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Abstract: Teeth detection and tooth segmentation are essential for processing Cone Beam Computed
Tomography (CBCT) images. The accuracy decides the credibility of the subsequent applications,
such as diagnosis, treatment plans in clinical practice or other research that is dependent on automatic
dental identification. The main problems are complex noises and metal artefacts which would
affect the accuracy of teeth detection and segmentation with traditional algorithms. In this study,
we proposed a teeth-detection method to avoid the problems above and to accelerate the operation
speed. In our method, (1) a Convolutional Neural Network (CNN) was employed to classify layer
classes; (2) images were chosen to perform Region of Interest (ROI) cropping; (3) in ROI regions,
we used a YOLO v3 and multi-level combined teeth detection method to locate each tooth bounding
box; (4) we obtained tooth bounding boxes on all layers. We compared our method with a Faster
R-CNN method which was commonly used in previous studies. The training and prediction time
were shortened by 80% and 62% in our method, respectively. The Object Inclusion Ratio (OIR) metric
of our method was 96.27%, while for the Faster R-CNN method, it was 91.40%. When testing images
with severe noise or with different missing teeth, our method promises a stable result. In conclusion,
our method of teeth detection on dental CBCT is practical and reliable for its high prediction speed
and robust detection.

Keywords: teeth detection; YOLO v3; cone beam computed tomography; convolutional neural
network; metal artefacts

1. Introduction

In contemporary dentistry, digital technologies such as CBCT, intra-oral 3D scan, 3D
printing, and personalized treatment planning play an important role in both research and
practice. These technologies hold promise for more predictable, objective, and effective
treatment while reducing iatrogenic complications. In the past, diagnostic information was
collected through clinical interviews, plaster models, and chair-side observations. The in-
formation was then interpreted by experts to derive a treatment plan for implementation,
which depended upon doctors’ experience. Today, the new technologies can replace human
eyes and hands [1]. By using machine learning to augment the image, diagnosis can be
more accurate and objective, and treatments can be personalized. A computer does not get
tired from grueling tasks, and it can take in a great deal of data and process the information
incredibly quickly. In this study, the computer takes in a set of different CBCT images. Then,
once the computer is given data of experts’ diagnoses, it can detect and classify different
teeth in the human jawbone. Thus, given a new patient’s CBCT images, the machine can
easily match it with patterns that were found in the training set of expert diagnostics.
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CBCT examination has been widely used in dental practice. It offers highly accurate
volumetric data on jaw bones and teeth, with relatively low radiation doses and cost [2].
CBCT plays an important role in auxiliary diagnosis of oral diseases. Several studies have
compared the diagnostic accuracy of CBCT with conventional 2D radiography [3–5]. CBCT
has been shown to significantly increase the detection rate of tooth root canal spaces and
periapical areas for the evaluation of dental infection and pathology compared with conven-
tional imaging [6]. It also suggests that CBCT enhances the recognition of periapical bone
lesions and offers improved diagnostic accuracy, treatment planning, and thus, prognostic
outcomes. Amongst the most frequent applications are CBCT-guided implant surgery [7],
CBCT-guided endodontics and apical surgeries [8], CBCT-based planning and fabrication
of donor teeth replicas, surgical guides for successful tooth auto transplantation (TAT) [9],
digital orthodontic applications [10], and virtual orthognathic surgery planning [11]. All of
the above applications rely heavily on the accuracy of image processing to ensure trust-
worthy pre-op treatment planning. At present, computer-aid image analysis technology is
the main research direction for medical image processing in three aspects: classification,
detection, and segmentation.

The existing CT computer-aid software can perform simple image processing tasks
such as scaling, cropping and threshold segmentation, but they can hardly provide the
location and classification information of each tooth automatically [12]. Tooth location
and classification information is usually important for tooth segmentation, making it more
accurate [13]. M. P. Muresan’s research found an adherent edge of a tooth on CT can cause
inaccurate tooth segmentation, and a detection process was introduced to solve the problem,
which boxes teeth into different bounding boxes with only one tooth inside per box [14].
In this case, a teeth detection step is usually necessary for most tooth segmentation tasks.
However, this step is challenging for traditional methods, so CNN based detection methods
are better candidates for teeth detection tasks. Our goal is to build a system that receives
a set of CBCT images and carries out auto layer classification on z-axis and teeth detection.
For each tooth we have a tooth bounding box, a classification label, and several layer labels
(indicate crown, root, etc.). Compared with other methods, our approach makes it easier
for humans to perform labeling and has a high speed for training and prediction.

2. Related Works

In the field of dental informatics there are many approaches developed for dental diag-
nosis using different types of radiographic images such as bitewing, periapical, panoramic
images and CBCT images. Accordingly, different scholars have made different explorations
of teeth detection and classification with different data formats. Some methods are based
on traditional feature extraction methods such as the contour detection method [15], level
set method [16] and graph-based method [17,18] which calculated the similarity of different
images, which include teeth for person identification. Traditional features, including region
and contour information of teeth [19], the Fourier descriptors of teeth contours [20], and
multiple criteria such as area/perimeter ratio and width/height ratio [21], were gradually
applied to teeth detection in forms of dental bitewing and periapical X-rays. These methods
use hand-designed features which require less labeling efforts, but the traditional feature
extractors can be easily influenced by the variance in X-rays.

In the last few years, the popular CNNs such as VGG16, Resnet and Densenet, which
have achieved great success in natural image applications, have realized many clinically
significant applications in medical images. Miki et al. [22] investigated the application
of a deep convolutional neural network (DCNN) of AlexNet network architecture for
classifying tooth types on dental CBCT images. Zhang et al. [23] proposed a special label
tree for teeth detection in dental periapical X-rays before numbering the teeth according to
some rules. With the emergence of better CNN architectures, some studies [24–26] focus
on the combination of Faster RCNN [27] network and rule-based modules for the detection
and refinement of teeth sequence. Zhang et al. [28] applied a special label construction
technique to decompose the teeth classification task and used a multi-task CNN to classify
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the teeth positions with a proposal correlation module, which utilizes the information
between teeth positions. These methods have achieved good performance in their tasks.
However, most methods are not designed for dental CBCT images, and their applica-
tions are restricted to clinical practice due to the limitations of computing hardware and
the inefficiency of algorithm performance.

To improve the robustness and effectiveness of teeth detection and classification, this
paper proposes a two-stage teeth detection procedure composed of a teeth classification
module based on a redesigned mini-VGG network and a teeth detection module based
on YOLO v3 network. In order to leverage the prior spatial knowledge in CBCT im-
ages, we use YOLO v3 network to detect teeth hierarchically with auxiliary procession of
the proportion-based division. The experimental results show that our two-stage frame-
work achieves equivalently good precision of teeth recognition compared to prior research,
with a significant increase in speed and huge moderation for computing resources.

3. Dataset and Relevant Knowledge

The CBCT (NewTom, Italy) used in this study offered a cylindrical volume of re-
construction up to 15 × 15 cm with a 16-bit gray density and 0.3 mm voxel size under
the setting of 110 kV tube voltage and 3.6 s exposure time.

All acquired data were saved and exported in Digital Imaging and Communications
in Medicine(DICOM) format. A rapid review by the ethics committee was adopted for
exemption from informed consent and all the data used with de-privacy processing so that
the privacy of patients and the confidentiality of identity information are guaranteed.

A total of 25 dental CBCT scans were used in this study. Twenty CBCT scans were
randomly collected for dentitions of minor defect (no more than two missing teeth) with no
continuous missing teeth. Among these CBCT scans were 10 scans with no wisdom teeth,
6 scans with one missing tooth, and 1 scan with two separate missing teeth. The patients
were aged from 20 to 52 years. Another five scans were used for one special case study,
which will be discussed in Part 6 for situations of continuous missing teeth and severe metal
artefacts. Patients were aged from 71 to 77 years. The training samples are different slices
from different patients. The original intention of our study is to enhance the 2D images of
CBCT scan before 3D reconstruction so that we will be able to perform segmentation of
teeth in our further study from the beginning of image processing.

To identify every tooth with a distinct label, the Federation Dentaire International
system, FDI tooth numbering system was used (Figure 1a).

(a) (b)
Figure 1. Definition of tooth number and tooth blocks in this research. (a) FDI tooth numbering
system; (b) 5 blocks of teeth for detection.
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In this study, the dental arch was divided into five blocks in Figure 1b based on:

1. The incisors: teeth 22, 21, 11, and 12 of the upper jaw or teeth 32, 31, 41, and 42 of the
lower jaw;

2. The right canines and premolars: teeth 13, 14, and 15 of the upper jaw or teeth 43, 44,
and 45 of the lower jaw;

3. The left canines and premolars: teeth 23, 24, and 25 of the upper jaw or teeth 33, 34,
and 35 of the lower jaw;

4. The right molars: teeth 16, 17, and 18 of the upper jaw or teeth 46, 47, and 48 of the
lower jaw;

5. The left molars: teeth 26, 27, and 28 of the upper jaw or teeth 36, 37, and 38 of the
lower jaw.

This kind of division is the best one during our experiments. If blocks are too big, teeth
belonging to other blocks are often included in the box. If the blocks are too small (even one
tooth per block), the detector can not detect blocks well when some teeth are missing. This
kind of division is also based on the layout of human teeth. To train the detector, doctors
are required to label rectangle boxes bounding these blocks with the software labelImg.

4. Methodology

The whole detection networks are organized as Figure 2. First, we use a classification
network to perform pre-processing, which divides a set of CBCT images into different
layer classes. In the second stage, an object detection network extracts the main area (ROI)
then predicts the bounding box (we call it the detected bounding box) of blocks of teeth.
With proportion-based division, we obtain the tooth bounding box and finish the teeth
detection procedure.

Figure 2. Whole detection network. In the pre-processing part on the left, the input CBCT images are
divided into 5 layer classes. Selected images from 2 layers are input into detection part. After multi-
scale detection and proportion-based division we get tooth bounding boxes.

4.1. Pre-Processing

In this stage, we input a set of CBCT images decoded from dicom files. Then, each
image passes through the CNN network and a switch in Figure 3. The output are im-
ages which have been divided into five classes. (Lower no-tooth area, lower crown area,
overlapping area, upper crown area, and upper no-tooth area).
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Figure 3. Pre-processing network structure. The input 128 × 128 × 1 gray image passes through our
mini-VGG network and gets the class label, and an anti-noise switch determines its layer label.

Previous studies have proved CNN networks such as AlexNet a good example to
which to apply tooth classification, while our first task is also dividing CBCT tooth lay-
ers into different classes [22]. The output channel has three classes (corresponding to
no-tooth area, crown area, and overlapping area). The hyperparameters are set as learn-
ing rate 1× 10−5, batch size 32, exit at epoch 50 or when validation accuracy stabilizes
for 10 epochs, input image size 128 × 128 × 1. The training platform contains a Nvidia
RTX 3080Ti 8G. We tested popular models: AlexNet, VGG-16 and ResNet 50. The result
shows that in this CBCT layer classification task, VGG-16 performs the best with the least
overfitting phenomenon.

According to our task, we redesigned a mini-VGG model based on VGG
in Figure 3. After the same experiment above, our mini-VGG model showed similar
performance as VGG-16, while the training speed improved. This model receives a gray
image with 128 × 128 size. The network uses random initialized weight; the loss function
is a cross-entropy function for a common classification network [29]. The hyperparameters
are the same as above. In the output stage, we extend three classes into five classes (illus-
trated above). The theory behind this is that we assume CBCT is scanned from bottom to
top, so class labels change in order, e.g., when we observe the class label change from no
tooth to crown, it means the layer label should change from lower no-tooth area to lower
crown area.

Another problem in practice is misclassification. With a classification accuracy higher
than 95%, there are still chances that mistakes will occur. Once a mistake triggers a class
label change, the current layer label will be switched too early. To handle this, we use
an anti-noise switch algorithm: when a layer’s class label changes to a new one, only if two
or more following layers continuously hold the same new class label, the current layer label
can switch to another state. With 95% accuracy, the probability of two continuous mistakes
occurring is 0.25%, whereas for three continuous mistakes occurring it is 0.0125%, which is
enough for enhance accuracy.

4.2. Teeth Detection

In this stage, we apply teeth detection and divide each tooth by rectangle bounding
boxes. Most researchers use two-stage detection networks (e.g., Faster R-CNN) and bounding
boxes are labeled and trained per tooth [14,24,30]. Our method makes a major difference to
the detection network and detection bounding boxes. The first change is that we use the one-
stage detection network YOLO v3 rather than a two-stage detection network. This network
is seldom used in clinical CT detection because one-stage networks have lower accuracy
on small object detection, and usually objects on CT are small. However, the YOLO-based
network trains and predicts much faster than two-stage methods such as Faster R-CNN [31].
To improve performance, we use multi-level detection. (1) We detect the main area, a box
bounding all teeth tightly; (2) we detect blocks of teeth as mentioned in Section 3. These objects
are large enough according to the anchor size in Redmon J’s paper [32]. A comparison between
a tooth detection box and middle size anchor box is shown in Figure 4.
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Figure 4. A comparison between tooth detection box and middle-size anchor box. In a main area,
each red grid shapes 32 × 32 voxels, and there are a total of 13 × 13 grids. The blue rectangles are
default anchors on image after 16× down sample. The green rectangles are middle-sized ground
truth boxes. They are generated by the blue anchors on 16× down sample feature map [32].

YOLO detector training hyperparameters are as follows: learning rate 1× 10−4, batch
size 10, input image size 416 × 416 × 3, train for 100 epochs.

Another difference is in the bounding box. One tooth in one box often causes problems.
Dentition with missing tooth or dental restorations with metal artefacts cannot be well
detected, causing disorder of tooth bounding box labels. On the other hand, many teeth
are similar in shape, so detection networks have low accuracy when distinguishing these
teeth [24]. Here, we propose a combination of teeth detection and proportion-based division
to generate each tooth’s bounding box. We detect five detected bounding boxes for each
block. Figure 1b. In the detected bounding box, we locate the tooth bounding box based
on proportion. According to Section Formula, a proportion located point inside a detected
bounding box has a coordinate:

x =
x1 + λxx2

1 + λx
(1)

y =
y1 + λyy2

1 + λy
(2)

Here, (x1, y1), (x2, y1), (x2, y2), (x1, y2) for bounding box’s vertices have coordinates,
(x, y) for the target point’s coordinate. λx for the position ratio and λx =

∣∣∣ x−x1
x2−x

∣∣∣, the same
as λy. Usually people use the left-top and right-bottom points’ coordinates to describe
a bounding box, a coordinate (L, T, R, B) corresponding to (x1, y1, x2, y2) above. Taking
tooth 45 as an example, the given information is side3R big detected bounding box’s
coordinate (L0, T0, R0, B0). We assume λx = 1

6 , λy = 2
9 for the tooth bounding box’s

left-top point, λx = 5
6 , λy = 4

9 for the tooth bounding box’s right-bottom point. To optimize
lambdas, we chose a CBCT slice from 14 patients. First, we initialized the lambdas by
observation. Then, we compared IOU (Intersection over Union) of the generated tooth
bounding box and ground truth tooth bounding box and adjusted the lambda values until
the mean IOU results were above 85%. We also enlarged each box a little to fit the rotation
of scan and malocclusion. Finally, we obtained tooth 45’s bounding box:
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R5 : (L, T, R, B)

L = 0.17R0 + 0.83L0

T = 0.28B0 + 0.72T0

R = 0.83R0 + 0.17L0

B = 0.72B0 + 0.28T0

(3)

All tooth bounding boxes are generated like this. The final output is Figure 5.

(a) Detection results on one image (b) Detection results on all images

Figure 5. (a) shows final detection result on a CBCT image after finishing the whole teeth detection
procedure; (b) shows how we get tooth bounding boxes in all images: selected layer images use
our detection method and detect several sets of tooth bounding boxes (red and blue ones). Then,
neighboring images share these boxes.

In conclusion, the whole teeth detection procedure is as follows: For each CBCT set, all
images are classified into 5 categories in pre-process stage. From images in the upper crown
area, we select the 10th and the last 10th image (images on red and blue lines in Figure 5b),
the same for lower crown area. The selected four images are then sent into YOLO v3
detection network and detected main areas. In the main area, use YOLO again to detect
five big boxes corresponding to five blocks. Then, we apply proportion-based division to
get each tooth’s bounding box. Neighboring CBCT images share these tooth bounding
boxes, as is shown in Figure 5b.

5. Experiment and Results

In this section, we evaluated the average performance of teeth detection and its
performance on severely noised images. In the teeth detection part, we used several
metrics to evaluate the detection network. The metrics are mAP (mean average precision),
precision, recall, and F1 score. These metrics are tested on the 112 images above. The mAP
metric is based on detecting precision and recall, which are frequently used to evaluate
the performance of object detection [33]. In object detection, each detected box has four
possible classes: True positive (TP), True negative (TN), False positive (FP), and False
negative (FN). Whether a box is negative or positive is based on the score each box obtains
(usually a box is positive if the score is higher than a certain threshold). Whether it is true
or False is based on compliance with the ground truth. Precision is defined as:

precision =
NTP

NTP + NFP
(4)

Recall is defined as:
recall =

NTP
NTP + NFN

(5)
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NTP stands for the number of True Positive boxes, NFP for the number of False Positive
boxes, and NFN for the number of True Positive boxes. F1 score is defined as:

F1 =
2 · precision · recall
precision + recall

(6)

The Faster R-CNN method is often used in clinical image detection, as is mentioned
in Section 4.2. For this reason, we trained a Faster R-CNN detector based on another set of
teeth and labels, and these labels (tooth bounding boxes) are on each tooth. The detector
directly detects each single tooth. We refer to this method as the plain Faster R-CNN
method. We also collected 112 dental CBCT images and three doctors were assigned to
perform labeling work on them, respectively. These images never appeared in training
sets. The three doctors chosen had different clinical experience. The years of working
experience were 15, 10 and 5 years, respectively. On each image we focused on eight teeth
(from wisdom tooth to central incisor, named from×8 to×1). The doctors labeled rectangle
tooth bounding boxes as ground truth with the software labelImg. The sets are defined as
test sets. All test sets are illustrated in Table 1.

Table 1. Three test sets in the experiment and their contents.

Number Contributor Description

1 doctor 1 8 teeth on 112 images
2 doctor 2 8 teeth on 112 images
3 doctor 3 8 teeth on 112 images

In an experiment, two detection methods separately detected teeth on each test set.
Then, we compared the results of eight desired teeth with ground truth in the test set.
The results are illustrated in Table 2. The results show there is no difference in mAP
between our method and Faster R-CNN methods. (p = 0.835) There is a significant difference
in Precision, Recall, and F1 between our method and Faster R-CNN methods. (p < 0.001,
p = 0.034, p < 0.001).

Table 2. Quantitative results of hierarchical YOLO detection method(Our method) and Faster R-CNN
detection method on test sets.

Our Method Faster R-CNN
p Value

1 2 3 Mean SD 1 2 3 Mean SD

mAP 88.77% 81.68% 73.91% 81.43% 12.01% 85.17% 88.08% 71.88% 82.03% 13.43% 0.835
Precision 90.82% 86.28% 82.42% 86.15% 10.18% 60.75% 60.73% 55.17% 86.15% 13.35% <0.001

Recall 90.80% 86.19% 82.08% 85.95% 9.75% 94.58% 94.58% 85.40% 90.98% 7.41% 0.034
F1 0.9 0.86 0.82 0.86 0.1 0.73 0.73 0.66 0.71 0.12 <0.001

We also tested OIR (Object Inclusion Ratio), a common metric in teeth detection.
It describes whether a box completely includes an object [30]. OIR is defined as follow:

OIR =
AM ∩ DM

AM
(7)

AM stands for the object actual area for object M. DM stands for the detected box
labeled M. If such a detected box does not include any of object M, the object’s OIR equals
zero. If a tooth is missing in an image, the tooth is skipped. The OIR of a CBCT image is
the mean value OIR of all teeth. A segmentation dataset is required for this experiment,
and the ground truth is segmentation masks on eight teeth. Again, the three doctors
accomplished segmentation label work on the 112 images above together. We evaluate OIR
on each image, and get 112 × 2 OIR values. The results and statistic analysis are in Table 3.
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Table 3. A comparison of two methods on average OIR results and statistic metrics.

Method Average OIR N SD SE

Faster R-CNN 91.40% 112 0.09832 0.00929
Our method 96.27% 112 0.03946 0.00373

Table 4 presents the mean and standard deviation values between our method and
Faster-RCNN methods. There is a statistically significant difference between our method
and Faster-RCNN methods (α = 0.05, p < 0.01). Additionally, in Lee’s research [13] im-
provement of OIR between different methods was 4–10%, while ours is 5.8%. This prove
a remarkable improvement.

Table 4. Power analysis between our method and Faster-RCNN method.

Mean SD SE
α = 0.05

t df Sig.
Down Up

0. 04866 0.1003 0.00948 0.02987 0. 06744 5.134 111 0

These results show that our method has higher scores in general over plain Faster
R-CNN method. The significant advantage over the plain Faster R-CNN method is on
precision, because there are a few phenomena in which the detector confuses two teeth.
Meanwhile, the recall rate is slightly lower than Faster R-CNN method. The two differences
exist because Faster R-CNN method generates a number of possible boxes for one tooth
which are not accurate, but the ground truth boxes must be included in some of these boxes.
Of course, many of these boxes are wrong. Then, NFP is much larger then NFN . In teeth
detection, confusion of two teeth is harmful; in this case, the plain Faster R-CNN method is
not suitable for clinic use. The precision sometimes is equal to recall in our method, since
FP is equal to FN. Our method only predicts high score boxes per tooth. Sometimes a box is
near to the object tooth but is not accurate, with a slight shift from the tooth’s center. Then
the predict box is FP and the box on ground truth is assigned to FN. Further discussion can
be found in Section 6.

We also compare the training cost and prediction speed of two methods. The batch
size is 16 and the train set size is 300 images.

The comparison in Table 5 shows that our detection method is faster than the Faster
R-CNN method. This advantage will be significant in big data processing, with high
detection speed and low requirements for devices.

Table 5. Quantitative resource consumption and speed of two methods.

Method Training VRAM
Consumption

Time Consumption
per Training Epoch

Time Consumption
per Predicting

Faster R-CNN 15 GB 53 s 274 ms
our method 9.5 GB 20 s 53 ms

Our method is robust to severely noised images. Figure 6a,b show detection on
a noised CBCT image under our method and Faster R-CNN method.
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(a) Hierarchical YOLO method (our method) (b) Faster R-CNN method

Figure 6. Visualization of the detection results on the severely noised image (a) hierarchical YOLO
method deals with metal artefacts (tooth 11 and 22) and overlapping (tooth 28) well, (b) Faster R-CNN
method makes a wrong and disordered detection on several similar teeth and metal artefacts.

Metal artefacts (tooth 11 and 22) and overlapping (tooth 28) appear in this CBCT image
at the same time. However, our combined detection has immunity to such phenomena. A
slight mistake occurs at tooth 13 because of the ambiguous edge. However, in the Faster
R-CNN method, the shape of a tooth affects the detection. Mistakes occur at tooth 16,
26 since it confuses 16 and 17, 26, and 27. Tooth 27, which should be 28, is not accurate,
since the disappearing part of the tooth caused by aliasing is not included into the box.
In addition, the metal artefacts hinder 12, 11, 21, 22 teeth detection, leading to a messy result.

6. Analysis and Conclusions

Our proposed method first extracts different tooth regions using a classification net-
work and detects ROI using YOLO v3. All these works promise a better performance for
teeth detection on single-layer CBCT. The combined detection method is based on prior
knowledge from doctors, making detection more accurate. High prediction speed and
robust detection are the main characteristics of our method. The metrics tables above
indicate that our method has high precision and a better average performance than simple
object detection networks.

Compared with a plain object detection method, our method promises stable detection
even in severely noised images. An absence of a tooth does not affect the result because
the absence location will be predicted by combined detection, and the number of teeth
will not be affected. The higher prediction speed and lower requirements of devices make
it possible to deploy in more applications of clinical scenarios.

There are still improvements left for the method. First, proportion-based tooth lo-
cation suffers from malocclusion or failing to position the patient’s head at standardized
orientation during CBCT scanning. (Figure 7a,b) Additionally, sometimes the adherent
edge will also cause detection deterioration.
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(a) (b) (c)
Figure 7. Typical situations of error occur in the detection process. (a) Severe malocclusion; (b) ex-
treme metal artefacts; (c) continuous missing teeth.

Second, certain circumstances when continuous teeth loss is more than 3 units or there
are extreme metal artefacts might hinder the accuracy of teeth detection. (Figure 7c) In this
case, manual adjustment would be needed to calibrate the tooth labeling. Instead of labeling
manually, tooth by tooth, our method made it possible to select a large detected bounding
box of a group of teeth, which saves a lot of work performed by expert experience.

Third, the tooth bounding box is usually larger than the ground truth box to promise
a higher including rate, but it still can be smaller. A smaller tooth bounding box makes
tooth segmentation more accurate. Therefore, we might need a new way to evaluate
box accuracy while slightly adjusting the box boundary. A lot of training is required to
obtain a high-quality intelligent diagnostic model for medical imaging.

For further improvement, prior knowledge such as tooth bounding box proportion
inside a block box might be encoded into the CNN network and trained together with
the tooth detector in order to improve detection OIR and mAP, with better immunity
against noise.

At present, there are various medical image information systems being used in dif-
ferent medical institutions. However, these systems are relatively independent from each
other, which leads to inconvenience in usage of the radiographic data universally [34].
Dental images are of great importance in dental records collection. Amongst all methods,
CBCT examination provides the most comprehensive patient information It is fundamen-
tal for us to include 3D dental information into electronic medical recording system for
better usage of clinical examination data. Tooth detection is the basis of dental diagnosis.
When artificial intelligence is applied to study bulk diagnostic images in dentistry, accurate
automatic tooth detection is undoubtedly the first step. Our study established a starting
step for automatic tooth segmentation based on original CBCT images (DICOM format)
so that the 3D rebuilding would be able to be combined in the patient’s recording system
regardless of the different imaging systems for further research.
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16. Li, S.; Fevens, T.; Krzyżak, A.; Li, S. An automatic variational level set segmentation framework for computer aided dental X-rays
analysis in clinical environments. Comput. Med. Imaging Graph. 2006, 30, 65–74. [CrossRef]

17. Carreira, J.; Sminchisescu, C. Constrained parametric min-cuts for automatic object segmentation. In Proceedings of the 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010;
pp. 3241–3248. [CrossRef]

18. Kumar, R. Teeth recognition for person identification. In Proceedings of the 2016 International Conference on Computation
System and Information Technology for Sustainable Solutions (CSITSS), Bengaluru, India, 6–8 October 2016; pp. 13–16. [CrossRef]

19. Lin, P.; Lai, Y.; Huang, P. An effective classification and numbering system for dental bitewing radiographs using teeth region
and contour information. Pattern Recognit. 2010, 43, 1380–1392. [CrossRef]

20. Mahoor, M.H.; Abdel-Mottaleb, M. Classification and numbering of teeth in dental bitewing images. Pattern Recognit. 2005,
38, 577–586. [CrossRef]

21. Tangel, M.L.; Fatichah, C.; Yan, F.; Betancourt, J.P.; Widyanto, M.R.; Dong, F.; Hirota, K. Dental classification for periapical
radiograph based on multiple fuzzy attribute. In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual
Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 24–28 June 2013; pp. 304–309. [CrossRef]

22. Miki, Y.; Muramatsu, C.; Hayashi, T.; Zhou, X.; Hara, T.; Katsumata, A.; Fujita, H. Classification of teeth in cone-beam CT using
deep convolutional neural network. Comput. Biol. Med. 2017, 80, 24–29. [CrossRef]

23. Zhang, K.; Wu, J.; Chen, H.; Lyu, P. An effective teeth recognition method using label tree with cascade network structure.
Comput. Med. Imaging Graph. 2018, 68, 61–70. [CrossRef] [PubMed]

24. Chen, H.; Zhang, K.; Lyu, P.; Li, H.; Zhang, L.; Wu, J.; Lee, C.H. A deep learning approach to automatic teeth detection and
numbering based on object detection in dental periapical films. Sci. Rep. 2019, 9, 3840. [CrossRef]

25. Mahdi, F.P.; Motoki, K.; Kobashi, S. Optimization technique combined with deep learning method for teeth recognition in dental
panoramic radiographs. Sci. Rep. 2020, 10, 19261. [CrossRef]

http://doi.org/10.1186/s12903-018-0523-5
http://dx.doi.org/10.1016/j.joen.2007.11.023
http://dx.doi.org/10.4317/jced.55986
http://dx.doi.org/10.4103/0976-237X.137930
http://dx.doi.org/10.1111/iej.12148
http://dx.doi.org/10.1111/j.1600-0501.2012.02552.x
http://dx.doi.org/10.1111/iej.13031
http://dx.doi.org/10.1177/0022034519828701
http://dx.doi.org/10.1109/CVPR.2019.00653
http://dx.doi.org/10.1016/j.oooo.2016.09.005
https://www.radiantviewer.com/dicom-viewer-manual/radiant_dicom_viewer_features.html
https://www.radiantviewer.com/dicom-viewer-manual/radiant_dicom_viewer_features.html
http://dx.doi.org/10.1007/s11042-022-12524-9
http://dx.doi.org/10.1109/ICCP51029.2020.9266244
http://dx.doi.org/10.1109/TPAMI.2010.161
http://dx.doi.org/10.1016/j.compmedimag.2005.10.007
http://dx.doi.org/10.1109/CVPR.2010.5540063
http://dx.doi.org/10.1109/CSITSS.2016.7779432
http://dx.doi.org/10.1016/j.patcog.2009.10.005
http://dx.doi.org/10.1016/j.patcog.2004.08.012
http://dx.doi.org/10.1109/IFSA-NAFIPS.2013.6608417
http://dx.doi.org/10.1016/j.compbiomed.2016.11.003
http://dx.doi.org/10.1016/j.compmedimag.2018.07.001
http://www.ncbi.nlm.nih.gov/pubmed/30056291
http://dx.doi.org/10.1038/s41598-019-40414-y
http://dx.doi.org/10.1038/s41598-020-75887-9


Diagnostics 2022, 12, 1679 13 of 13

26. Tuzoff, D.V.; Tuzova, L.N.; Bornstein, M.M.; Krasnov, A.S.; Kharchenko, M.A.; Nikolenko, S.I.; Sveshnikov, M.M.; Bednenko, G.B.
Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dento Maxillo Facial Radiol. 2019,
48, 20180051. [CrossRef]

27. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

28. Zhang, K.; Chen, H.; Lyu, P.; Wu, J. A relation-based framework for effective teeth recognition on dental periapical X-rays.
Comput. Med. Imaging Graph. 2022, 95, 102022. [CrossRef]

29. Contributors, T. CROSSENTROPYLOSS. Website, 2019. Available online: https://pytorch.org/docs/stable/generated/torch.nn.
CrossEntropyLoss.html (accessed on 30 May 2022).

30. Chung, M.; Lee, M.; Hong, J.; Park, S.; Lee, J.; Lee, J.; Yang, I.H.; Lee, J.; Shin, Y.G. Pose-aware instance segmentation framework from cone
beam CT images for tooth segmentation. Comput. Biol. Med. 2020, 120, 103720. [CrossRef]

31. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of
the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
[CrossRef]

32. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
33. Cartucho, J.; Ventura, R.; Veloso, M. Robust Object Recognition Through Symbiotic Deep Learning In Mobile Robots. In

Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October
2018; pp. 2336–2341.

34. Wang, J.; Zhu, H.; Wang, S.H.; Zhang, Y.D. A review of deep learning on medical image analysis. Mob. Netw. Appl. 2021,
26, 351–380. [CrossRef]

http://dx.doi.org/10.1259/dmfr.20180051
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1016/j.compmedimag.2021.102022
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
http://dx.doi.org/10.1016/j.compbiomed.2020.103720
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1007/s11036-020-01672-7

	Introduction
	Related Works
	Dataset and Relevant Knowledge
	Methodology
	Pre-Processing
	Teeth Detection

	Experiment and Results
	Analysis and Conclusions
	References

