testing dataset;

- Testing the execution of the FRF algorithm’s detection and estimation of anomalous
areas by applying, after the analysis, image threshold filters (for the calculus, all the
images have the same dimension of 1000 pixels × 2000 pixels);

- Verification of the algorithm performance by estimating its precision.

3. Results

For five pixel clusters of the same dimensions (closest to the particular anomaly), a
number of about 300 instances (computational cycles) occurs to achieve the maximum
precision (equal to 1), with a computational cost of about 2 min using a processor, the
Intel(R) Core(TM) i5-7200U CPU, 2.71 GHz. The minimum recall performance parameter
(near to 0) is achieved in about 392 instances. The ROC curve (representing the true positive
rate versus the false positive rate in the plane) is matched with the ideal curve of a perfect
classifier (Figure 2). The performance indicators confirm the correct setting of the FRF
hyperparameters.

Appendix B illustrates the FRF probabilistic images of some of the classified areas.
The algorithm performance is estimated by the precision parameter representing the metric
of the FRF score (probability of algorithm error). A maximum precision of 1 is achieved
after about 250 iteration steps (see Figure 2).
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Figure 2. This figure illustrates the error metric (precision parameter [5]) of the adopted FRF algorithm
versus iteration number (instance number) by proving that the final results are characterized by the
maximum precision.

An example of image classification is illustrated in Figure 3 where C1, C3 and C4 are
the four classes used to construct the learning model (areas having similar characteristics).
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Figure 3. Example of analysis and selection of defects (such as architectural and cytological atypia,
pagetoid spreading, possible ulceration) in the macro-area of an image of malignant melanoma. Note
the different colors of the circles/ellipses used to subclassify the anomalies (defects).

In Tables 2 and 3 the FRF enhancement of possible classified defects are shown by
estimating the percentage coverage in 1 mm × 2 mm images.
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Table 2. Example of analysis of two micrographs of malignant melanoma in which some constituent
elements of the Allen–Spitz criteria have been analyzed, such as: symmetrical or asymmetrical lesion,
clustering of melanocytes in nests or presence of single melanocyte, and eventual pagetoid spreading.

Original Image Defect Type (Name) Defect Cluster (Enhanced
Probability Image)

Percentage Presence
on the Whole Image Extension [mm2]

IMG00131 EE //
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Analyzing the discrepancy between the performance of the FRF algorithm and the
diagnosis by the dermatopathologist, a value of 17% was found, which is slightly lower
than that described in the interobserver variability (about 25–26%).

4. Discussion

Historically, the histopathological diagnosis of malignant melanoma has always fluc-
tuated from rather simple and easy to classify cases up to very complex and difficult to
interpret cases [14], considering that, in the context of human pathology, MM is defined as
the “great mime” [15]. For example, in a recent 2017 paper, Elmore G.J. et al. [15] analyzed
the diagnostic results of 187 practicing pathologists in 10 states by comparing them with
each other and with a consensus diagnosis reached by a group of three experienced der-
matopathologists. The authors asked the 187 pathologists to interpret the same skin lesions
after a certain time range (8 months) in order to have an estimate of the intraobserver read-
ability. The degree of accuracy was very high (about 92%) in the case of diagnosing slightly
atypical pigmented lesions and reached about 72% in the case of invasive melanomas.
Conversely, diagnostic accuracy became much lower in the case of lesions in the spectrum
between these two extremes. For example, fewer than half of diagnoses agreed with expert
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consensus for cases classified as severely atypical lesions, melanoma in situ, or early stage
invasive melanoma. Similarly, over time, the diagnoses of the so-called “gray zone” of
dermatopathology lost intraobserver reproducibility [16].

In this context, the development of artificial intelligence methods applied to pathologi-
cal anatomy [17] had the merit of offering a possibility to understand if the evaluation of a
melanocytic lesion that represented a malignant melanoma could be made more “objective”
compared to lesions not endowed with the potential for malignancy “tout-court”.

This work is based on the definition of the steps to follow to classify malignant
melanoma defects. A metric estimating the precision of the applied FRF algorithm is
applied to estimate the error of the classification. The low computational cost related the
image processing and the use of the same image for the algorithm training allow us to
apply the FRF algorithm to new images without constructing a training model based on
historical images. In this way, we used a set of images of lesions previously diagnosed by
two board-certified dermatopathologists to understand how much the FRF algorithm was
able to assist the pathologist in the decision-making process.

The precision achieved by the FRF algorithm proved to be appropriate, allowing
this type of supervised algorithm to be nominated as a help in the dermatopathological
diagnosis of MM. In particular, analyzing the discrepancy between the performance of the
FRF algorithm and the diagnosis by the dermatopathologist, a value of 17% was found,
which is slightly lower than that described in the interobserver variability (about 25–26%).
These data are similar to that reported by Hekler et al. [18] who, in their paper, trained a
CNN according to a binary model of classification of nevi and melanoma, and reported
a discrepancy value between the trained CNN and dermatopathologist equal to 18% for
melanoma, 20% for nevi and 19% overall. On the other hand, it is important to underline
that any AI algorithm is trained on diagnostic criteria chosen “a priori” by the pathologist
and, therefore, there can similarly be false-positive misdiagnoses: this is the case with
Spitz nevi. Indeed, Hart S.N. et al. [19] trained a CNN for binary classification between
conventional nevi and Spitz nevi. Their algorithm was tested on WSIs of Spitz nevi and
conventional nevi, producing a classification accuracy of 92% overall, based on a sensitivity
of 85% and specificity of 99%. In a second phase of their study, the authors demonstrated
how important it was to improve the diagnostic performance values of the AI algorithm
to allow a dermatopathologist to preselect the areas of interest of the entire WSI, as in the
absence of this, the validation accuracy was unacceptable at only 52%.

All these data agree in allowing us to consider the inclusion of the FRF algorithm in
the normal workflow of histopathological diagnostics. The framework of the FRF algorithm
used in this work is based on Weka [20] libraries implemented in the Java language.

The main motivation is in the novel approach adopted for the algorithm training.
Other studies use a traditional approach based on the discrimination of the training model
and of the testing model, which are performed by adopting different images [21]. In the
proposed approach, it adopts the same image both for the training and for the testing: each
image is converted into grayscale images, and in the same image [12] the classes training the
model are identified (classes of similar features, including those of the Spitz nevi). In this
way the doctor can circle the areas (classes) without having a historical dataset of images.
The algorithm versatility gives an idea of the anomalous distribution (enhancing anomalous
groups of pixels) of malignant areas quickly by estimating the covering percentage.

Furthermore, from a clinical point of view, there have already been numerous papers
published in the literature that have attempted to correlate, specifically, dermoscopic
characteristics with clinical diagnosis. A very interesting contribution by Argenziano
et al. [22] in 2003 evaluated the sensitivity, specificity and, therefore, diagnostic accuracy of
criteria commonly used for the diagnosis of MM. In the paper, 108 melanocytic lesions were
evaluated by 40 experienced dermoscopists in an attempt to evaluate the interobserver and
intraobserver agreement by using four algorithms such as the pattern analysis, ABCD rule,
Menzies method and 7-point checklist. Of all these, there was a good agreement except for
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with the dermoscopic criteria, demonstrating how important it is also in dermoscopy to
adopt more “accurate” parameters.

Limitations

It is important to note that in our paper we used exclusively histopathological (mor-
phological) criteria and, therefore, were subject to limitations including the different sizes
of cancer cells, a concept intrinsic to tumor heterogeneity [23].

5. Conclusions

The FRF images were processed by following a specific image diagnostic protocol,
oriented on reading and algorithm error minimization. An important tool for melanoma
diagnosis is the probability image estimated by the processed FRF output image. The
probability image is useful to better discriminate information about ambiguous lesions. A
single probability image refers to a particular class of “defect” and enhances, by the white
color, the defect distribution in the whole analyzed image. By knowing the dimension of the
acquired microscope image, it is also possible to estimate the defect distribution percentage.
All the adopted approaches are suitable to create a specific image vision platform for
telemedicine digital pathology.

Author Contributions: Conceptualization, G.C., A.C., T.L., P.P., S.C., G.I., L.R., E.M. and A.V.;
methodology, G.C., L.L., E.C., E.N. and A.M.; software, A.M.; validation, T.L., S.C., G.I., L.R. and E.M.;
formal analysis, G.C.; investigation, G.C., A.C., T.L., S.C., G.I., L.R., E.M. and A.V.; resources, G.C.;
data curation, G.C., A.C., T.L., S.C., G.I., L.R. and E.M.; writing—original draft preparation, G.C. and
A.M.; writing—review and editing, G.C., A.C., T.L., S.C., G.G., G.I., L.R., E.M. and A.V.; visualization,
G.C.; supervision, A.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Approved by CITEL (Dipartimento di Scienze Biomediche e
Oncologia Umana—Dimo U.O.C. Medicina Interna “G. Baccelli” Policlinico di Bari, number 5732).

Informed Consent Statement: Informed consent was recorded by all patients involved in the study.

Data Availability Statement: Not applicable.

Acknowledgments: In memory of Antonietta Cimmino (A.C.).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The enhancement of the classified areas by the FRF algorithm can be performed
by adopting different image processing filters. In Figure A1 different image filtering
approaches enhancing classes and the probabilistic image are shown. The probabilistic
image refers to a particular class related to a defect.
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Figure A1. (a) Original image. (b,c) Images with all detected classes defined by different colors. (d,e)
Probabilistic image and (f) related 3D reconstruction.

Figure A1 indicates possible alternative color schemes to highlight dangerous areas:
the red color of the classified output image (b, c), the white color of the probabilistic images
(d) and the red color of the probabilistic image in a 2D (f) and 3D scheme (g).

Appendix B

The probabilistic images are the output of the FRF algorithm. In Figure A2 some pixel
cluster classifications of the original image of Figure 3 are shown.

Figure A2 is an example that represents different classes, where each one is a proba-
bilistic image with the white color representing the higher probability value to find specific
class features. Alternatively, all classes are identified in the same image by different colors.
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