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Abstract: Cone beam computed tomography (CBCT) is a modern imaging technique that uses
X-rays to investigate the structures of the dento-maxillary apparatus and obtain detailed images
of those structures. The aim of this study was to determine a functional mathematical model
able to evaluate the elastic force intensity on each bracket and tube type element and the ways in
which those components act on the orthodontic system being used. To analyze a real orthodontic
system, we studied the case of a 13-year-old female patient. To transfer geometric information from
tomographic images, we used the InVesalius software. This software can generate three-dimensional
reconstructions based on sequences and files in the DICOM format and was purchased from CBCT
equipment. We analyzed and processed the geometries of the converted tissues in InVesalius using
the Geomagic software. After using the Geomagic software, we exported the resulting model to the
SolidWorks software used in computer-aided design. In this software, the model is transformed into a
virtual solid. After making the geometric model, we analyzed the model using the Ansys Workbench
software, which incorporates finite element analysis techniques. Following the simulations, we
obtained result maps, which showed the complete mechanical behavior of the analyzed structures.

Keywords: cone beam computed tomography; finite element method; virtual model; elastic forces;
result maps; orthodontics

1. Introduction

Numerous etiological factors can affect craniofacial development, leading to the ap-
pearance of malocclusions [1]. The growing variety of the clinical aspects of malocclusions
has led to the emergence of new methods for diagnosis and treatment.

Cone beam computed tomography (CBCT) is the most promising diagnostic imaging
method in recent years and is able to provide images with submillimeter resolutions
(2 pairs of lines/millimeter) of a high quality to establish a diagnosis with shorter scan
times (approximately 60 s). The radiation dose to which a patient is exposed in a CBCT scan
is almost 10 times lower than that in conventional computed tomography of the maxillary
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bones (68 microsieverts compared to 600 microsieverts); this method also has a higher
dimensional accuracy (an increase of about 2%) [2–4].

One of the most important features of CBCT is its ability to construct different images,
such as panoramic illustrations of adjacent teeth and structures and cephalometric illustra-
tions.

Because of the need to replace expensive and time-consuming methods (3D stereopho-
togrammetry and standardized facial photographs), a simple alternative using CBCT has
emerged. This method provides 3D scans of both soft and hard tissues for diagnosis and
treatment planning. A previous study showed that wrapped CBCT images from non-
standardized random frontal photographs can be used to analyze soft tissue facial profile
measurements [5].

If a major scan is performed, visualizations can generally be done without creating
additional two-dimensional panoramic and cephalometric radiographs. These images
can be reconstructed from the volume of computed tomography, but it is imperative to
include all regions of interest. Several studies have confirmed that the cephalometric images
synthesized from the CBCT volume are equivalent to conventional radiography in terms of
mark identification, analysis, and overall diagnostic value [6–8].

Other acquisition and planning software has been proposed for full orthodontic treat-
ment or orthognathic surgery, including the Total Face Approach (TFA) 3D cephalometric
analysis system. This system identifies new evaluation algorithms on the vertical and
sagittal planes to determine the symmetry of the patient and create a new classification
based on 3D data [9].

The finite element method (FEM) is a modern numerical method of analysis with
fields of applicability in dentistry and, implicitly, orthodontics. FEM starts with a real
phenomenon that is divided into a number of elements with simple shapes, which are
then assembled to build the final geometry of the structure. The principle of this method
involves dividing the domain under analysis into a number of subdomains, which are
simple geometric elements called “finite elements”, linked together by “nodes”. The
FEM equations of a structure consisting of a finite number of discrete elements will form
systems of linear equations whose solutions represent the unknowns of the problem such
as displacement, strain, and stress [10–12].

The aim of this study was to determine the elastic forces that appear during fixed
orthodontic treatment and the mechanical effects produced by those forces. A clinical case
was considered as an example. For this, we used CBCT images of a patient to develop a
3D model using reverse engineering techniques. Using this model, as well as the metallic
elements of the orthodontic system, the forces acting on each tooth were obtained. Then, a
simulation was obtained by the finite element method, as well as the specific result maps.
This study is novel because we obtained a personalized 3D model of an orthodontic system
of a patient starting from CBCT images. Additionally, the system of forces and the results
obtained through simulations with the finite element method provides a personalized
system for specific orthodontic treatment.

2. Materials and Methods

The present study was approved by the Ethics Committee of the University of
Medicine and Pharmacy of Craiova, Romania (approval reference no. 72/07.09.2020),
in accordance with the ethical guidelines for research with human participants of the Uni-
versity of Medicine and Pharmacy of Craiova, Romania. Written informed consent was
obtained from the legal guardian of the subject involved in the study.

To analyze a real orthodontic system, we studied the case of a 13-year-old female
patient who presented to the Orthodontic Clinic of the Faculty of Dentistry at the University
of Medicine and Pharmacy of Craiova.

Front, left, and right profile photos; intraoral photos in occlusion; and photos from
the time of 1.3 surgical exposure and extraction for orthodontic purposes of 1.4 were taken.
Figures 1 and 2 show images of the patient.
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Figure 1. Front (a), right (b), and left (c) profile photos of the patient.

Figure 2. Intraoral photos in occlusion (a) and from the surgical intervention (b).

After the alginate impression of the patient’s dental arches, class III plaster models
were cast. Figure 3 shows images of these models.

Figure 3. Patient’s plaster study models: (a) front image, (b) left-side image, (c) right-side image.

The patient was also analyzed using CBCT investigations. Figure 4 shows representa-
tive images of the maxillary.

Figure 4. A tomographic image of the analyzed patient.

After clinical and paraclinical examinations, the patient was diagnosed with angle
class I malocclusion, dento-alveolar disharmony with crowding and impaction of 1.3. We
applied orthodontic treatment with a fixed device using the straight-wire technique, which
is a widely used technique in orthodontics that uses pre-angled brackets. These brackets
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ensure that all dental movements are made with the fixed orthodontics. The straight
wire slides through the slots of the brackets, with the teeth aligning under the effect of
elastomeric patterns and directional forces.

After bonding the fixed orthodontic appliance, surgical exposure of 1.3 and orthodontic
extractions of 1.4 and 4.4 were performed at the Oral and Maxillofacial Surgery Clinic of
the Emergency County Clinical Hospital of Craiova. After performing perimetry, we found
a large deficit of space in the maxillary arch (−7 mm) and mandibular arch (−6 mm). Thus,
to align the teeth, we resorted to the extraction method.

To obtain the three-dimensional geometry of the patient’s maxillary bones, we used
a Capture scanner (3D Systems, Rock Hill, SC, USA) to scan the models. To obtain tomo-
graphic images, we used a CS 8200 3D CT scanner (Carestream Dental, Atlanta, GA, USA).

For three-dimensional modeling of the orthodontic metallic element, we analyzed a
Sentalloy upper orthodontic wire (Dentsply Sirona, Charlotte, NC, USA) with a diameter of
0.014 inches, a Sentalloy lower orthodontic wire with a diameter of 0.014 inches, and a set
of LEGEND Medium brackets and tube components. Visual analysis of the tomographic
images was performed using the Syngo FastView medical imaging software (Siemens,
Munich, Germany).

Transformation of the different tissues from the tomographic images into three-
dimensional geometries of the point-cloud type was done using the InVesalius software
(CTI, Campinas, Brazil). This software is used for specialized research because it transforms
CT images into primary geometries of the tissues analyzed by medical imaging methods.

The transformation, analysis, and processing of the geometries of the converted tissues
from InVesalius were achieved using the Geomagic software (Morrisville, NC, USA), which
is specialized in three-dimensional scanning and applies reverse engineering methods.

Subsequently, we exported the model to the SolidWorks software (SolidWorks Corp.,
Waltham, MA, USA) used in computer-aided design (CAD) and virtual prototyping. In this
software, we turned the model into a virtual solid. We also modeled the two orthodontic
wires, as well as the bracket and tube elements.

After creating the geometric model, we performed an analysis using the Ansys Work-
bench software (Ansys Inc., Canonsburg, PA, USA), which incorporates finite element
analysis techniques. Following the simulations, we obtained result maps showing the
complete mechanical behavior of the analyzed structures.

For simple calculations and to create graphs and diagrams, we used Microsoft Excel.
For complicated calculations, we used the Maple software (Maplesoft, Waterloo, ON,
Canada). Data storage and functional values were determined using Microsoft Excel. To
determine the unknowns from systems of equations with a degree of 6 and 6 unknowns,
Maple was used with implementation of the matrix calculations and determinants. Initially,
Microsoft Excel was used for this process, but the results were not correct.

Several methods were used to carry out this study, some classical and others inno-
vative, including medical imaging methods, reverse engineering and three-dimensional
scanning methods, CAD-type methods, material strength methods, Elasticity Theory meth-
ods, and FEM.

To obtain a virtual model of the maxillary, starting from the study model, we used a
Capture scanner. This device creates a point cloud model by overlaying several successive
scans using another automatic or manual alignment algorithm. Thus, the plaster model
was successively rotated manually by about 10◦, and at each rotation, we obtained a
point cloud.

To obtain the final model, 30 successive scans were performed. Then, we obtained the
final model of the scan operation. Figure 5 shows the common point cloud of the upper
and lower images, which represents the raw, unprocessed model of the scanned maxillary.
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Finally, we obtained a closed final surface, as shown in Figure 6.

Figure 6. Perfectly closed surface obtained after the filling operation.

Starting from this surface, we intended to obtain a virtual solid. For this purpose,
it was necessary that the surface model did not contain self-intersecting areas, common
edges, very deformed edges, sharp-spike-type elements, small artifact components, small
channels, or holes. Using various Geomagic-specific procedures and reverse engineering,
these geometric problems were automatically eliminated (Mesh Doctor command) in
two steps, the first involving the identification operation and the second involving the
removal operation.

After correcting the geometry, we obtained a closed surface that contained a num-
ber of approximately 646,000 elementary triangular surfaces. The CAD software allows
transformation of a closed surface into a virtual solid only if the number of triangular
elementary surfaces is less than 150,000. To obtain such an area, we used a decimation
operation, which reduced the number of elementary areas to about 145,000. Through such
operations, we reduced the quality of the surface, so this closed surface also underwent a
finishing operation. Finally, the model was exported to the SolidWorks software, where a
virtual solid was produced, as shown in Figure 7.

Figure 7. The final virtual solid of the scanned maxillary model.

We applied the same process to the mandibular virtual model. This model was also
exported to SolidWorks where we turned it into a virtual solid.
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We did not use these models directly in the simulation, but certain elements served
as a basis for the present study and analysis. A disadvantage of these models was that
the complete structure of the teeth and osseous components was not obtained, but these
virtual models could be used in analyses that also consider soft tissues. These models are
also used for the virtual alignment of teeth.

To obtain the geometry, we used CBCT images realized before gluing the orthodontic
appliance. We used the InVesalius software, which creates three-dimensional geometric
structures based on the shades of gray in an image by choosing different tissues from
the software database. Thus, by choosing bone-type tissues from the software menu, the
primary geometries for such structures can be obtained.

We also selected enamel structures from the software menu and obtained the primary
geometry for this type of tissue.

These primary geometries containing bone and enamel structures were coupled, and
an. stl file was exported to the Geomagic software. This file contained a point cloud similar
to that produced in three-dimensional scanning. In this application, the geometric structure
was initially transformed into primary triangular surfaces. For this reason, these structures
were edited using reverse engineering techniques and methods in the Geomagic software.
Figure 8 presents this initial model.

Figure 8. The primary bone and dental geometry of the patient studied in the Geomagic software.

From this initial model, which was considered as a foundation, we first extracted
the osseous structure of the maxillary and mandible followed by the dental structure. To
obtain models of the osseous components, we successively eliminated, by direct selection,
the artifact-type elements and teeth from the model. Initially, the model had 4,863,566
triangular elementary surfaces.

The final model of the osseous components was constructed in Geomagic and then in
SolidWorks, where it was automatically transformed into a virtual solid (see Figure 9).

Figure 9. The final model of osseous components in Geomagic (a) and SolidWorks (b).
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To obtain the dental structure, we used the InVesalius software with the Enamel filter.
From the InVesalius software, the point cloud structure was exported to the Geomagic

software for processing and transformation. In this way, we transformed the model into
triangular surfaces, initially numbering 3,426,848.

We then processed the model using operations to remove the geometries of the osseous
components, decimation operations, operations to remove non-compliant surfaces, etc.
After applying these operations, the model had 1,695,551 elementary surfaces.

Finally, we applied other reverse engineering operations to the model. The final model
of the dental structure containing 156,042 elementary triangular surfaces is presented in
Figure 10.

Figure 10. The final dental structure in Geomagic.

Finally, we imported the model in SolidWorks, where we transformed it into inde-
pendent virtual solids. To obtain the complete model, we loaded the two models (osseous
and dental) into the Assembly module of SolidWorks. Given that these models have a
common global coordinate system because they come from the same set of CBCT images,
we aligned the main planes that define the coordinate system and obtained the model
shown in Figure 11.

Figure 11. Complete structure—two viewing modes (a,b).

To avoid interference between the virtual solids of the osseous components, we ex-
tracted the volumes of the teeth using CAD commands and techniques; these cavities
represented the dental alveoli.

To obtain the models of the bracket and tube elements, we used well-known CAD
methods and techniques. Initially, we scanned the two-dimensional box with the bracket
and tube elements. We then scaled the image to a natural scale, enabling a series of mea-
surements of the image to be made. We also used a digital caliper to measure different sizes.
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Using the data obtained by the measurements and the CAD techniques and methods,
we modeled all the bracket- and tube-type elements. Using similar CAD techniques, we
obtained the final models of the elements, as shown in Figure 12.

Figure 12. Virtual models of bracket and tube elements.

To create models of the two orthodontic wires, we scanned the wires in two dimensions
using a multifunctional printer. We scaled and these images to a natural scale to take
measurements. Then, we uploaded the images to SolidWorks and used them to obtain
undefined wire models. In the preliminary orthodontic treatment, we used wires with
diameters of 0.014 inches (0.3556 mm). To define models of the orthodontic wires, we
uploaded the images to provide a basis for drawing the basic curves that define the shape
of the wires. Previously, we scaled and resized the images.

In the defined sketch plan, we drew a Spline curve over the uploaded and scanned
image. In the perpendicular plane on this curve, we drew a circle with a diameter of 0.3556
mm, as shown in Figure 13.

Diagnostics 2022, 12, x FOR PEER REVIEW 9 of 22 
 

 

 

Figure 13. Drawing a circle in a perpendicular plane to the Spline curve. 

We used the two curves (basic curve (Path) and closed curve (Profile)) to define a 

Sweep-type virtual solid, which is basically the model of the orthodontic wire (Figure 14). 

 

Figure 14. Defining the sweep shape. 

We defined the other orthodontic wire in a similar way. The models of the two 

orthodontic wires are presented in Figure 15. 

 

Figure 15. Virtual models of the two undeformed orthodontic wires. 

As the first step, we placed the bracket and tube elements on the vestibular surfaces 

of the teeth using CAD methods and techniques in the Assembly module of SolidWorks, 

as shown in Figure 16. 

 

Figure 16. Location of the bracket and tube elements. 

To obtain models of the deformed orthodontic wires, we defined three points on all 

the models of brackets and tubes as basic points for defining the Path curves of the wires, 

as shown in Figure 17. 

  

Figure 13. Drawing a circle in a perpendicular plane to the Spline curve.

We used the two curves (basic curve (Path) and closed curve (Profile)) to define a
Sweep-type virtual solid, which is basically the model of the orthodontic wire (Figure 14).

Figure 14. Defining the sweep shape.

We defined the other orthodontic wire in a similar way. The models of the two
orthodontic wires are presented in Figure 15.
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Figure 15. Virtual models of the two undeformed orthodontic wires.

As the first step, we placed the bracket and tube elements on the vestibular surfaces of
the teeth using CAD methods and techniques in the Assembly module of SolidWorks, as
shown in Figure 16.

Figure 16. Location of the bracket and tube elements.

To obtain models of the deformed orthodontic wires, we defined three points on all
the models of brackets and tubes as basic points for defining the Path curves of the wires,
as shown in Figure 17.

Figure 17. Three guide points attached to a tube.

These three points placed on each bracket and tube element were sufficient to define,
in the context of the assembly, the Path base curves of the two orthodontic wires, as shown
in Figure 18.

Figure 18. Path base curves generated for the two orthodontic wires.

As in the case of undeformed orthodontic wires, we drew circles with diameters of
0.3556 mm (0.014 inches) on planes perpendicular to these curves. Figure 19 presents the
model of one orthodontic wire. The model of the other wire was obtained in a similar way.
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Figure 19. Model of a deformed orthodontic wire.

Once the models of the two wires were generated in the context of the ensemble, the
custom model of the orthodontic system was finalized. The final model of the applied
orthodontic system is presented in Figure 20.

Figure 20. Model of the orthodontic system.

3. Results

The mechanical and elastic properties of materials are of great importance in engi-
neering when evaluating a biomechanical system. These characteristics are determined via
mechanical tests carried out in a specialized laboratory, on special machines, or using a
virtual laboratory based on finite element analysis software.

Young’s modulus (E), also known as the longitudinal modulus of elasticity, is a value
that expresses the stiffness of an elastic and isotropic material. Young’s modulus is defined
as the ratio of the axial stress and the axial strain in the range of Hooke’s Law and expressed
in N/m2.

A stressed solid will deform. This deformation can be elastic, if the body returns to
its initial state after cessation of the external force. In the case of an elastic deformation,
an elastic force Fe arises inside the deformed body, which opposes the external stress
represented by the force F.

If the deformation has the value ∆l, the elastic force has the following expression:

Fe = −k ∆l = −F (1)

where k is a coefficient that expresses the elastic constant of the material to be stretched
and depends on the material.

In absolute terms, deformation can also be written as

F = k · x (2)

where k is an elastic constant and depends on the material, and x is the displacement
obtained under the action of force.

If the analyzed material or element is not metallic, the elastic force can also be ex-
pressed by the following relation:

F = k · xn (3)

where n ≤ 3.
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We next applied these theoretical considerations and general principles to the two
upper and lower orthodontic wires. To determine a mathematical model of the force
caused by the deformation of an orthodontic wire, the Ansys Workbench software, which
employs FEM techniques, was used as a test laboratory. Thus, these wires were subjected to
forces with different values, and the displacements of the different points on the respective
orthodontic wires were measured. Values were recorded using Microsoft Excel. The
purpose of these virtual experiments was to determine a functional mathematical model
that would allow us to evaluate the elastic force on each bracket- and tube-type element
and, subsequently, for these forces to act on the orthodontic system used.

To begin, we analyzed the wire used in the maxillary arcade. Initially, we determined
the length of the wire in an undeformed state. This measurement was performed using a
virtual model of the wire with virtual measuring instruments. The length of the upper wire
was 152.12 mm.

Similarly, we determined the length of the wire used at the level of the mandibular
arcade with a length of 143.12 mm. Using the same CAD method of virtual measurement,
we set the lengths in the distorted state. We sectioned the wires, adapting their length to
the length of the patient’s arches. The length of the upper wire was 109.68 mm, and that
of the lower wire was 104.09 mm. Following these determinations, we concluded that the
upper wire was shortened by 42.43 mm, and the lower wire was shortened by 39.02 mm.

For each orthodontic wire, we used a special coordinate system. For assembly reasons,
we shortened the undeformed wires via CAD techniques using the values set out above to
prepare the models for analysis and virtual testing in Ansys Workbench.

In the Engineering Data module of the Ansys Workbench software, we defined the
material characteristics of Nitinol, as shown in Table 1.

Table 1. Physical properties of Nitinol used in simulations.

Material Density Young’s
Modulus

Transverse
Modulus of

Elasticity

Poisson’s
Coefficient

Nitinol 6450 Kg/m3 8.3 × 107 Pa 3.12 × 107 Pa 0.33

Next, we set the surfaces considered fixed, specifically the extremities of the orthodon-
tic wire.

In the next step, we divided the orthodontic wire model into finite elements. These
finite elements have a tetrahedral shape and a maximum size of 1 mm. In Figure 21, we
present images of the upper wire with the structure of finite elements.

Figure 21. The finite element structure of the upper wire model.

Next, we placed a force at a distance z = 10 mm, which corresponded to the coordinates
measured on the curve y = 10.001 mm. We realized the first simulation using force F = 0.1 N.
Figure 22 presents the position and direction of the force.
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Figure 22. Position and direction of the force.

After determining these features, we ran the application. Figure 23 presents the
resulting displacement map. To determine the exact value of the deformation x, we used
the tool called Deformation Probe. In this way, we obtained the value x = 0.4233 mm.
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Figure 23. Displacement map for z = 10 mm and force F = 0.1 N.

We repeated the simulation for force F values from 0.1 to 10 N and recorded the values
obtained in a Microsoft Excel table. We also calculated the value of the elastic constant k
according to relation (2)—namely, k = F/x. These values are shown in Table 2.

Table 2. Simulation values for z = 10 mm and force F from 0.1 to 10 N.

Z = 10 mm

F [N] x [mm] Calculated k

0.1 0.4233 0.236239
0.2 0.8466 0.236239
0.3 1.2699 0.236239
0.4 1.6932 0.236239
0.5 2.1165 0.236239
0.8 3.3864 0.236239
0.9 3.8097 0.236239
1 4.233 0.236239
2 8.466 0.236239
5 21.165 0.236239
10 42.33 0.236239

From an analysis of Table 2, it can be observed that the value of the elastic constant is
the same with k = 0.236239 for z = 10 mm, which confirms the equations of the Elasticity
Theory. Next, we placed a force at distance z = 20 mm and resumed the simulation for
force F = 0.1 N. For this simulation, we obtained the value x = 2.1089 mm. We repeated the
simulation for values of force F from 0.1 to 10 N and recorded the obtained values again in
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a Microsoft Excel table. We also calculated the value of the elastic constant k according to
relation (2)—namely, k = F/x. These values are presented in Table 3.

Table 3. Simulation values for z = 20 mm and force F from 0.1 to 10 N.

z = 20 mm

F [N] X [mm] Calculated k

0.1 2.1089 0.047418
0.2 4.2178 0.047418
0.3 6.3267 0.047418
0.4 8.4356 0.047418
0.5 10.5445 0.047418
0.6 12.6534 0.047418
0.7 14.7623 0.047418
0.8 16.8712 0.047418
0.9 18.9801 0.047418
1 21.089 0.047418
2 42.178 0.047418
3 63.267 0.047418
4 84.356 0.047418
5 105.445 0.047418
10 210.89 0.047418

We resumed the simulation for locations of z = 30, z = 40, z = 50, and z = 51.38 mm
in the middle of the upper wire. Additionally, force F varied between 0.1 and 10 N. We
calculated the value of the elastic constant k according to Relation (2)—namely, k = F/x.
Table 4 shows the simulation values for z = 51.38 mm and force F from 0.1 to 10 N.

Table 4. Simulation values for z = 51.38 mm (middle of upper wire) and force F from 0.1 to 10 N.

z = 51.38 mm (Middle of the Upper Wire)

F [N] x [mm] Calculated k

0.1 0.96311 0.10383
0.2 1.92622 0.10383
0.3 2.88933 0.10383
0.4 3.85244 0.10383
0.5 4.8156 0.103829
0.6 5.77872 0.103829
0.7 6.74184 0.103829
0.8 7.70496 0.103829
0.9 8.66808 0.103829
1 9.6311 0.10383
2 19.2622 0.10383
3 28.8933 0.10383
4 38.5244 0.10383
5 48.1555 0.10383
10 96.311 0.10383

The obtained results showed that the value of the elastic constant k depends on the
position by which the force acts on the orthodontic wire. Figure 24 plots the value of the
constant k as a function of the z coordinates.

Clearly, the value of the elastic constant k depends on the position on the orthodontic
wire, given either by the linear coordinates z or by the curvilinear coordinates y. In
SolidWorks, we measured, on the undeformed upper orthodontic wire, the y coordinates
for the values of the z coordinates. We then developed a combined table with the values of
both z and y, as well as the values of the constant k (Table 5).
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Figure 24. Value of constant k as a function of the z coordinates for the upper wire.

Table 5. The values of the elastic constant k as a function of the z and y coordinates.

Y Z K k (y)

0 0 0 0
10 10 0.236239074 0.236239

20.04 20 0.047418085 0.004741799
30.23 30 0.021269355 0.021268997
40.75 40 0.014176957 0.014176989
51.85 50 0.014092645 0.014093042

59 51.38 0.1038303 0.10383

It is also clear that the elastic force developed by the upper wire is dependent on the
value of deformation x and the curvilinear y coordinates, so F = F (x, y). Thus, F = k (y) · x.
Knowing seven sets of values, we can propose a degree 6 function for the elastic constant k:

k = k (y) = a × y6 + b × y5 + c × y4 + d × y3 + e × y2 + f × y + g. (4)

Using Table 5, we can replace the values for y and k and obtain

a·(0)6 + b·(0)5 + c·(0)4 + d·(0)3 + e·(0)2 + f·(0) + g = 0
a·(10)6 + b·(10)5 + c·(10)4 + d·(10)3 + e·(10)2 + f·(10) + g = 0.236239
a·(20.04)6 + b·(20.04)5 + c·(20.04)4 + d·(20.04)3 + e·(20.04)2 + f·(20.04) + g = 0.004741799
a·(30.23)6 + b·(30.23)5 + c·(30.23)4 + d·(30.23)3 + e·(30.23)2 + f·(30.23) + g = 0.021268997
a·(40.75)6 + b·(40.75)5 + c·(40.75)4 + d·(40.75)3 + e·(40.75)2 + f·(40.75) + g = 0.014176989
a·(51.85)6 + b·(51.85)5 + c·(51.85)4 + d·(51.85)3 + e·(51.85)2 + f·(51.85) + g = 0.014093042
a·(59)6 + b·(59)5 + c·(59)4 + d·(59)3 + e·(59)2 + f·(59) + g = 0.10383.

(5)

We were able to solve the first equation in the system (5) immediately with the solution
g = 0.

In this case, Equation (5) forms a system of six equations and six unknowns (a, b, c, d, e,
f). Here, the system is determined and the unknowns can be obtained. For this complicated
calculation, we used the Maple software, which can solve this system of equations. We
obtained the following values for the unknowns:

a = −1.89309451393284 × 10−9

b = 3.87447065552008 × 10−7

c = −0.305120626818607 × 10−4

d = 0.115143861398714 × 10−2

e = −0.0207466264631038
f = 0.142773204710058
g = 0
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With these known coefficients, we were able to express the force in the upper orthodon-
tic wire as follows:

F = (−1.89309451393284 × 10−9 × y6 + 3.87447065552008 × 10−7 × y5 −
0.305120626818607 × 10−4 × y4 + 0.115143861398714 × 10−2 × y3 −
0.0207466264631038 × y2 + 0.142773204710058 × y) × x

(6)

where x is the linear deformation due to the elastic force, and y represents the curvilinear
coordinates measured at the edges of the wire.

Similarly, we determined the force in the lower orthodontic wire as follows:

F = (−1.40083194030139 × 10−9 × y6 + 3.04238736235189 × 10−7 × y5 −
−0.254032635123737 × 10−4 × y4 + 0.102066672881550 × 10−2 × y3 −
−0.0197861695057057 × y2 + 0.149264732878305 × y) × x.

(7)

To determine the force values on each bracket and tube element, as seen in the force
defining functions, it was necessary to determine the y coordinates and x deformations
caused by elastic forces.

To measure the y distances on the deformed wires, we used CAD techniques specific
to the SolidWorks software. Figure 25 shows the measurements for 4.5.

Figure 25. Measurements of the y coordinates for 4.5.

Similarly, we determined the y coordinates for all bracket and tube elements and
recorded them in Excel tables. In Table 6, we present the y values for the lower wire, and in
Table 7, we present the values for the upper wire.

Table 6. Y coordinate values for the lower wire.

Teeth Measured y

4.6 28.65
4.5 38.32
4.3 54.41
4.2 61.03
4.1 66.41
3.6 29.09
3.5 38.23
3.4 47.03
3.3 54.81
3.2 65.17
3.1 71.25
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Table 7. Y coordinate values for the upper wire.

Teeth Measured y

1.6 25.66
1.5 35.71
1.3 52.63
1.2 63.43
1.1 73.11
2.6 25.66
2.5 34.83
2.4 43.06
2.3 51.51
2.2 61.49
2.1 70.36

To determine the x deformations, we first overlapped the two models of the wire in
undeformed and deformed states.

On these models, we measured the x deformations between similar characteristic
points on the two models. For example, Figure 26 presents the measurements of the x
deformation for 1.3.

Figure 26. Measurement of the x deformation for 1.3.

Similarly, we determined all the values for the x deformation.
By applying formulas (6) and (7), we obtained the values of the forces developed in

the lower and upper wires, as given in Tables 8 and 9.

Table 8. The x and y coordinate values for the lower wire.

Teeth Measured y (mm) Measured x (mm) Elastic Force
Developed

4.6 28.65 1.31 0.017648
4.5 38.32 2.75 0.069992
4.3 54.41 3.07 0.140214
4.2 61.03 4.45 0.461278
4.1 66.41 5.41 0.961619
3.6 29.09 1.22 0.019191
3.5 38.23 3.08 0.079447
3.4 47.03 1.11 0.01033
3.3 54.81 3.24 0.166461
3.2 65.17 3.13 0.178164
3.1 71.25 4.74 5.906798
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Table 9. The x and y coordinate values for the upper wire.

Teeth Measured y (mm) Measured x (mm) Elastic Force
Developed

1.6 25.66 2.08 0.002101
1.5 35.71 4.56 0.146577
1.3 52.63 9.2 0.207517
1.2 63.43 8.15 0.384285
1.1 73.11 5.84 11.8842
2.6 25.66 1.6 0.001616
2.5 34.83 2.29 0.074832
2.4 43.06 4.28 0.009652
2.3 51.51 2.62 0.028262
2.2 61.49 4.81 0.474462
2.1 70.36 4.65 4.449571

Next, we imported the custom virtual system model into Ansys Workbench. We
removed the orthodontic wires from the model, replacing their effects by the action of
forces on each bracket- and tube-type element.

In the Engineering Data module of the Ansys Workbench software, we defined the
material characteristics of the components of the analyzed system, as presented in Table 10.

Table 10. Physical properties of materials used in the simulations.

Component Material Density Young’s Modulus
Transverse
Modulus of

Elasticity

Poisson’s
Coefficient

Bracket- and
tube-type elements Ni + Cr alloy 8500 Kg/m3 2.1 × 1011 Pa 8.015 × 1010 Pa 0.31

Maxillary,
mandible Bone 1400 Kg/m3 1 × 1010 Pa 3.84 × 109 Pa 0.31

Teeth Enamel 2958 Kg/m3 7.79 × 1010 Pa 2.996 × 1010 Pa 0.3

We divided the model into tetrahedral finite elements with a maximum size of 20 mm.
Next, we indicated the elements considered fixed (maxillary and mandible). Then, we set
the forces and values (from Tables 8 and 9) for each element, as shown in Figure 27.

Figure 27. The forces defined in Ansys for the analyzed model.
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After running the application, we obtained maps of displacement (Figure 28), defor-
mation (Figure 29), stress (Figure 30), and deformation energy (Figure 31).

Figure 28. Displacement maps.

Figure 29. Deformation maps.

Figure 30. Stress maps.

Figure 31. Deformation energy maps.

4. Discussion

Malocclusions are generally treated using three-dimensional orthodontic forces. How-
ever, in the past, the diagnosis of malocclusions was established via two-dimensional imag-
ing investigations. Although these techniques also provide useful information, to ensure
the accuracy of an orthodontic diagnosis, it is necessary to also include three-dimensional
imaging investigations, the most commonly used of which is the CBCT [13].

In this study, using the CBCT technique, we obtained detailed images of the structures
of the maxillary and dental bones, which we transferred to the InVesalius program in order
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to achieve a three-dimensional reconstruction. Subsequently, we processed the anatomical
geometries using the Geomagic program, resulting in a model that we transformed into a
virtual solid using the SolidWorks program. The final analysis using the FEM technique
was performed using the Ansys Workbench program. In this way, we obtained maps of
results that helped us establish the mechanical behavior of the orthodontic system.

In the literature, there are few studies on the modeling and simulation of an orthodon-
tic system using virtual methods.

In orthodontics, linear measurements are commonly performed at the level of a virtual
model based on CBCT imaging investigations. These investigations have been shown to
be much more effective than analyses using conventional study models resulting from
alginate or silicone impressions. However, the virtual models were obtained from a normal
CBCT scan, with the patient in occlusion. Thus, there was an overlap of the upper and
lower occlusal surfaces. Conventional study models record the occlusal surfaces as a whole,
enabling the morphology to be better reproduced. Taking into account the characteristics
of the two types of models with which linear measurements were created, further studies
will be needed to determine the accuracy of the methods [14].

Other studies highlight the importance of CBCT techniques in orthognathic surgery.
The full preparation of patients for such surgery is performed digitally, using three-
dimensional images captured via CBCT and special software that simulates the final
result of treatment. The use of a virtual model facilitates the work of the medical team,
suggesting the appropriate types therapeutic displacement that should be performed in the
surgical phase and orthodontic phase. Postoperatively, the model can also assess whether
surgical treatment was performed according to virtual planning [15–17].

In terms of using FEM to simulate various clinical scenarios, most researchers argue
that the optimal force exerted during orthodontic treatment should be up to 1 N. This may
be true in theory, but in practice, it is complicated to control and evaluate the intensity of the
force applied to each tooth. When the force has higher value, there is a risk of side effects
such as bone and root resorption, increased tooth mobility, patient discomfort, etc. [18–21].

A study conducted using FEM analyzed the stress distribution in the periodontal
ligament of the central incisor according to the thickness of the transparent aligner during
orthodontic treatment. The authors concluded that the principal stresses induced by the
aligner in the periodontal ligament of the central incisor were within ranges sufficient to
induce remodeling of the periodontal ligament to produce sufficient tooth movement [22].

Based on the results of another FEM analysis, the authors confirmed that overhanging
attachments (OA) can control the orthodontist’s unintentional tooth movement better than
general attachments (GA). OA are considered to reduce the risk of the attachment becoming
detached during orthodontic treatment by highlighting desirable stress distributions and
reducing the stress concentration between the attachment and the aligner [23].

5. Conclusions

Analyzing the result maps obtained from the study, we concluded that the maximum
mechanical displacements were 9.9617 × 10−7 m (0.996 microns), particularly on the
incisors. The maximum deformations were 0.00015801 and were found, in particular, on the
contact surfaces between the bracket- or tube-type elements and the teeth. The maximum
stress was 1.0595 × 107 Pa and observed on the incisors and the contact surfaces between
the brackets and the teeth. The deformation energy was 1.4487 × 10−8 J and found, in
particular, on the incisors. However, further experimental studies are needed to deepen the
results obtained.
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