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Abstract: Colorectal cancer (CRC) is the second most common cancer in women and the third
most common in men, with an increasing incidence. Pathology diagnosis complemented with
prognostic and predictive biomarker information is the first step for personalized treatment. The
increased diagnostic load in the pathology laboratory, combined with the reported intra- and inter-
variability in the assessment of biomarkers, has prompted the quest for reliable machine-based
methods to be incorporated into the routine practice. Recently, Artificial Intelligence (AI) has made
significant progress in the medical field, showing potential for clinical applications. Herein, we aim to
systematically review the current research on AI in CRC image analysis. In histopathology, algorithms
based on Deep Learning (DL) have the potential to assist in diagnosis, predict clinically relevant
molecular phenotypes and microsatellite instability, identify histological features related to prognosis
and correlated to metastasis, and assess the specific components of the tumor microenvironment.

Keywords: colorectal cancer; CRC; histopathology; microscopy images; deep learning; DL; convolutional
neural networks; CNN

1. Introduction

Colorectal cancer (CRC) is one of the most common types of gastrointestinal cancer, the
second most common cancer in women and the third in men [1]. Despite existing variations,
such as geographical distribution, age and gender differences, the CRC incidence, overall,
is estimated to increase by 80% in the year 2035, worldwide [2]. This rising incidence of
CRC is mainly due to changes in lifestyle, particularly dietary patterns [3]. Most CRCs are
sporadic (70–80%), while approximately one third have a hereditary component [4]. Within
the term CRC, a wide range of carcinoma subtypes is included, characterized by different
morphological features and molecular alterations.

The cornerstone of CRC diagnosis is the pathologic examination (biopsy or surgical
excision) [5]. With the advent of screening methods, many precursor lesions are also
detected and biopsied. Consequently, a wide range of pre-malignant lesions have been
identified, and occasionally, a differential diagnosis between pre-malignant and malignant
lesions is quite challenging [6]. The histopathological examination of the tissue remains
the “gold standard” for diagnosis, with the first step being the optimal preparation of the
histological section, stained with Hematoxylin and Eosin (H&E) [7]. Further examination
with special in situ methods, such as immunohistochemistry (IHC) and in situ hybridization
(ISH), and other molecular techniques follows [8]. There are published guidelines for pre-
analytical, analytical and post-analytical procedures in a pathology laboratory [9]. As
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expected, due to the high incidence of CRC, the diagnostic load in a routine pathology
laboratory is very heavy and the introduction of an ever-growing list of morpho-molecular
features to be examined and noted has made the diagnosis a time-consuming process [10].
All these factors, in combination with the shortage of pathologists worldwide, have led to
delays in diagnosis, with consequences to the optimal healthcare of the patient.

It has been shown that pathologists make a diagnosis based mainly on image-based
pattern recognition [6]. With this strategy, architectural and cellular characteristics conform
to already known features of a disease [11]. In several instances, an accurate diagnosis or
estimation of prognostic and predictive factors is subject to personal interpretations, leading
to inter- and intra-observer variability [12,13]. In a continuous effort to improve the accuracy
of the pathology diagnosis, combined with the timely delivery of all vital information for
optimal patient treatment, the new and breakthrough technologies can be of great value.
Thus, in the last 5 years, the development of reliable computational approaches, using
machine learning based on pattern recognition, has exponentially increased, as reflected in
the plethora of published papers [14,15].

The recent World Health Organization (WHO) classification for malignant epithelial
tumors of the colorectum includes four main categories: adenocarcinoma (ADC) not other-
wise specified (NOS), neuroendocrine tumor NOS, neuroendocrine carcinoma NOS and
mixed neuroendocrine-non-neuroendocrine neoplasm (MiMEN) [16]. Of these, colorectal
ADC is the most common (90%) and, by definition, it shows glandular and mucinous
differentiation. Colorectal ADC has several histopathological subtypes, with specific mor-
phologic, clinical, and molecular characteristics, i.e., serrated ADC, adenoma-like ADC,
micropapillary ADC, mucinous ADC, poorly cohesive carcinoma, signet-ring cell carci-
noma, medullary ADC, adenosquamous carcinoma, carcinoma undifferentiated NOS and
carcinoma with sarcomatoid component.

The diagnosis of CRC is only the first step for a complete pathology report. Accord-
ing to best-practice guidelines, the specific histologic subtype, the histologic grade, the
TNM staging system, the lymphovascular and perineural invasion, and the tumor bud-
ding should be reported [9,16]. In recent years, the molecular pathological classification
of CRC has been proposed, aiming to compliment the traditional histopathologic classi-
fication [4]. An integrated molecular analysis performed by the Cancer Genome Atlas
Network, has classified CRC into three groups, including highly mutated tumors (~13%),
ultra-mutated tumors (~3%) and chromosomal instability (CIN) tumors (~84%). In 2015,
an expression-signature-based classification was proposed with four consensus molecular
subtype (CMS) groups: CMS1 subtype (MSI-immune, 14%), CMS2 subtype (canonical,
37%), CMS3 subtype (metabolic, 13%) and CMS4 subtype (mesenchymal, 23%). In addi-
tion, molecular alterations are prevalent in CRC, consisting of Chromosomal Instability
(CIN), Microsatellite Instability (MSI) and a CpG Island Methylator phenotype (CIMP).
Defective mismatch repair (MMR) DNA mechanisms lead to increased mutations and,
consequently, to MSI [17,18]. The majority of sporadic CRCs are characterized by CIN
(~84%), and ~13–16% are hypermutated with an MSI status. The immunohistochemical
detection of either an abnormal expression or a loss of expression of the mismatch repair
proteins, MLH1, MSH2, MSH6, and PMS2, is of significant diagnostic and prognostic value
in CRC, as well as for the detection of hereditary nonpolyposis colorectal cancer (HNPCC),
also known as Lynch syndrome, which constitutes approximately 2% to 3% of all colorectal
carcinomas [19–21].

Histopathology image generations start with the standard procedure of tissue prepara-
tion. Biopsy or surgical specimens (representative sections) are formalin-fixed and paraffin-
embedded. Then, the 4µm tissue sections are prepared and stained with H&E dye [22]. The
images are extracted after a scanning procedure. Several scanning systems can be used
to digitize the whole slide [23], such as the Hamamatsu NanoZoomer series, the Omnyx
scanner, the Zeiss scanners, the Pannoramic 250 Flash II, and the Leica Biosystems Aperio
systems [24]. Most of the above scanners provide two optical magnifications, 20× and 40×,
however, the user can also digitally undersample the image in different magnifications.
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A scanner needs several minutes for the scanning of the whole slide, while most of the
system can deal with tens or hundreds of slides that are scanned automatically one-by-one.
According to the digitalization, each pixel of a Whole Slide Image (WSI) corresponds to
a physical area of several decades nm2. For example, in the 40× magnification mode, a
Hamamatsu NanoZoomer scanner extracts an image, where the size of each pixel edge cor-
responds to 227 nm [25]. The latter image digitization provides an appropriate resolution
for most of the histological findings, which presents a physical size of microns [26]. In most
of the cases, the extracting images are storage either in a compressed JPEG-based format
or an uncompressed TIFF format. Figure 1 presents the resolution of a WSI, scanned by a
Hamamatsu NanoZoomer 210.

Diagnostics 2022, 12, x FOR PEER REVIEW 3 of 38 
 

 

Omnyx scanner, the Zeiss scanners, the Pannoramic 250 Flash II, and the Leica Biosystems 
Aperio systems [24]. Most of the above scanners provide two optical magnifications, 20× 
and 40×, however, the user can also digitally undersample the image in different magni-
fications. A scanner needs several minutes for the scanning of the whole slide, while most 
of the system can deal with tens or hundreds of slides that are scanned automatically one-
by-one. According to the digitalization, each pixel of a Whole Slide Image (WSI) corre-
sponds to a physical area of several decades nm2. For example, in the 40× magnification 
mode, a Hamamatsu NanoZoomer scanner extracts an image, where the size of each pixel 
edge corresponds to 227 nm [25]. The latter image digitization provides an appropriate 
resolution for most of the histological findings, which presents a physical size of microns 
[26]. In most of the cases, the extracting images are storage either in a compressed JPEG-
based format or an uncompressed TIFF format. Figure 1 presents the resolution of a WSI, 
scanned by a Hamamatsu NanoΖoomer 210. 

 
Figure 1. Image generation using a Hamamatsu NanoZoomer whole slide scanner: (a) histological 
slide 75 mm × 25 mm, (b) Whole Slide Image (WSI), (c) cell level in 40× magnification, (d) pixel level 
in 40× magnification digitizing images 227 nm per pixel. 

Machine learning is a branch of AI which is based on the concept that machines could 
have access to data and be able to learn on their own. AI has a broader scope and involves 
machines that are capable of carrying out tasks requiring intelligence. Machine learning 
techniques focus on the creation of intelligent software using statistical learning methods 
and require access to data for the learning procedure [27]. A branch of machine learning, 
which has drawn a lot of attention over the last few years, is DL. DL involves training 
artificial neural networks (ANNs) with multiple layers of artificial neurons (nodes). Neu-
ral networks are inspired from the human physiology of the brain, comprising a simpli-
fied artificial model of the human neural network. An ANN is a collection of connected 
artificial neurons. The simplest ANN architecture is the single layer feed forward neural 
network. In these types of networks, the information moves in one direction only, from 
the inputs’ nodes to the hidden layer nodes and then to the output nodes. The success and 
wide acceptance of ANNs relies on their capability to solve complex mathematical prob-
lems, nonlinear or stochastic, by using very simple computational operations. In contrast 
to a conventional algorithm, which needs complex mathematical and algorithmic opera-
tions and could only apply to one problem, an ANN is computationally and algorithmi-
cally very simple and its structure allows it to be applied in a wide range of problems [28]. 

DL has rapidly developed during the last decade due to the significant increase in 
processing power and to the fact that, for the first time, artificial models are able to achieve 
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Machine learning is a branch of AI which is based on the concept that machines could
have access to data and be able to learn on their own. AI has a broader scope and involves
machines that are capable of carrying out tasks requiring intelligence. Machine learning
techniques focus on the creation of intelligent software using statistical learning methods
and require access to data for the learning procedure [27]. A branch of machine learning,
which has drawn a lot of attention over the last few years, is DL. DL involves training
artificial neural networks (ANNs) with multiple layers of artificial neurons (nodes). Neural
networks are inspired from the human physiology of the brain, comprising a simplified
artificial model of the human neural network. An ANN is a collection of connected artificial
neurons. The simplest ANN architecture is the single layer feed forward neural network.
In these types of networks, the information moves in one direction only, from the inputs’
nodes to the hidden layer nodes and then to the output nodes. The success and wide
acceptance of ANNs relies on their capability to solve complex mathematical problems,
nonlinear or stochastic, by using very simple computational operations. In contrast to a
conventional algorithm, which needs complex mathematical and algorithmic operations
and could only apply to one problem, an ANN is computationally and algorithmically very
simple and its structure allows it to be applied in a wide range of problems [28].

DL has rapidly developed during the last decade due to the significant increase
in processing power and to the fact that, for the first time, artificial models are able to
achieve more accurate results than humans in classification tasks [29]. Both DL and
machine learning techniques in general affect our everyday life in various ways. From
the simple-looking face recognition program used in Facebook, to the classification of
abnormal/normal human cells in bioinformatics. For image analysis problems, such as the
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histological lesions’ detections, prognosis and diagnosis, DL approaches mainly employ
Convolutional Neural Networks (CNNs) for segmentation and classification, while few
studies employ another DL approach, called Generative Adversarial Networks (GANs), to
improve the training set of images before classification.

CNNs have produced high classification rates in modern computer vision applications.
The term “convolutional” suggests that a deep neural network applies the mathematical
convolution operation to at least one of its multiple hidden layers. Many CNN model
variations have been implemented in recent years, which are based on a common layer
pattern: (a) 1 input layer, (b) L-1 convolution layers and (c) 1 classification layer. The
key feature of a sequential CNN is that it transforms the input data through neurons
that are connected to neurons of the previous convolution layer. Initially, the raw image
is loaded at the input layer, which is usually set to accept a three-dimensional spatial
form of an image file (width × height × depth), with the depth, in this case, indicating
the RGB (Red, Green, Blue) color channels. More technically, each of the convolution
layers calculates the dot product between the area of the neurons in the input layer and
the weights in a predetermined size of a filtering kernel (e.g., 3 × 3). In this way, local
features can be detected through K declared kernels. As a result, all nodes (neurons)
of each convolution layer calculate their activation value based on only one subset of
spatially adjacent nodes on the filtered feature maps of each previous convolution layer.
The most common deep network architectures, such as AlexNet and GoogleNet, use the
same neuron type at each hidden layer [30,31]. These architectures achieve very high
accuracy in classification problems, while their training is a computationally intensive and
time-consuming process. Currently, many different architectures, such as VGG, DenseNet,
ResNet, Inception.v3, etc., have been proposed, performing well under different conditions
and problem parameters [31–33].

GANs are also a DL approach applied on digital image analysis [34]. GANs are
a smart way to train a model as a supervised learning problem, even if based on their
principles they are unsupervised machine learning procedures. A typical GAN consists of
two sub-models: (a) the generator network, where the training generates new samples with
similar characteristics to the real ones and (b) the discriminator network, which provides a
binary classification of the generating samples, discriminating the real (approved) samples
from the fake ones. GANs have been rapidly evolved, especially in image processing and
classification, providing a sophisticated approach to simulate images for CNN training,
avoiding overtraining and overfitting. It is an alternative method of image augmentation
which extracts simulated images using simple transformations such as rotation, shearing,
stretching, etc.

In this paper, a systematic review for the application of DL in colorectal cancer, using
digital image analysis in histopathological images, is presented. The aim of the manuscript
focuses on the investigation from both medical and technical viewpoints. The innovative
contribution of this systematic review is the combination of the two viewpoints provided,
presenting a more comprehensive analysis of AI-based models in CRC diagnosis. A
deeper understanding on both medical and technical aspects of DL will better reveal the
opportunities of implementing DL-based models in clinical practice, as well as overcome
several challenges occurring for the optimal performance of the algorithms. According to
the PRISMA guidelines [35], an expanded algorithm was used for searching the literature
works. Specific inclusion and exclusion criteria have been defined to result in the final
studies of interest, which have been categorized for both medical and technical points
of views. In the next sections, significant backgrounds for both the clinical practice and
the details about DL in image analysis are outlined, the method for the study selection is
analyzed, and results are extensively discussed.
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2. Materials and Methods
2.1. Search Strategy

We systematically searched PubMed from inception to 31 December 2021 for pri-
mary studies developing a DL model for the histopathological interpretation of large
bowel biopsy tissues and CRC. For this purpose, we used the following algorithm: (con-
volutional neural networks OR CNN OR deep learning) AND ((cancer AND (colon OR
colorectal OR intestin* OR bowel)) OR (adenocarcinoma AND (colon OR colorectal OR
intestin* OR bowel)) OR (carcinoma AND (colon OR colorectal OR intestin* OR bowel))
OR (malignan* AND (colon OR colorectal OR intestin* OR bowel))) AND (biop* OR micro-
scop* OR histolog* OR slide* OR eosin OR histopatholog*). The search was conducted on
14 January 2022.

2.2. Study Eligibility Criteria

The study was conducted according to the PRISMA guidelines and registered to PROS-
PERO 2020. Eligible articles were considered based on the following criteria. We included
studies presenting the development of at least one DL model for the histopathological
assessment of large bowel slides and CRC. Eligible applications of the DL models included
diagnosis, tumor tissue classification, tumor microenvironment analysis, prognosis, sur-
vival and metastasis risk evaluation, tumor mutational burden characterization and, finally,
microsatellite instability detection. We excluded articles that presented in vitro models,
used endoscopic or radiological images instead of histological sections, and involved non-
photonic microscopy. Furthermore, eligible articles should report original studies and not
reviews/meta-analyses, concern humans and be written in English. Additionally, articles
referring to organs other than the large bowel and benign entities were deemed ineligible.

2.3. Study Selection

All citations collected by the previously mentioned methodology were independently
screened by four researchers, who were properly trained before the process started, using
the online software Rayyan. Three of the researchers were scientifically capable of evalu-
ating the medical aspect of the query and one of them was a CNN expert, able to assess
the technical part. During the screening period, the researchers would meet regularly to
discuss disagreements and continue training. Conflicts were resolved by consensus. The
full texts of potentially eligible articles were later retrieved for further evaluation.

2.4. Data Extraction

To facilitate the data extraction process, we specially designed a spreadsheet form,
which all researchers could access to import data from all the eligible articles. From each
paper, we extracted information on first author, year and journal of publication, PubMed
ID, title, aim of medical research, technical method, classification details, dataset and
performance metrics.

3. Results

Our systematic search returned 166 articles, 92 of which were selected for full-text
screening. Finally, 82 articles were considered eligible for our systematic review according
to our criteria of eligibility. A detailed description of the study selection process can be
found in the PRISMA flow-chart presented in Figure 2. The selected works are presented
both through the medical and technical point of view (Figure 3), while Table 1 includes
the characteristics of each study, regarding the medical scope, the technical approach, the
employed datasets, and finally, the performance of the proposed method.

3.1. Medical Viewpoint

According to the medical scope of view, there are five categories: (a) studies for
diagnostic purposes, (b) the classification of the tumor tissue, (c) the investigation of the
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tumor microenvironment, (d) the role of histological features to prognosis, metastasis and
survival, and finally, (e) the identification of microsatellite instability.
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3.1.1. Diagnosis

DL techniques can assist in the process of pathology diagnosis [14]. The algorithms per-
form a binary classification, for instance, cancer/non-cancer, colon benign tissue/colon ADC.

The classification of the tumor regions in WSIs by AI-based models could assist in
the time-consuming process of a microscopical examination. The suggested models in the
study by Gupta et al. classified normal and abnormal tissue in CRC slides and localized
the cancer regions with good performance metrics [36]. Zhou et al. used global labels
for tumor classification and localization without the need for annotated images [37]. In
the same framework, DL algorithms performed a binary classification of CRC images for
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detecting cancerous from non-cancerous regions, achieving good performance metrics and
supporting the potential for use in clinical practice [38–42]. A recent study evaluating the
segmentation performance of different DL models, showed that AI-patch-based models
had great advantages, although this segmentation approach could result in lower accuracy
when more challenging tumor images are included [43]. Moreover, AI-based models
could be combined to persistent homology profiles (PHPs) and effectively identify normal
from tumor tissue regions, evaluating the nuclear characteristics of tumor cells [44]. A
patch-cluster-based aggregation model, including a great number of WSIs developed by
Wang et al., performed the classification of CRC images (cancer, not cancer) assessing
the clustering of tumor cells, and the results were comparable to pathologists’ diagnosis,
revealing no statistical difference [45]. The acceleration of tumor detection by CNNs could
be obtained by reducing the number of patches, taking care to select the most representative
regions of interest [46]. Both proposed methods in the study of Shen et al. performed with
good accuracy and efficiency in detecting negative cases. Lastly, Yu et al., using a large
dataset, demonstrated that SSL, with large amounts of unlabeled data, performed well at
patch-level recognition and had a similar AUC as pathologists [47].

Colon benign tissue and colon ADC were classified with good accuracy by DL models
developed by Toğaçar et al. and Masud et al. [48,49]. The study of Song et al. showed
that the DL model and the pathologists’ estimation were in agreement in diagnosing
CRC [50]. However, the binary classification algorithm for adenoma and non-cancerous
(including mucosa or chronic inflammation) tiles showed a proportion of false predictions
in challenging tiles consisting of small adenomatous glands.

The accurate identification of benign from malignant tissues achieved a sensitivity
of 0.8228 and specificity of 0.9114 by a DL model trained with Multiphoton microscopy
(MPM) images, although images were lacking biomarkers such as colonic crypts and goblet
cells [51]. Holland et al. used the same classification model and 7 training datasets consist-
ing of a descending number of images [52]. The mean generalization accuracy appeared to
rely on the number of images within the different training sets and CNNs, although the
larger datasets did not result in a higher mean generalization accuracy, as expected.

3.1.2. Tumor Tissue Classification (Non-Neoplastic, Benign, Malignant, Grade, Architecture
and Cellular Characteristics)

Lizuka et al. conducted a classification of CRC into adenocarcinoma, adenoma or
normal tissue on three different test sets, revealing great performance metrics and promising
results for clinical practice [53]. The progression of CRC could be assessed by CNN,
designed to identify benign hyperplasia, intraepithelial neoplasia, and carcinoma using
multispectral images, however, the contribution of the pathologist’s assessment and a bigger
dataset were required [54]. Another study demonstrated that colorectal histological images
could be classified into normal mucosa, an early preneoplastic lesion, adenoma and cancer
with good accuracy, although these four classes may occasionally overlap and result in
uncertainty in labeling [55]. Moreover, the ARA-CNN model was designed for an accurate,
reliable and active tumor classification in the histopathological slides, aiming to minimize
the uncertainty of mislabeled samples [56]. The model achieved great performance metrics
not only in the binary, but also in the multiclass tumor classification, such as the proposed
CNN by Xu et al. and Wang et al. [57,58]. Three studies by Papadini et al., Jiao et al. and
Ben Hamida et al. proposed CNN approaches for multi-class colorectal tissue classification
in a large dataset number, underlining the great potential of AI-based methods to efficiently
perform multiple classifications of tumor regions [59–61]. Repurposing a stomach model
trained in poorly differentiated cases of gastric ADC using a transfer learning method, DL
algorithms could perform the classification of poorly differentiated adenocarcinoma in
colorectal biopsy WSIs, benefiting from histological similarities between gastric and colon
ADC [62].

The challenging task of gland segmentation was approached by Xu et al. and Graham
et al., developing CNNs for gland segmentation and achieving a good performance in
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statistical metrics as well as generalization capability [63,64]. In addition, Kainz et al.
trained two networks to recognize and separate glands which achieved 95% and 98%
classification accuracy in two test sets [65]. Further research, both in H&E-stained and IHC
images of colorectal tissue, was performed for glandular epithelium segmentation [66].

Grading into normal, low-grade and high-grade CRC was approached by Awan et al.
and Shaban et al. with 91% and 95.7% accuracy, respectively, using the same dataset [67,68].
Lastly, the grading of colorectal images was performed by an unsupervised feature extractor
via DL, showing great accuracy, although, as expected, the subcategorization of low-grade
tissue images had reduced the accuracy [69].

3.1.3. Tumor Microenvironment

An automated assessment of the CRC tumor microenvironment was carried out,
including the stroma, necrosis and lymphocytes associated with progression-free intervals
(PFI) [70]. Jiao et al. demonstrated that a higher tumor–stroma ratio was a risk factor, whilst
high levels of necrosis and lymphocytes features were associated with a low PFI. Pham’s
et al. proposed a DL model for binary and 8-class tumor classification in CRC images, as
well as, for the prediction and prognosis of the protein marker, DNp73 in IHC rectal cancer
images provided perfect results and outperformed other CNNs [71]. Pai et al. conducted
a tumor microenvironment analysis in colorectal TMAs [72]. The algorithm efficiently
detected differences between MMRD and MMRP slides based on inflammatory stroma,
tumor infiltrating lymphocytes (TILs) and mucin, and the quantified proportion of tumor
budding (TB), and poorly differentiated clusters (PDCs) associated with lymphatic, venous
and perineural invasion. A Desmoplastic Reaction (DR) could be also classified by DL
algorithms in CRC histopathological slides containing the deepest tumor invasion area [73].
The classification of a DR based on a myxoid stroma could be a significant prognostic
marker for patients’ survival.

Comprehensive analysis of the tumor microenvironment proved to show a great
performance by the ImmunoAIzer, a DL model for cell distribution description and tumor
gene mutation status detection in CRC images, proposed by Bian et al. [74]. Optimal results
were achieved in accuracy and precision for biomarker prediction, including CD3, CD20,
TP53 and DAPI. Additionally, the suggested DL framework could effectively quantify
TILs, PD-1 expressing TILs in anti-PD-1 immunofluorescence staining images, as well as
detect APC and TP53. Lymphocytes could be detected in colorectal IHC images stained
positive for CD3 and CD8 biomarkers by 4 different CNNs, with U-Net showing the best
performance according to the F1 score [75]. In the same framework, Xu et al. proposed a
DL model for the quantification of the immune infiltration (CD3 and CD8 T-cells’ density)
within the stroma region using IHC slides [76]. The CNN-IHC model performed with
high accuracy and was efficient in predicting survival probability, which was increased
when patients had a higher stromal immune score. Predictions of genetic mutation genes,
such as APC, KRAS, PIK3CAM SMAD4, TP53 and BRAF, could be followed through the
DL algorithms to support the clinical diagnosis and better stratify patients for targeted
therapies [77,78]. Schrammen et al. proposed the Slide-Level Assessment Model (SLAM) for
simultaneously tumor detection and predictions of genetic alterations [79]. In a 2017 study,
recognizing the molecular tumor subtype based on histopathology image data, Popovici
et al. proposed a challenging approach utilizing a DCNN, which was effective in predicting
relapse-free survival [80]. Xu et al. compared a DCNN to handcraft feature representation
in IHC slides of CRC, stained for an Epidermal Growth Factor Receptor (EGFR), and
demonstrated that the DCNN showed a better performance versus the handcrafted features
in classifying epithelial and stromal regions [81]. In addition, Sarker et al. developed a DL
approach for the identification and characterization of an Inducible T-cell COStimulator
(ICOS) biomarker, which achieved high accuracy in the ICOS density estimation and
showed potential as a prognostic factor [82]. Tumor budding could be quantified in CRC
IHC slides stained for pan-cytokeratin, whereas a high tumor budding score was correlated
to a positive nodal status [83].
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Analysis for cell nuclei types (epithelial, inflammatory, fibroblasts, “other”) by a CNN
model trained on 853 annotated images showed a 76% classification accuracy [26]. All
four cell types were associated with clinical variables, for instance, fewer inflammatory
cells were related to mucinous carcinoma, while metastasis, residual tumors, as well
as venous invasion were related to lower numbers of epithelial cells. A similar study, by
Sirinukunwattana et al., described a CNN method for the detection and classification of four
cell nuclei types (epithelial, inflammatory, fibroblast and miscellaneous) in histopathological
images of CRC [84]. Höfener et al. used the same dataset as Sirinukunwattana et al.
for nuclei detection from Cthe NNs based on the PMap approach [85]. A novel CNN
architecture, Hover-net, was proposed by Graham et al. for the simultaneous segmentation
and classification of nuclei, as well as for the prediction of 4 different nuclear types [86]. In
2017, the deep contour-aware network (DCAN) was developed by Chen et al. for accurate
gland and nuclei segmentations on histological CRC images [87].

3.1.4. Histological Features Related to Prognosis, Metastasis and Survival

A peri-tumoral stroma (PTS) score evaluated by CNNs was significantly higher in
patients with positive lymph nodes compared to the Lymph Node Metastasis (LNM)-
negative group [88]. However, due to the small dataset and the selection of classes used,
the PTS score for LNM and extramural tumor deposits in early-stage CRC was not detected.
Kiehl et al. and Brockmoeller et al. showed that LNM could be predicted by DL models
with a good performance [89,90]. Furthermore, the incidence of metastasis in histologic
slides with one or more lymph nodes was predicted by CNN, with good accuracy, both for
micro- and macro-metastases [91].

Bychkov et al., using TMAs of the most representative tumor area of CRC, proved the
efficiency of a DL model to predict the 5-year disease-specific survival (DSS), while Skrede
et al. reported data for the prediction of cancer-specific survival [92,93]. Similarly, DSS was
predicted by a DL model and clinicopathological features, such as poorly differentiated
tumor cell clusters, were associated with high DL risk scores [94]. A Crohn-like lymphoid
reaction (CLR) density at the invasive front of the tumor was a good predictor of prognosis
in patients with advanced CRC, independent of the TNM stage and tumor–stroma ratio [95].
Determining the ratio of the desmoplastic and inflamed stroma in histopathological slides
by DL models could be of great value in predicting the recurrence of disease after rectal
excision and a lower desmoplastic to inflamed stroma ratio was associated with a good
prognosis [96]. Tumor–stroma ratio (TSR) measures could be an important prognostic factor
and, as shown by Zhao et al. and Geesink et al., a stroma-high score was associated with
reduced overall survival [97,98]. The “deep stroma score” by Kather et al., a combination
of non-tumor components of the tissue, could be an independent prognostic factor for
overall survival, especially in patients with advanced CRC [99]. IHC slides stained for
pan-cytokeratin from patients with pT3 and pT4 colon ADC were used to train a DCNN
to predict the occurrence of distant metastasis based on tumor architecture [100]. Another
study showed that IHC-stained images of the amplified breast cancer 1 (AIB1) protein from
CRC patients could operate as a predictive 5-year survival marker [101].

3.1.5. Microsatellite Instability

Deploying the dataset of the MSIDETECT consortium, Echle et al. developed a DL
detector for the identification of MSI in histopathological slides [102]. High MSI scores were
accompanied by the presence of a poorly differentiated tumor tissue, however, false MSI
scores were also noted in necrotic and lymphocyte infiltrated areas. The binary classification
of DL algorithms for predicting MSI and MSS status in CRC images was performed in
studies by Wang, Yamashita, Bustos and Cao et al., with the latter study associating MSI
with genomic and transcriptomic profiles [103–106]. Another MSS/MSI-H classifier model
was trained on tumor-rich patch images for better classification results, although some
images were misclassified indicating that a larger dataset was required [107]. Generating
synthesized histology images could also be utilized by DL models for detecting MSI in
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CRC, as demonstrated by Krause et al. [108]. A synthetic dataset achieved an almost similar
AUC in predicting MSI compared to real images, although the best performance was noted
when a combination of synthetic and real images was generated. Image-based consensus
molecular subtype (CMS) classification in CRC histological slides from 3 datasets showed
a good performance, and the slides having the highest prediction confidence were in
concordance with the histological image features [109]. In another study, CMS classification
was associated with mucin-to-tumor area quantification, and revealed that CMS2 CRC
had no mucin and MUC5AC protein expression was an indication for worse overall
survival [110]. Lastly, a CNN for predicting tumor mutational burden-high (TMB-H) in
H&E slides was developed by Shimada et al. and showed an AUC of 0.91, while high
AUC scores were also noted in the validation cohorts [111]. TMB-H was associated with
TILs, although further development is important for this CNN model to be included in
clinical practice.

3.2. Technical Viewpoint

The presented DL methods for image analysis in colorectal histopathology images
could follow a categorization close to the one presented, which is presented in the back-
ground section. The systematic review indicates a rapid implementation of the field,
presenting DL applications that cover many technical approaches. Most of the presented
works in the literature employ a Convolution Neural Network in different segmentation
and classification problems (i.e., binary classification for the diagnosis or prognosis of
cancer, multiclass problems to characterize different tissue types, segmentation problems
for the detection of the microenvironment of the tissue). According to the scope of the
study, the authors proposed an appropriate architecture, providing the performance of their
method and perhaps comparing with other already developed CNNs. Few studies used
GANs to improve the training of the network, while several of them extended architectures
for encoding and decoding, such as U-Net. Recent studies took the advantage of a high
classification performance, developing retrospective or cohort studies based on the DL
results. Technically, almost all the studies utilized popular machine learning environments,
such as PyTorch, TensorFlow, Keras, Fastai, etc., which provided robust implementations
of DL approaches. The main category of CNN application can be divided into three subcat-
egories: (i) custom CNN architectures, (ii) popular architectures with transfer learning, and
finally, (iii) novel architectures, ensemble CNNs or frameworks.

3.2.1. Custom CNN Architecture

Custom CNN architectures denote those approaches where the authors built, from
scratch, all the layers of the network, visualizing in detail the feature extraction layers, the
fully connected layers of the classifier, as well as all the layers between of them. Commonly,
these architectures consisted of few layers and a small number of parameters, instead of the
well-known architectures where the networks expanded and were deeper than custom ones.
In several cases, custom CNNs performed well for typical simple problems, where it was
probably meaningful to avoid complex architectures and networks with a high consuming
computational effort. Several proposed custom CNNs were constructed, containing up
to 4 convolution layers for feature extraction and up to 2 fully connected layers for the
classifier [38,45,53,66,80]. For example, one of the first presented methods by Xu et al.
classified the regions of the image as the epithelium or stroma, employing a simple CNN
within a total of 4 layers (2 convolution and 2 fully connected) [81]. Other research teams
implemented deeper architectures than the latter, including at least 8 layers [40,83,98].
For example, one of the most recent studies used a custom architecture of 15 layers (12
convolutional and 3 fully connected) for diagnosis purposes [40]. Finally, the most complex
custom CNN, proposed by Graham et al. and called MilD-Net+, provides simultaneous
gland and lumen segmentation [64].
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3.2.2. Popular Architectures with Transfer Learning

The most comfortable way to apply CNNs on imaging problems is the utilization of
the machine learning environments, where researchers can easily call already developed
architecture. Such architectures gradually became very popular due to their standard im-
plementation as well as their ability to transfer learning from the training in other datasets.
According to the concept of transfer learning, it is less computationally expensive to employ
a pre-trained deep network instead of a network with randomly generated weights, even if
the training set includes images with different characteristics and classes. As a result, in
most of the cases, the popular models were trained on the ImageNet dataset, which con-
tained many images of different sources [27]. The most common pre-trained model used for
CRC is based on the VGG architectures. Four of the studies, presented by Zhao et al. [95,97],
Xu et al. [76] and Jiao et al. [70], employed the VGG-19, while two of the studies employed
the VGG-16 [41,101]. Furthermore, two other studies compared different parameters of the
general VGG architecture [38,80]. The second and third mostly used CNN for CRC is the
Inception.v3 [39,45,53,77,111], the Resnet (ResNet-50 used by Chuang et al. [91], ResNet-18
used by Kiehl et al. [90] and Bilal et al. [78], and ResNet-34 used by Bustos et al. [105] and
Bilal et al. [78]), or the combination of them called the InceptionResNet.v2 [100]. These
architectures introduced the Inception and the residual blocks, which made the model less
sensitive to overfitting. Interesting approaches [67,70,88] were developed using either the
U-Net model, where the initial image was encoded to a low resolution and then decoded,
providing images with similar characteristics or the ShuffleNet [80,91,103]. Finally, other
well-known models were also used, such as AlexNet [57], the YOLO detector [75], the
CiFar Model [25], the DenseNet [73], the MobileNet [94], LSTM [71], Xception [51], the
DarkNet [48] and EfficientNetB1 [62].

In the category with the pre-trained popular models, all the comparative works
could be included. These studies employed either the well-known models referenced
above [36,61], or other models such as GoogleNet [99], SqueezeNet [52] and ResNeXT [43].
Finally, two studies utilized [72] or proposed [103] cloud platforms where the user can fine
tune several hyper-parameters of popular pre-trained architectures.

3.2.3. Novel Architectures

Many research teams focus on the technical innovation evaluating their proposed
methodologies in colorectal image datasets. The studies of these categories are mostly (a)
modifications of popular architectures, (b) combinations of techniques into a framework, or
(c) ensemble approaches.

Several modified architectures were the HoVer-Net [64] based on the Preact-ResNet-
50, the KimiaNet [112] based on the DenseNet, the architecture proposed by Yamashita
et al. [104] based on the MobiledNet, and finally, the modification of the loss functions on
the ResNet proposed by Medela et al. [113]. Finally, Bian et al. [74] proposed an CNN based
on the Inception.v3, adding several residual blocks.

Several studies engaged a CNN architecture with other sophisticated methods and
concepts of artificial intelligence. One of the first attempts in the field was developed by
Sirinukunwattana et al., proposing a combination of a custom CNN architectures with
the Spatial Constrain Regression [84]. A similar concept developed two custom CNN
architectures with PMaps approaches [85]. Chen et al. presented a novel deep contour-
aware network for the detection and classification of the nuclei [87]. A Deep Belief Network
for feature extraction, followed by the Support Vector Machines for classification, was
deployed by Sari et al. [69]. A recent work employed a Deep embedding-based Logistic
Regression (DELR), which also used active learning for sample selection strategy [60].
In two other studies, the DenseNet was combined with Monte Carlo approaches [46],
while the Inception.v3 was cooperated with Adversarial Learning [109]. Finally, Kim
et al. [114] combined the InceptionResNet.v2 with Principal Component Analysis and
Wavelet Transform.
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Some other research teams combined two or more CNNs on a single framework. Two
different approaches combined the VGG architectures with the concept of the ResNet [66,92],
while the ARA-CNN, proposed by Raczkowski et al. [56], combined the ReSNet with the
DarkNet. Lee et al. [107] proposed a framework of an initial custom architecture followed
by the Inception.v3. Furthermore, three frameworks based on the ResNet were developed
by Zhou et al. [37]. Shaban et al. [68] developed a novel context-aware framework consist-
ing of two stacked CNNs. Finally, another combination between different architectures,
which was presented in the literature, is the DeepLab.v2 with ResNet-34 [50].

In recent years, voting systems are increasingly used for classification purposes. These
ensemble approaches engage two or more algorithms, where the prediction of the highest
performance finally prevails. The first ensemble pipeline was presented by Cao et al. in
2020, which votes according to the likelihood extracted from ResNet-18 [106]. Nguyen
et al. [42,110] proposed an ensemble approach with two CNNs (VGG and CapsuleNet),
while Kheded et al. deployed an approach with three CNNs as combination backbones:
(a) the U-Net with the ResNet, (b) the U-Net with the InceptionResNet.v2 and (c) the
DeepLab.v3 with Xception [115]. Another ensemble framework was developed by Skrede
et al. [93], with ten CNN models based on the DoMore.v1. The most extended voting
systems were presented by Paladini et al. [59], who introduced two ensemble approaches
using the ResNet-101, ResNeXt-50, Inception-v3 and DenseNet-161. In the first one, called
the Mean-Ensemble-CNN approach, the predicted class of each image was assigned using
the average of the predicted probabilities of the four trained models, while in the second
one, called the NN-Ensemble-CNN approach, the deep features corresponding to the last
FC layer are extracted from the four trained models.

3.2.4. Improving Training with GANs

Apart for the segmentation and classification, DL in CRC has also been applied for the
improvement of the training dataset using GANs. There have been three works with GANs’
applications presented during the past two years. In the first attempt [108], a Conditional
Generative Adversarial Network (CGAN), consisting of six convolution layers for both
the generator and the discriminator network, was employed to train the ShuffleNet for
the classification. Finally, a very recent study presented a novel GAN architecture, called
SAFRON [116], which enabled the generation of images of arbitrarily large sizes after
training on relatively small image patches.
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Table 1. Deep learning methods on histopathological images for colorectal cancer diagnosis.

Year First Author Journal Aim of Medical
Research Technical Method Classification

Details Dataset Performance Metrics

2016

Sirinukunwattana
[84]

IEEE Trans
Med Imaging

Detection and
classification of nuclei

Custom CNN architecture
(7-versions) based on the

spatially Constrain Regression
(a priori)

4-class: epithelial,
inflammatory, fibroblast,

miscellaneous

>20,000 annotated nuclei from
100 histology images from

10 WSIs

Detection Precision: 0.781,
Recall: 0.827, F1 score: 0.802,
Classification F1 score: 0.784,

AUC: 0.917, Combined
detection and classification F1

score: 0.692

Xu
[81] Neurocomputing

Classification of
epithelial and

stromal regions

Custom Simple CNN
Architecture with 4 Layers

(2 × CL and 2 FC) with SVM
Binary (epithelium/stroma) 1376 IHC-stained images

of CRC
Classification F1 score: 100%,

ACC: 100%, MCC: 100%

2017

Chen
[87] Med Image Anal Detection and

classification of nuclei
Custom CNN: Novel deep

contour-aware network Binary (bening/malignant)

(1) 2015 MICCAI Gland
Segmentation Challenge,

Training 85 Images Testing 80,
(2) 2015 MICCAI Nuclei
Segmentation Challenge:

Training 15 Images, Testing
18 images

Detection results (MICCAI
Glas): F1 score = 0.887, DICE

index 0.868
Hausdorff = 74.731

Segmentation results: D1 and
D2 metrics from Challenge

Popovici
[80] Bioinformatics Prediction of

molecular subtypes VGG-f (MatConvNet library)
5-class: subtypes (Budinská

et al., 2013) Molecular
subtypes (denoted A-E)

PETACCURACY:3 clinical
trial (Van Cutsem et al., 2009)

300 H/E images
ACC: 0.84, Confusion metrics
Precision and Recall per class

Xu
[63]

IEEE Trans
Biomed Eng Classification of Glands

Custom architecture:
3 channel fusions, one based

on Faster R-CNN and two
based on VGG-16

Binary (bening/malignant)
2015 MICCAI Gland

Segmentation Challenge,
Training 85 Images Testing

80 Images

Detection results (MICCAI
Glas): F1 score

(0.893 + 0.843)/2, DICE index
(0.908 + 0.833)/2, Hausdorff

(44.129 + 116.821)/2

Haj-Hassan
[54] J Pathol Inform Tumor tissue

classification

Custom Simple CNN (2CL
and 1FC), with or without

initial segmentation

3-class: benign hyperplasia,
intraepithelial neoplasia,

carcinoma

CHU Nancy Brabois Hospital:
16 multispectral images

Dice and Jaccard with std for
segmentation ACC: 99.17%

Xu
[57]

BMC
Bioinformatics

Tumor tissue
classification

Alexnet—SVM (shared by the
Cognitive Vision team at
ImageNet LSVRC 2013)

(1) Binary (cancer/not cancer
(2) 6-class: normal (N), ADC,

mucinous carcinoma
(MC),serrated carcinoma (SC),

papillary carcinoma (PC),
cribriform comedo-type
adenocarcinoma (CCTA)

2014 MICCAI 2014 Brain
Tumor Digital Pathology

Challenge and CRC image
dataset (1) Total 717 H/E

Total 693

ACC:
(1) Binary: 98%

(2) Multiclass: 87.2%

Jia
[41]

IEEE Trans
Med Imaging Diagnosis 3 Stage VGG-16 (publicly

available Caffe toolbox)

(1) Binary (Cancer/non
cancer) (2) Binary: TMAs

(Cancer/non-Cancer)

(1) 330/580 images (CA/NC)
(2) 30/30 images (CA/NC)

(2) ODS: 0.447, F-measure:
0.622 (CA), 0.998 (NC)

Kainz
[65] PeerJ Classification of Glands 2 × custom CNNs

(4 × CL, 2 × FC)

4-class (benign, benign
background, malignant,

malignant background) add
background for each class of

the challenge

2015 MICCAI Gland
Segmentation Challenge,

Training 85 Images (37 benign
and 48 malignant). Testing

80 (37/43)

Detection results (MICCAI
Glas): F1 score =

(0.68 + 0.61)/2, DICE index
(0.75 + 0.65)/2, Hausdorff

(103.49 + 187.76)/2
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Table 1. Cont.

Year First Author Journal Aim of Medical
Research Technical Method Classification

Details Dataset Performance Metrics

Awan
[67] Sci Rep Grading of CRC UNET-based architecture

(A) Binary (normal/cancer)
(B) 3-class: normal/low

grade/high grade

38 WSIs, extracted 139 parts
(71 normal, 33 low grade,

35 high grade)

(A) Binary ACC: 97%
(B) 3-vlass ACC: 91%

Wang
[58]

Annu Int Conf IEEE
Eng Med Biol Soc

Tumor tissue
classification

Simple architecture consisting
of 1 CL and 1 FC, which is

simultaneously operated in
both decomposed images

8-class: tumor epithelium,
simple stroma, complex

stroma, immune
cells, debris, normal mucosal

glands, adipose
tissue, background

University Medical Center
Mannheim 1.000 images ACC: 92.6 ± 1.2

2018

Bychkov
[92] Sci Rep Survival VGG-16 followed by a

recurrent ResNet
Binary (low/high risk 5-year

disease-specific survival)
Helsinki University Central

Hospital, 420 TMAs
Hazard Ratio: 2.3; CI 95%:

1.79–3.03, AUC 0.69

Eycke
[66] Med Image Anal

Tumor tissue
classification/IHC

biomarkers
quantification

VGG-based architecture
including residual units Binary (bening/malignant)

2015 MICCAI Gland
Segmentation Challenge,

Training 85 Images Testing
80 (37/43)

Detection results (MICCAI
Glas): F1 score

= (0.895 + 0.788)/2, DICE
index (0.902 + 0.841)/2,

Hausdorff
(42.943 + 105.926)/2

Weis
[83] Diagn Pathol Evaluation of

tumor budding
Custom architecture
consisting of 8 layers

Binary
(Tumor bud/no tumor)

HeiData Training dataset 6292
images, 20 IHC

pan-cytokeratin WSIs
R2 value: 0.86

Höfener
[85]

Comput Med
Imaging Graph Nuclei detection

2 × Custom CNN
architectures based on

PMaps approach

No classification, just
nuclei detection

Same with Sirinukunwattana
et al., >20,000 annotated

nuclei from 100 histology
images, from 10 WSI

F1 score of 22 different
configurations of CNNs

Best F1 score: 0.828

Graham
[64] Med Image Anal Diagnosis Custom complex architecture,

named Mild-net Binary (bening/malignant)
(1) MICCAI Gland

Segmentation Challenge,
(2) same as Awan et al., 2017

(1) F1 socre: (0.914 + 0.844)/2,
Dice: (0.913 + 0.836)/2,

Hausdorff (41.54 + 105.89)/2
(2) F1 score: 0.825, Dice: 0.875,

Hausdorff: 160.14

2019

Yoon
[38] J Digit Imaging Diagnosis 6 VGG-based approaches Binary (normal/Cancer)

Center for CRC, National
Cancer Center, Korea,

57 WSIs, 10.280 patches
ACC: 93.48%, SP: 92.76%, SE:

95.1%

Sari
[69]

IEEE Trans
Med Imaging Grading of CRC

Feature Extraction from Deep
Belief Network and

classification employing linear
SVM, Comparison with

Alexnet, GoogleNet,
Inceptionv3, and

autoencoders

(1) 3-class: normal (N), Low
Grade (LG), High Grade (HG)
(2) 5-class: Normal, Low (1),

Low (1–2), Low (2), High

(1) 3236 images 1001 N, 1703
LG, 532 HG)

(2) 1468 images

(1) mean ACC: 96.13
(2) mean ACC: 79.28
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Table 1. Cont.

Year First Author Journal Aim of Medical
Research Technical Method Classification

Details Dataset Performance Metrics

Kather
[99] PLoS Med Prediction of survival

5 different well-known
architectures pre-trained with

ImageNet (1) VGG-19, (2)
AlexNet, (3) SqueezeNet, (4)

GoogleNet, (5) ResNet

9-class: adipose
tissue, background, debris,

lymphocytes, mucus, smooth
muscle, normal colon mucosa,

cancer-associated stroma,
CRC epithelium/survival

predictions

(1) NCT, UMM 86 WSIs
(100.000 patches)

(2) 25 WSIs DACHS
(3) 862 WSIs TCGA WSIs

(4) 409 WSIs DACHS

9-class: ACC: 94–99%

Geessink
[98] Cell Onocol

Quantification of
tumor–stroma ratio
(TSR) for prognosis

Custom architecture proposed
by Ciombi et al., 2017 (not

included by our search)

9-class: tumor, intratumoral
stroma, necrosis, muscle,
healthy epithelium, fatty

tissue, lymphocytes, mucus,
erythrocytes

Laboratory for Pathology
Eastern Netherlands

74 WSIs
Overall ACC: 94.6%

Shapcott
[26]

Front Bioeng
Biotechnol Classification of nuclei CNN based on Tensorflow

“ciFar” model

4-class:
epithelial/inflammatory/

fibroblast/other
853 images, 142 TCGA images Detection ACC: 65%

Classification ACC: 76%

Qaiser
[44] Med Image Anal Diagnosis

Custom architecture with
(4 × CL + (ELU), 2FC +

Dropout
Binary: tumor/non-tumor

(1) Warwick-UHCW 75 H/E
WSIs (112.500 patches),

(2) Warwick-Osaka 50 H/E
WSIs (75.000 patches)

(A) PHP/CNN: F1 score
0.9243, Precision 0.9267
(B) PHP/CNN: F1 score
0.8273, Precision 0.8311

Swiderska-Chadaj
[75] Med Image Anal Detection of

lymphocytes

4-different architectures:
(1) Custom with 12CL, (2)

U-net, (3) YOLLO (based on
YOLO detector), (4) LSM

(Sirinukunwattana et al. 2016)

3-class: regular lymphocyte
distribution/clustered

cells/artifacts
28 IHC WSIs

U-Net
F1: 0.80

Recall: 0.74
Precision: 0.86

Graham
[86] Med Image Anal Classification of nuclei

Novel CNN architecture
(named HoVer-Net) based on

Preact-ResNet50

4-class: normal, malignant,
dysplastic

epithelial/inflammatory/
miscellaneous/spindle-

shaped nuclei (fibroblast,
muscle, endothelial)

(1) CoNSeP dataset, 16 WSIs,
41 H/E tiles, (2) Kumar

(TCGA) 30 images,
(3) CPM-15 (TCGA) 15 images,
(4) CPM-17 (TCGA) 32 images,

(5) TNBC (Curie Institute)
50 images, (6) CRCHisto

100 images

(1) Dice: 0.853, AJI: 0.571, DQ:
0.702, SQ: 0.778, PQ: 0.547, (2)

Dice: 0.826, AJI: 0.618, DQ:
0.770, SQ: 0.773, PQ: 0.597, (4)

Dice: 0.869, AJI: 0.705, DQ:
0.854, SQ: 0.814, PQ: 0.697

Rączkowski
[56] Sci Rep Tumor tissue

classification
Novel architecture (named

ARA-CNN), based on ResNet
and DarkNet

(A) Binary: tumor/stroma
(B) 8-class: tumor epithelium,

simple stroma, complex
stroma, immune cells, debris,

normal mucosal glands,
adipose tissue, background

5000 patches (same as
Kather et al., 2016)

(1) AUC 0.998 ACC: 99.11 ±
0.97% (2) AUC 0.995 ACC:

92.44 ± 0.81%

Sena
[55] Oncol Lett Tumor tissue

classification Custom CNN (4CL, 3FC)
4-class: normal mucosa,

preneoplastic lesion,
adenoma, cancer

Modena University Hospital,
393 WSIs ACC: 81.7
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2020

Iizuka
[53] Sci Rep Tumor tissue

classification

(1) Inception v3, (2) also train
an RNN using the features
extracted by the Inception

3-class:
adenocarcinoma/adenoma/

non-neoplastic

Hiroshima University
Hospital, Haradoi Hospital,

TCGA, 4.036 WSIs

(1) AUC: (ADC: 0.967,
Adenoma: 0.99),

(2) AUC: (ADC: 0.963,
Adenoma: 0.992)

Shaban
[68]

IEEE Trans
Med Imaging Grading of CRC

Novel context-aware
framework, consisting of two

stacked CNNs

3-Class: Normal, Low Grade,
High Grade

Same as Awan et al., 2017
30000 patches ACC: 95.70

Holland
[52] J Pathol Inform Diagnosis

(1) ResNet (Turi Create library
framework), (2) SqueezeNet

(Turi Create library
framework), (3) AlexNet

(TensorFlow)

Binary (benign/malignant) 10 slides,
1000 overlapping images

(1) ResNET: ACC: 98%,
(2) AlexNet: ACC: 92.1%

(3) SqueezeNet: ACC: 80.4%

Echle
[102] Gastroenterology MSI prediction A modified version of

Sufflenet (no details) Binary (MSI/MSS)

TCGA, Darmkrebs: Chancen
der Verhütung durch

Screening (DACHS), “Quick
and Simple and Reliable”

trial (QUASAR), Netherlands
Cohort Study (NLCS)

QUASAR

Cross-validation cohort: mean
AUC 0.92, AUPRC of 0.63

Validation cohort: AUROC
0.95 (without

image-preprocessing) and
AUROC 0.96 (after color

normalization)

Song
[50] BMJ Diagnosis

A novel architecture based on
DeepLab v2 and ResNet-34.

Comparison with ResNet-50,
DenseNet, Inception.v3,
U-Net and DeepLab.v3

Binary (colorectal
adenoma/non-neoplasm)

Chinese People’s Liberation
Army

General Hospital, 411 slides
CJFH and

Cancer Hospital, Chinese
Academy of Medical Sciences

168 slides

ACC: 90.4, AUC 0.92

Zhao
[98] EBioMedicine

Quantification of
Tumor–stroma ratio
(TSR) for prognosis

VGG-19 pre-trained on the
ImageNet using transfer

learning with SGDM

9-class: Adipose, Background,
Debris,

Lymphocyte aggregates,
Mucus, Muscle, Normal
mucosa, Stroma, Tumor

epithelium

TCGA-COAD (461 patients),
TCGA-READ (172 patients)
Same as Kather et al., 2019

Pearson r (for TSR evaluation
between CNN and

pathologists): 0.939 ICC
Mean difference in TSR

evaluation between CNN and
pathologists: 0.01

Stroma-high vs. stroma-low
patients HR (OS): 1.72

(discovery cohort) and 2.08
(validation study)

Cao
[103] Theranostics MSI prediction

An ensemble pipeline for the
likelihood of each patch,
which is extracted from

ResNet-18

Binary (MSI/MSS)
TCGA (429 frozen slides),

Tongshu Biotechnology Co.
(785 FFPE slides)

(a) TCGA-COAD test set:
AUC 0.8848

(b) External Validation set:
AUC 0.8504
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Xu
[39] J Pathol Inform Diagnosis Inception v3 pre-trained

on ImageNet Binary (normal/cancer) St. Paul’s Hospital,
307 H/E images

Median ACC: 99.9% (normal
slides), median ACC: 94.8%

(cancer slides)
Independent dataset:
median ACC: 88.1%,

AUROC 0.99

Jang
[77]

World J
Gastroenterol

Prediction of IHC
biomarkers

(A) Simple CNN architecture
for the initial binary problem
(B) Inception.v3 for the main

classification problem

A) Binary (tissue/no-tissue),
B) Binary (normal/tumor), C)
Binary (APC, KRAS, PIK3CA,

SMAD4, TP53)
wild-type/mutation

TCGA
629 WSIs (frozen tissue

sections 7 FFPE)
Seoul St. Mary Hospital

(SMH) 142 WSIs

Frozen WSIs: AUC
0.693–0.809

FFPE WSIs: 0.645–0.783

Medela
[113] J Pathol Inform Tumor tissue

classification

The authors proposed several
different functions.

For the evaluation, a ResNet
backbone was employed, with

modified last layer

8-class: tumor epithelium,
simple stroma, complex

stroma, immune cells, debris
and mucus, mucosal glands,
adipose tissue, background

University Medical Center
Mannheim, 5.000 H/E images

With K = 3: BAC: 85.0 ± 0.6
Silhouette: 0.37 ± 0.02

Davis–Bouldin: 1.41 ± 0.08
With K = 5: BAC: 84.4 ± 0.8

Silhouette: 0.37 ± 0.02
Davis–Bouldin: 1.43 ± 0.09
With K = 7: BAC: 84.5 ± 0.3

Silhouette: 0.37 ± 0.02
Davis–Bouldin: 1.43 ± 0.09

Skrede
[93] Lancet Survival

An ensemble approach with
ten different CNN models

based on DoMorev1

3-class (good/poor
prognosis/uncertain) >12.000.000 image tiles

Uncertain vs. good prognosis
HR: 1.89 unadjusted and

1.56 adjusted
Poor vs. good prognosis HR:

3.84 unadjusted and
3.04 adjusted

Comparison of 3-year
cancer-SP: survival of the

good prognosis group to the
uncertain and poor prognosis

groups: SE: 52%, SP: 78%,
PDV:19%, NPV: 94%,

ACC: 76%
Comparison of 3-year cancer-
SP: survival of the good and
uncertain prognosis groups

with the poor prognosis group:
SE: 69%, SP: 66%, PDV: 17%,

NPV: 96%, ACC: 67%,
AUC: 0.713

2021

Sirinukunwattana
[109] Gut

Consensus molecular
subtypes (CMSs)

prediction

Inception v3, as well as
adversarial learning

4-class: CMS1, CMS2, CMS3,
CMS4

(1) FOCUS 510 H/E slides, (2)
TCGA 431 H/E slides,

(3) GRAMPIAN 265 H/E
slides Total: 1.206 slides

(1) AUC 0.88, (2) AUC 0.81,
(3) AUC 0.82
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Yamashita
[104] Lancet Oncol MSI prediction

2-stage novel architecture
based on a modified

MobileNetV2 architecture
pre-trained on ImageNet and
fine-tuned by transfer learning

on the Stanford-CRC
dataset

(1) 7-classes: adipose tissue,
necrotic debris,

lymphocytes, mucin, stroma
or smooth muscle, normal
colorectal epithelium, and
colorectal ADC epithelium

(2) Binary (MSI/MSS)

Stanford-CRC dataset
(internal): 66,578 tiles from

100 WSIs
TCGA (external): 287,543 tiles

from 484 WSIs

Internal: AUROC 0.931,
External: AUROC 0.779
NPV:93.7%, SE:76.0%,

SP:66.6%
Reader study

Model AUROC 0.865
Pathologist AUROC 0.605

Zhou
[37]

Comput Med
Imaging Graph

Tumor tissue
classification

A novel 3-framework based
on ResNet. Each framework
employs different CNN for

(a) Image-level binary
classification (CA/NC),

(b) Cell-level providing the
cancer probability in heatmap,
(c) Combination framework
which merges the output of

the previous ones

Binary (cancer/normal)

TCGA 1346 H/E WSIs, First
Affiliated Hospital of Zhejiang

University, First Affiliated
Hospital of Soochow

University, Nanjing First
Hospital 50 slides

ACC: 0.946
Precision: 0.9636

Recall: 0.9815
F1 score: 0.9725

Masud
[49] Sensors Diagnosis

Custom simple CNN
architecture with 3 CL, two

max pooling 1 batch
normalization and 1 dropout

Binary
(Colon ADC/colon benign)

LC25000 dataset, James A.
Haley Veterans’ Hospital,

5.000 images of Colon ADC,
5.000 images of Colon Benign

Tissue

Peak classification ACC:
96.33%

F-measure score 96.38% for
colon and lung cancer

identification

Kwak
[88] Front Oncol Lymph Node Metastasis

(LNM) prediction
U-Net based architecture

without (no details)

7-class: normal colon mucosa,
stroma, lymphocytes, mucus,
adipose tissue, smooth muscle,

colon cancer epithelium

TCGA
1000.000 patches

LNM positive group/LNM
negative group: OR = 26.654

(PTS score)
Ability of PTS score to identify

LNM in colon cancer:
AUC 0.677

Krause
[108] J Pathol MSI prediction

A conditional generative
adversarial network (CGAN)
for synthetic image generation

with 6-CL for both the
generator and discriminator

network, and a modified
ShuffleNet for classification

Binary
(MSS/MSI)

TCGA (same as Kather
et al., 2019)

NLCS cohort (same as
Echle et al., 2020)

AUROC 0.742 (patient cohort
1), 0.757 (patient cohort 2),

0.743 (synthetic images), 0.777
(both patient cohorts and

synthetic images)
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Pai
[72] Histopathology Tumor

microenvironment

CNN developed on the deep
learning platform (Aiforia

Technologies, Helsinki,
Finland)

(No details of architecture)

(A) 7-class: carcinoma, tumor
budding/poorly

differentiated clusters, stroma,
necrosis, mucin, smooth

muscle, fat
(B) 3-class: immature stroma,
mature stroma, inflammatory

stroma
(C) 3-class: low grade
carcinoma, high grade

carcinoma, signet ring cell
carcinoma (D) TILs

identification

Stanford University Medical
Center (same as Ma

et al., 2019)
230 H/E TMAs

MMRD classifying SE: 88%
and SP: 73%

ICC between pathologists and
model for TB/PDCs, type of
stroma, carcinoma grade and

TILs: 0.56 to 0.88

Wang
[45] BMC Med Diagnosis

AI approach uses Inception.v3
CNN architecture

with weights initialized from
transfer learning

Binary
(cancer/not cancer)

14,234 CRC WSIs
and

170.099 patches
ACC: 98.11%, AUC 99.83%,

SP: 99.22%, SE: 96.99%

Riasatian
[112] Med Image Anal Tumor tissue

classification

Proposed a novel architecture
(called KimiaNet) based on

the DenseNet

8-class: tumor epithelium,
simple stroma, complex

stroma, immune cells, debris,
normal mucosal glands,

adipose tissue, background

TCGA 5.000 patches ACC: 96.38% (KN-I) and
96.80% (KN-IV)

Jiao
[70]

Comput Methods
Programs Biomed

Tumor
microenvironment

(1) For the foreground, tissue
detection employs based on

U-NET (2) For 9-class
problem, employs the same

VGG-19 architecture as Kather
et al. and Jhao et al.

9-class: adipose tissue,
background, debris,

lymphocytes, mucus, smooth
muscle, normal colon mucosa,

cancer-associated stroma,
colorectal ADC epithelium

TCGA
441 H/E images

PFI
Stroma HR: 1.665

Necrosis HR: 1.552
Lymphocyte HR: 1.512

Nearchou
[73] Cancers

Classification of
Desmoplastic
reaction (DR)

DenseNet neural network,
integrated within HALO®

Binary
(Immature/other DR type)

528 stage II and III CRC
patients treated at the

National Defense Medical
College Hospital, Japan

Classifier’s performance:
Dice score: 0.87 for the

segmentation of myxoid
stroma (test set: 40 patient

samples)

Lee
[107] Int J Cancer MSI prediction

A framework of an initial
CNN architecture based on

binary classification of
patches, followed by an

Inception.v3

(A) Binary (tissue/non-tissue)
(B) Binary (normal/tumor)
(C) Binary (MSS/MSI-H)

TCGA (COAD, READ) 1.336
frozen slides, 584 FFPE WSIs
Seoul St. Mary’s Hospital 125
MSS FFPE WSIs, 149 MSI-H

FFPE WSIs and 77 MSS
FFPE WSIs

TCGA dataset: AUC 0.892
SMH dataset: AUC 0.972

Wulczyn
[94] NPJ Digit Med Survival

(1) Tumor segmentation
model based on Inception v3,
(2) Prognostic model based on

Mobile net

Binary (tumor/not tumor)
27.300 slides

Validation dataset 1: 9.340
Validation dataset 2:7.140

Validation dataset 1: AUC 0.70
(95% CI: 0.66–0.73) Validation

dataset 2: 0.69 (95% CI:
0.64–0.72)
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Shimada
[111] J Gastroenterol

Tumor mutational
burden (TMB)

prediction
Inception.v3

(A) Binary
(neoplastic/non-neoplastic)

(B) Binary
(TMB-High/TMB-Low)

Japanese cohort
TCGA

201 H/E images
AUC 0.910

Bian
[74] Cancers Prediction of IHC

biomarkers

(1) Modification of
Inceptionv3 adding residual
block for cellular biomarker

distribution prediction and (2)
employs Shufflenet.v2, for

tumor gene mutation
detection

Binary (biomarkers prediction)
CD3/CD20, panCK, DAP
Binary (tumor mutation

genes) APC, TP53, KRAS

Peking University Cancer
Hospital and Institute (8697

H/E image patches),
TCGA-Colon ADC (COAD)
project (50,801 H/E image

patches)

Biomarker’s prediction:
ACC: 90.4%

Tumor gene mutation
detection: AUC = 0.76 (APC),

AUC = 0.77 (KRAS),
AUC = 0.79 (TP53)

Schiele
[100] Cancers Survival

InceptionResNet.v2 network,
pre-trained on images from
the ImageNet from Keras

Binary (low/high metastasis
risk)

University Hospital Augsburg
291 pT3 and pT4 CRC patients

AUC 0.842, SP: 79.5%, SE:
75.6%, ACC: 75.8%

Theodosi
[101] Microsc Res Tech Survival Pre-trained VGG-16 Binary (5-year

survivors/non-survivors)
University Hospital of Patras

162 IHC AIB1 images

ML system: Mean Overall
Classification ACC: 87%

DL system: Classification
ACC: 97%

Wang
[105] Bioinformatics MSI prediction

A platform for automated
classification where each user
can define his own problem.

Different popular
architectures have been

embedded (Inception-V3,
ResNet50, Vgg19,

MobileNetV2, ShuffleNetV2,
and MNASNET)

Binary (MSI/MSS) TCGA and WSIs mean ROC (AUC
0.647 ± 0.029)

Khened
[115] Sci Rep

Slide Image
Segmentation and

Analysis

A novel ensemble CNN
framework with three

pre-trained architectures:
(a) U-net with DenceNet as

the backbone, (b) U-Net with
Inception-ResNet.v2

(Inception.v4), (c)
Deeplabv3Plus with Xception

(1) Camelyon16: Binary
(normal/metastasis), (2)

Camelyon17: 4-class:
(negative, ITC, Micro and

Macro)

DigestPath 660 H/E images
(250 with lesions, 410 with no

lesions)
Dice: 0.782

Chuang
[91] Mod Pathol

Detection of nodal
micro- and

macro-metastasis
ResNet-50

3-class: Micrometasta-
sis/Macrometastasis/Isolated

tumor cells

Department of Pathology,
Chang Gung Memorial

Hospital in Linkou, Taiwan,
3182 H/E WSIs

Slides with >1 lymph node:
Macromatastasis: AUC 0.9993,
Micrometastasis: AUC 0.9956

Slides with a single lymph
node: Macromatastasis: AUC
0.9944, Micrometastasis: AUC

0.9476 Algorithm ACC:
98.50% (95% CI: 97.75–99.25%)
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Jones
[96] Histopathology Survival No details for DL

7-class: background, necrosis,
epithelium, desmoplastic
stroma, inflamed stroma,

mucin, non-neoplastic
mesenchymal components of

bowel wall

Oxford Transanal Endoscopic
Microsurgery (TEM) database

H/E FFPE
150 patients

For desmoplastic to inflamed
stroma ratio:

AUC: 0.71, SE: 0.92, SP: 0.50,
PPV: 0.30, NPV: 0.97

For stroma to immune ratio:
AUC: 0.64, SE: 0.92, SP: 0.45,

PPV: 0.27, NPV: 0.96

Pham
[71] Sci Rep Tumor tissue

classification

Time-frequency, time-space,
long short-term memory

(LSTM) networks

(1) binary (stroma/tumor), (2)
8-class: tumor, simple stroma,
complex stroma, immune cells

(lymphoid), debris, normal
mucosal glands (mucosa),

adipose tissue, background

Colorectal cancer data:
University Medical Center

Mannheim, 625
non-overlapping for each 8
types of tissue images, total

5000 tissue images

(1) ACC: 100, SE: 100, SP: 100,
Precision: 100,

F1-score: 1
(2) ACC: 99.96%

Sarker
[82] Cancers Prediction of IHC

biomarker
U-net architecture with, in

total, 23 convolutional layers
Binary (ICOS-positive

cell/background)
Northern Ireland Biobank
(same as Gray et al., 2017)

U-net highest performance:
ACC: 98.93%, Dice: 68.84%,

AJI = 53.92%
(Backbone: ResNet101,
optimizer: Adam, loss

function: BCE, batch size: 8)

Ben Hamida
[61] Comput Biol Med Tumor tissue

classification

(1) Comparison of 4 different
architectures Alexnet, VGG-16,

ResNet, DenseNet,
Inceptionv3, with transfer

learning strategy
(2) Comparison of SegNet and

U-Net for semantic
Segmentation

(A) 8-class: tumor, stroma,
tissue, necrosis, immune, fat,

background, trash
(B) Binary (tumor/no-tumor)

(1) AiCOLO (396 H/E slides),
(2) NCT Biobank, University
Medical Center Mannheim
(100.000 H/E patches), (3)
CRC-5000 dataset (5.000

images), (4) Warwick (16 H/E)

(1) ResNet
On AiCOLO-8: overall

ACC: 96.98%
On CRC-5000: ACC: 96.77%

On NCT-CRC-HE-100κ:
ACC: 99.76%

On merged: ACC: 99.98%
(2) On AiCOLO-2

UNet: ACC: 76.18%, SegNet:
ACC:81.22%

Gupta
[36] Diagnostics Tumor tissue

classification

(a) VGG, ResNet, Inception,
and IR-v2 for transfer

learning, (b) Five types of
customized architectures

based on Inception-ResNet-v2

Binary (normal/abnormal)
Chang Cung Memorial

Hospital, 215 H/E WSIs,
1.303.012 patches

(a) IR-v2 performed better
than the others: AUC 0.97,

F-score: 0.97
(b) IR-v2 Type 5: AUC 0.99,

F-score: 0.99

Terradillos
[51] J Pathol Inform Diagnosis

Two-class classifier based on
the Xception model

architecture
Binary (benign/malignant) Basurto University Hospital

14.712 images
SE: 0.8228 ± 0.1575
SP: 0.9114 ± 0.0814
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Paladini
[59] J Imaging Tumor tissue

classification

2 × Ensemble approach
ResNet-101, ResNeXt-50,

Inception-v3 and DensNet-161.
(1) Mean-Ensemble-CNN

approach, the predicted class
of each image is assigned
using the average of the

predicted probabilities of four
trained models.

(2) In the NN-Ensemble-CNN
approach, the deep features
corresponding to the last FC
layer are extracted from the

four trained models

1st database: 8-class (tumor
epithelium, simple stroma,
complex stroma, immune

cells, debris, normal glands,
adipose tissue, background)
2nd database: 7-class (tumor,

complex stroma, stroma,
smooth muscle, benign,
inflammatory, debris)

Kather-CRC-2016 Database
(5000 CRC images) and

CRC-TP Database (280,000
CRC images)

Kather-CRC-2016 Database:
Mean-Ensemble-CNN mean

ACC: 96.16%
NN-Ensemble-CNN mean

ACC: 96.14%
CRC-TP Database:

Mean-Ensemble-CNN
ACC: 86.97%

Mean-Ensemble-CNN
F1-Score: 86.99%

NN-Ensemble-CNN
ACC: 87.26%

NN-Ensemble-CNN
F1-Score: 87.27%

Nguyen
[110] Mod Pathol

Consensus molecular
subtypes (CMSs)

prediction

A system for tissue detection
in WSIs based on an ensemble

learning method with two
raters, VGG and CapsuleNet

Mucin-to-tumor area ratio
quantification and binary
classification: high/low

mucin tumor

TCGA (871 slides)
Bern (775 slides)

The Cancer Imaging Archive
(TCIA) (373 images)

ICC between pathologists and
model for mucin-to-tumor

area ratio score: 0.92

Toğaçar
[48] Comput Biol Med Diagnosis

DarkNet-19 model based on
the YOLO object detection

model

Binary
(benign/colon ADC) 10.000 images

Colon ADC: ACC: 99.96%
Colon benign: ACC: 99.96%

Overall ACC: 99.69%

Zhao
[95]

Cancer Immunol
Immunother

Lymph Node Metastasis
(LNM) prediction

Same CNN as Zhao et al., 2020
(VGG-19 pre-trained on the

ImageNet using transfer
learning with SGDM)

7-class: tumor epithelium,
stroma, mucus, debris, normal

mucosa, smooth muscle,
lymphocytes, adipose

Training 279 H/E WSIs and
Validation 194 H/E WSIs

High CLR density OS in the
discovery cohort

HR: 0.58 High CLR density OS
in the validation cohort

HR: 0.45

Kiehl
[89] EJC Lymph Node Metastasis

(LNM) prediction

ResNet18 pre-trained
on H&E-stained slides of the

CAMELYON16 challenge

Binary (LNM positive/LNM
negative)

DACHS cohort (2,431 patients)
TCGA (582 patients)

AUROC on the internal test
set: 71%

AUROC on the TCGA
set: 61.2%

Xu
[76] Caner Cell Int

Quantification of
tumor–stroma ratio
(TSR) for prognosis

VGG-19 with or w/o transfer
learning

9-class: adipose, background,
debris, lymphocytes,

mucus, muscle, normal
mucosa, stroma, tumor

epithelium

283.000 H/E tiles, 154.400 IHC
tiles from 243 slides from 121

patients, 22.500 IHC tiles from
114 slides from 57 patients

Test dataset: ACC 0.973, 95%
CI 0.971–0.975

Yu
[47] Nat Commun Diagnosis No details for deep learning Binary (cancer/not cancer) 13.111 WSIs, 62,919 patches

Patch-level diagnosis
AUC: 0.980 ± 0.014

Patient-level diagnosis
AUC: 0.974 ± 0.013

Jiao
[60]

Comput Methods
Programs Biomed

Tumor tissue
classification

Deep embedding-based
logistic regression (DELR),
using active learning for
sample selection strategy

8-class: adipose, debris,
lymphocytes, mucus,

smooth muscle, normal
mucosa, stroma, tumor

epithelium

180.082 patches AUC: >0.95
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Brockmoeller
[90] J Pathol

Lymph Nodes
Metastasis (LNM)

prediction

ShuffleNet with transfer
learning for

end-to-end prediction

(A) Prediction: Any Lymph
Node Metastasis (B) >1 lymph

node positive

Køge/Roskilde and Slagelse
Hospitals/pT2 cohort (311

H/E sections) Retrospective
Danish Study/pT1 cohort (203

H/E sections)

pT1 CRC
>1 LNM AUROC: 0.733

Any LNM AUROC: 0.567
pT2 CRC

>1 LNM AUROC: 0.733
Any LNM AUROC: 0.711

Mittal
[40] Cancers Diagnosis Custom architecture with 12

CN and 3 FC Binary (cancer/normal) 15 TMAs ACC:98%, SP: 98.6%,
SE: 98.2%

Kim
[114] Sci Rep Tumor tissue

classification

Combination of
InceptionResNet.v2 with PCA

and Wavelet transform

5-class: ADC, high-grade
adenoma with dysplasia,
low-grade adenoma with

dysplasia, carcinoid,
hyperplastic polyp

Yeouido St. Mary’s Hospital
390 WSIs

Dice: 0.804 ± 0.125
ACC: 0.957 ± 0.025
Jac: 0.690 ± 0.174

Tsuneki
[62] Diagnostics Tumor tissue

classification

The authors use the
EfficientNetB1 model starting
with pre-trained weights on

ImageNet

4-class: poorly differentiated
ADC, well-to-moderately

ADC, adenoma,
non-neoplastic)

1.799 H/E WSIs AUC 0.95

Bustos
[106] Biomolecules

Tumor tissue
classification/MSI

prediction
Resnet-34 pre-trained on

ImageNet

(A) 9-class: adipose,
background, debris,

lymphocytes, mucus, smooth
muscle, normal colon

epithelium, cancer-associated
stroma, colorectal ADC

epithelium
(B) Binary (MSI-H/MSS)

72 TMAs (A) Validation test: AUC 0.98
(B) MSI AUC 0.87 ± 0.03

Bilal
[78] Lancet Digit Health

Prediction of molecular
pathways and

mutations

2 × pre-trained models (1)
ResNet-18, (2) adaptive

ResNet-34

Binary:
(1) High/low mutation

density
(2) MSI/MSS

(3) Chromosomal instability
(CIN)/Genomic stability

(4) CIMP-high/CIMP-low
(5) BRAFmut/BRAFWT
(6) TP53mut/TP53WT

(7) KRASmut/KRASWT

TCGA (502 slides) Pathology
Artificial Intelligence Platform

(PAIP) challenge—47 slides
(12 microsatellite instable and

35 microsatellite stable)

Mean AUROC
Hypermutation: (0.81 [SD

0.03] vs. 0.71),
MSI (0.86 [0.04] vs. 0.74),
CIN (0.83 [0.02] vs. 0.73),

BRAF mutation (0.79 [0.01]
vs. 0.66),

TP53mut (0.73 [0.02] vs. 0.64),
KRAS mutation (0.60 [SD 0.04]

vs. 0.60),
CIMP-high status 0.79

(SD 0.05)
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Table 1. Cont.

Year First Author Journal Aim of Medical
Research Technical Method Classification

Details Dataset Performance Metrics

Nguyen
[42] Sci Rep Diagnosis

Same approach with Nquyen
et al., 2021, presented in

Mod Pathol

3-class:
Tumor/Normal/Other tissue 54 TMA slides

SVEVC:
Tumor: Recall:0.938,

Precision:0.976, F1-score:
0.957, ACC: 0.939

Normal: Recall: 0.864,
Precision: 0.873, F1-score:

0.915, ACC: 0.982
Other tissue: Recall: 0.964,
Precision: 0.772, F1-score:

0.858, ACC: 0.947
Overall (average): Recall:

0.922, Precision: 0.907,
F1-score: 0.910, ACC: 0.956

Shen
[46]

IEEE/ACM Trans
Comput Biol

Bioinform
Diagnosis

A DenseNet based
architecture of CNN, in an
overall framework which
employs a Monte Carlo
adaptively sampling to

localize patches

3-class: loose non-tumor
tissue/dense non-tumor
tissue/gastrointestinal

cancer tissues

(i) TCGA-STAD 432 samples
(ii) TCGA-COAD 460 samples
(iii) TCGA-READ 171 samples

DP-FTD: AUC 0.779, FROC
0.817 DCRF-FTD: AUC 0.786,

FROC 0.821

2022

Schrammen
[79] J Pathol Diagnosis/Prediction of

IHC biomarkers

Novel method called
Slide-Level Assessment Model
(SLAM), uses an end-to-end

neural network based on
ShuffleNet

3-class: Positive tumor slides,
Negative tumor slides,

Non-tumor slides (A) Binary:
BRAF status

(mutated or non-mutated)
(B) Binary (MSI/MMR)

(C) Binary: High grade (grade
3–4)/Low grade (grade 1–2)

(A) Darmkrebs: Chancen
der Verhütung durch

Screening (DACHS) 2.448
H/E slides B) Yorkshire
Cancer Research Bowel

Cancer Improvement Program
(YCR-BCIP) 889 H/E slides

DACHS cohort
Tumor detection
AUROC: 0.980

Tumor grading AUROC: 0.751
MSI/MMRD or MSS/MMRP

AUROC: 0.909
BRAF status detection

AUROC: 0.821
YCR-BCIP cohort

MSI/MMRD status detection
AUROC: 0.900

Hosseinzadeh Kassani
[43] Int J Med Inform Diagnosis

A comparative study between
popular architectures (ResNet,
VGG, MobileNet, Inceptionv3,
InceptionResnetv2, ResNeXt,

SE-ResNet, SE-ResNeXt)

Binary (Cancerous/
Healthy regions)

DigestPath, 250 H/E WSIs,
1.746 patches

Dice: 82.74% ± 1.77
ACC: 87.07% ± 1.56

F1 score: 82.79% ± 1.79

Deshpande
[116] Med Image Anal Diagnosis

Novel GAN architecture,
called SAFRON, including
loss function which enables

generation of images of
arbitrarily large sizes after
training on relatively small

image patches

Binary (benign/malignant)

(A) CRAG (Graham et al.,
2019, Awan et al., 2017) 213
colorectal tissue images (B)

DigestPath 46 images

ResNet model median
classification ACC: 97% with

generated images added to the
Baseline set, and 93% without

ADC: Adenocarcinoma, ACC: Accuracy, AUC: Area under the ROC Curve, CNN: Convolutional Neural Network, IHC: Immunohistochemistry, SE: Sensitivity, SP: Specificity, TCGA: The
Cancer Genome Atlas, SVM: Support Vector Machine, CL: Convolutional layers, FC: Fully-Connected (output) layer, CRC: Colorectal Cancer, TMA: Tissue microarray, WSIs: Whole-slide
images, H/E: Hematoxylin and Eosin, MSI: Microsatellite Instability, MMR: Mismatch Repair, MSS: Microsatellite Stable, KRAS: Kirsten rat sarcoma virus, CIN: Chromosomal instability,
TP53: Tumor Protein 53, ICOS: Inducible T-cell COStimulator, APC: Adenomatous Polyposis, PIK3CA: Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha.
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4. Discussion

A pathology diagnosis focuses on the macroscopic and microscopic examination of hu-
man tissues, with the light microscope being the valuable tool for almost two centuries [11].
A meticulous microscopic examination of tissue biopsies is the cornerstone of diagnosis
and is a time-consuming procedure. An accurate diagnosis is only the first step for pa-
tient treatment. It needs to be complimented with information about grade, stage, and
other prognostic and predictive factors [4]. Pathologists’ interpretations of tissue lesions
become data, guiding decisions for patients’ management. A meaningful interpretation
is the ultimate challenge. In certain fields, inter- and intra-observer variability are not
uncommon [12,13]. In such cases, the interpretation of the visual image can be assisted
by objective outputs. Many data have been published over the last 5 years exploring the
possibility of moving on to computer-aided diagnosis and the measurement of prognostic
and predictive markers for optimal personalized medicine [117,118]. Furthermore, the
implementation of AI is now on the horizon. In the last 5 years, extensive research has
been conducted to implement AI-based models for the diagnosis of multiple cancer types
and, in particular, CRC [14,15,119]. The important aspects in a CRC diagnosis, such as
histological type, grade, stromal reaction, immunohistochemical and molecular features
have been addressed using breakthrough technologies.

The traditional pathology methods are accompanied by great advantages [120]. The
analytical procedures in pathology laboratories are cost-effective and, during recent years,
have become automated, eliminating the time and errors of procedures, while maintain-
ing high levels of sensitivity and specificity of techniques, such as IHC [119]. Despite
the widespread availability, challenges and limitations of traditional pathology methods
remain, such as the differences between laboratories’ protocols and techniques, as well
as the subjective interpretation between pathologists, resulting in inconsistency in diag-
noses [12,13]. Novel imaging systems and WSI scanners promise to upgrade traditional
pathology, preserving the code and ethics of practice [119]. The potential of DL algorithms
is expanding all over the fields in histopathology. In clinical practice, such algorithms could
provide valuable information about the tumor microenvironment quantitative analysis
of histological features [76]. Better patient stratification for targeted therapies could be
approached by DL-based models predicting mutations, such as MSI status [77,78,107].
More than ever, AI could be of great importance for a pathologist in daily clinical practice.
AI is consistently supported by extensive research, which is followed by good perfor-
mance metrics and potential. Several studies have shown that many DL-based models’
predictions did not differ in terms of statistical significance when compared to pathologists’
predictions [45,104]. Thus, DL algorithms could provide valuable results for diagnoses in
clinical practice, especially when inconsistencies occur. The available scanned histological
images can be reviewed and examined by the collaboration of pathologists simultaneously,
from different locations [121,122]. For an efficient fully digital workflow, however, the
development of technology infrastructure, including computers, scanners, workstations
and medical displays is necessary.

Summarizing the presented DL studies from the medical point of view, 17 studies
focus on diagnosis, classifying the images as cancer/not cancer, benign/colon ADC or
benign/malignant, 17 studies classify tumor tissues, 19 studies investigate the microenvi-
ronment of tumors, 14 studies extract histological features related to prognosis, metastasis
and survival, and finally, 10 studies detect the microsatellite instability status. The remain-
ing 5 studies that were not described mainly concerned the technical aspects of DL in
histological images of CRC. Summarizing the presented DL works from the technical point
of view, 80 studies are applications of CNNs, either for image segmentation or classification,
and 2 studies employ GANs for the simulation of histological images. The unbalanced
distribution between CNN-based and GAN-based studies is an expected result due to the
objectives of these two deep learning approaches. CNNs directly classify the images into
different categories (e.g., cancer/not cancer). In contrast, GANs just improve the dataset to
avoid overtraining and overfitting during the training procedure, without dealing directly
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with the main medical question. From the CNN-based studies, 10 studies proposed a
custom CNN architecture, which was developed from scratch, 42 studies employed already
developed architectures, often using transfer learning, and finally, 26 studies implemented
novel architectures, such as (a) the modification of those already developed (5 studies),
(b) a combination between CNNs or CNNs with other AI techniques (15 studies) and
(c) ensemble methods (6 Studies). Finally, two (2) of the studies did not provide any detail
about the DL approach.

The application of DL methods in the diagnosis of CRC over the last 5-years seems
to be evolving rapidly, faster than other fields of histopathology. However, it seems that
there is an expected gradual evolution, starting from the simple techniques of CNNs,
then employing transfer learning to the networks, and finally attempting to develop new
architectures, focusing on the requirements of the medical question. Additionally, in the
last two years, alternative deep learning techniques such as GANs have started to be used.
The contribution of such methods will be significant, since DL requires a sufficient size of
the training set to perform well and provide generalization. Large data sets may not always
be available from the annotations of pathologists and, therefore, need to be enriched with a
simulated training set.

It is expected that CNN’s application directly in histopathological images will present
a better performance compared to traditional techniques. CNNs are advantageous over
traditional image processing techniques due to the training procedure, while they are also
more robust than the traditional AI techniques because they automatically extract features
from the image. In this systematic review, different studies use a variety of performance
metrics, while the natures of each classification problem are also different to each other.
Therefore, it is not meaningful to calculate the average performance value for all the studies.
For this reason, only the accuracy (Acc) and area under the curve (AUC), which were
used more than the other metrics, have been used to evaluate each different classification
problem. The mean value and Standard Error of Mean have been computed for binary
classification problems (Acc = 94.11% ± 1.3%, AUC = 0.852 ± 0.066), 3-class classification
problems (Acc = 95.5% ± 1.7%, AUC = 0.931 ± 0.051), and finally 8-class classification
problems (Acc = 94.4% ± 2.0%, AUC = 0.972 ± 0.022), which provides sufficient samples of
these metrics. The above performance values confirm that DL in colorectal histopathological
images can achieve a reliable prediction.

5. Conclusions

When dealing with human disease, particularly cancer, we need in our armamentar-
ium all available resources, and AI is promising to deliver valuable guidance. Specifically
for CRC, it appears that the recent exponentially growing relevant research will soon trans-
form the field of tissue-based diagnoses. Preliminary results demonstrate that AI-based
models are further applied in clinical cancer research, including CRC, and breast and lung
cancer. However, to overcome several limitations, larger numbers of datasets, quality image
annotations, as well as external validation cohorts are required to establish the diagnostic
accuracy of DL models in clinical practice. Given the available collected data, a part of
the current systematic review could be extended to meta-analysis, especially utilizing the
data from retrospective studies and survival analysis. The latter could provide us with a
comprehensive status for the contribution of DL methods to the diagnosis of CRC.
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