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Abstract: X-ray angiography is commonly used in the diagnosis and treatment of coronary artery
disease with the advantage of visualization of the inside of blood vessels in real-time. However, it has
several disadvantages that occur in the acquisition process, which causes inconvenience and difficulty.
Here, we propose a novel segmentation and nonrigid registration method to provide useful real-time
assistive images and information. A convolutional neural network is used for the segmentation of
coronary arteries in 2D X-ray angiography acquired from various angles in real-time. To compensate
for errors that occur during the 2D X-ray angiography acquisition process, 3D CT angiography is used
to analyze the topological structure. A novel energy function-based 3D deformation and optimization
is utilized to implement real-time registration. We evaluated the proposed method for 50 series
from 38 patients by comparing the ground truth. The proposed segmentation method showed that
Precision, Recall, and F1 score were 0.7563, 0.6922, and 0.7176 for all vessels, 0.8542, 0.6003, and
0.7035 for markers, and 0.8897, 0.6389, and 0.7386 for bifurcation points, respectively. In the nonrigid
registration method, the average distance of 0.8705, 1.06, and 1. 5706 mm for all vessels, markers, and
bifurcation points was achieved. The overall process execution time was 0.179 s.

Keywords: percutaneous coronary intervention; image segmentation; convolutional neural network;
nonrigid registration; multimodality registration

1. Introduction

Recently, cases exhibiting the coronary artery disease have significantly increased
owing to the extension of the average life expectancy and lack of exercises [1,2]. The
coronary artery disease is caused by the narrowing or closing of the coronary artery due to
the stenosis and metabolic failure of a heart muscle [3]. Percutaneous coronary intervention
(PCI) is one of the frequently used treatment methods for coronary artery disease and
demonstrates advantages for a patient such as the minimization of mental and physical
strain [4,5]. However, as this treatment depends on 2D X-ray angiogram (XA) images and
anatomical 3D vascular structures, which are understood primarily by medical doctors
through intuition and haptic feedback, the accuracy of this difficult medical procedure
is not guaranteed [6]. While 2D XA images enable the identification of the movement of
blood vessels in real-time, they demonstrate a limitation as the information on the structure
of 3D shapes is lost in the process of being projected onto a 2D plane. 3D-computed
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tomography angiography (CTA) images are primarily images captured at the end-diastole
or end-systole; consequently, there are limitations in representing the movement of blood
vessels in real-time. Therefore, research on assistive technology that can represent moving
blood vessels in real-time is increasing.

To segment coronary arteries in XA images, various methods [7–10] have been pro-
posed. Wang et al. [7] proposed a method using hessian matrix multi-scale filtering and
multi-seed region-growing. In this method, two algorithms were combined and applied in
consideration of the characteristics of XA images to obtain robust results. Zhou et al. [8]
proposed a multi-feature based fuzzy recognition method. For robust vascular tree struc-
ture extraction, a probability tracking model that analyzed prior knowledge of features
of XA images was used. Lee et al. [9] proposed an intensity-vesselness gaussian mixture
model method in which the intensity value and vesselness value of the XA images were
combined. In addition, spatial prior probabilities for foreground and background were
additionally used. However, since these methods are performed only by 2D XA images, it
is difficult to grasp the information due to the 2D projection of 3D information, and there
are disadvantages in that the structure cannot be accurately identified due to overlap or
crossing exists between vessels and background clutter of organs, bones, and intervention
tools. Sun et al. [10] proposed a model-guided approach that additionally utilizes 3D blood
vessel information. However, since only the average distance is used in the segmentation
process, there is a limit to the use of 3D blood vessel information, which has a disadvantage
in that segmentation accuracy is lowered. These classical image processing methods have
the drawback that they take a very long time to execute in combination with various filters
or probabilistic models. In addition, it is necessary to define knowledge-based parameters
that are limited to a specific data group, or semi-automatically through manual seed point
input is required. As a result, these approaches cause limitations due to the difficulty of
generalization of target features and real-time application.

Extensive research [11–17] has been performed on multimodality registration of coro-
nary arteries. Metz et al. [11,12] and Baka et al. [13] proposed a registration method between
4D CTA and XA images. Metz et al. [11,12] was used for registration by generating digitally
reconstructed radiography images from 4D CTA images taken in multiphase in order to
minimize the difference in the deformation of vessels due to the heartbeat. Baka et al. [13]
proposed a nonrigid registration using an oriented gaussian mixture model between the
centerline extracted from the XA and CTA images. For the centerline, a 4D gaussian
mixture model (GMM) was constructed by adding a direction vector, and a statistical
shape model and modified L2 distance measurement were used. Kaila et al. [14] and
Rivest-Hénault et al. [15] proposed a registration method between 3D CTA and Bi-plane
XA images. Kaila et al. [14] proposed a coherence point drift registration that constructs
the 3D centerlines from Bi-plane XA and CTA images as a GMM and aligns it to the point
where the posterior probability is maximized. Rivest-Hénault et al. [15] performed global
registration to the point where distance is minimized through affine transformation. In
the local deformation, an energy term was designed and applied in consideration of the
characteristics of blood vessels and myocardium. However, since these methods use 4D
CTA or Bi-plane XA image information, they cannot be performed on general 3D CTA and
XA images, and limited use is possible. Kim et al. [16,17] extracted centerlines of blood
vessels from XA and CTA images, and projected 3D blood vessels as 2D blood vessels
to perform registration based on thin plate spline robust point matching algorithm [18].
However, the topology information of the 3D CTA blood vessels is not preserved in this
method because the transformation of the 3D objects is not considered. This is because
the registration process is performed only in 2D after the centerlines of the 3D CTA blood
vessels are projected as 2D images. In addition, owing to the lack of depth information,
the convergence to the local minimum in areas where local errors exist may lead to wrong
registration results.

To solve these problems, this paper proposes a fast, robust, and accurate convolutional
neural network (CNN)-based segmentation and nonrigid registration method based on
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phase structure analysis and similarity comparison. Unlike classical image processing
methods, a CNN-based coronary arteries segmentation method does not require specific
parameters according to the input data, and a robust fully-automatic segmentation result
can be obtained. The phase structure analysis performs a comparative analysis with the
phase structure of 3D blood vessels for the purpose of compensating for the insufficient 2D
XA image information. It uses a graph structure to reduce the complexity of blood vessels
and achieves efficient comparative analysis; moreover, this method performs reconstruction
and comparative analysis of the entire structure by assuming all possible connection paths
beginning from the smallest segment unit. During this process, point matching between
two vessels is performed based on the result of rigid registration to verify and apply
accurate correspondences. In this study, for more accurate nonrigid registration, similarity
comparison between corresponding blood vessels is performed using graph structures.
The similarity comparison uses feature information such as the curvature, thickness, and
shape of blood vessels. In addition, as energy functions are defined and utilized based on
the blood vessel feature information, two vessels can be matched to the optimal position.

2. Methodology

In this paper, a fast, robust, and accurate multimodality segmentation and registration
method using the process shown in Figure 1 was proposed to match the blood vessels in
3D CTA images, which were obtained before the procedure, and 2D XA images, which
were obtained during the procedure from the same patient, to provide useful guiding
information to the operator.

Figure 1. Process of proposed method.

In this paper, we used the characteristic information of blood vessels for application in
real time. To effectively utilize the blood vessel information of the preoperative 3D CTA
images, the 3D centerline and phase structure extracted from the 3D CTA images [19,20]
were used. The 2D XA images acquired in real time during the procedure were segmented
and reconstructed using CNN and 3D information. Rigid registration was used to utilize
the data of the same patient with information of different modalities [21]. Thereafter,
the phase structures of the two blood vessels were compared and analyzed based on the
results of the rigid registration. Graph structures were generated and used for efficient
calculation and comparative analysis. Although the phase structure of 3D blood vessels
was clearly divided based on the bifurcation point, the 2D blood vessels contain certain
inaccurate information. To improve the 2D information, all possible connection paths were
assumed to reconstruct the connection structure; then, the connection relationships of the
two vessels were compared and analyzed. Although the graph structure was efficient for
computation and comparative analysis, as the complexity of blood vessels were reduced to
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simplify the information regarding the blood vessels, it lacked feature information such
as the curvature, thickness, and shape of blood vessels. Therefore, similarity comparison
between the pieces of feature information of the two vessels was performed. The matching
relationship between the two vessels for comparison of the phase structure and similarity
was obtained by performing a slope-based point matching; moreover, an energy function
was defined to change the position and shape of the 3D centerline and was optimized to a
minimum value.

2.1. CNN-Based Coronary Artery Segmentation

In this paper, we used CNNs for segmentation of coronary arteries in 2D XA images.
The ground truth for learning was created by a cardiologist and researcher with more than
three years of experience using the semi-automated blood vessel segmentation method [22]
and Adobe Photoshop CS3.

2.1.1. Base Architecture

We used the network as shown in Figure 2 based on EfficientNet [23] and U-Net [24]
for CNNs segmentation of coronary arteries from 2D XA images. The network consists of an
encoding path and a decoding path. In the encoding path, it is a structure with maximum
accuracy within the constraints of expression capacity and computational complexity
through compound scaling, and the prediction accuracy was improved with much fewer
parameters and FLOPS through optimization. In the expanding path, it fuses coarse
semantic and fine appearance information using the information of the previous layer to
make sophisticated predictions. The MBConv block consisted of inverted residual block
and SE block. The inverted residual block represents a bottleneck block structure that
increased the number of channels through the expansion layer and decreased it to the
number of input channels through the depth-wise convolution and projection layer. The
SE block uses global average pooling (GAP) to squeeze important information from each
channel and performs recalibration according to the importance of the channel through
channel-wise dependencies calculation.

Figure 2. Overall network architecture of the proposed method.

2.1.2. Loss Function

In order to reflect the characteristics of blood vessels, it learns through the loss metric
considering each pixel and the shape. The overall loss function can be defined as:

L = LBCE + Lshape (1)

where LBCE represents pixel-wise binary cross-entropy loss used for binary segmentation
to distinguish between background and blood vessels.

LBCE = − 1
K

K

∑
k=1

(
ygk log

(
xpk

)
+
(
1− ygk

)
log
(
1− xpk

))
(2)
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where K is the number of pixels of the maps, yg ∈ [0, 1], xp ∈ [0, 1] denotes the label map
(training data of ground truth) and the predicted map. The pixel-wise binary cross-entropy
loss lacks reflection of features such as the overall shape of the segmentation object. An
additional Lshape penalty term was used to take into account elongated shapes such as
conduits of blood vessels.

Lshape =
1
K ∑

k

√
∑

i
(ydxe)

2 + ε2 (3)

where yd ∈ [0, 1] is the distance map generated by the chamfer distance [25] for the edge of
yg, xe denotes the edge created from xp. ε = 10−7 is a small number for numerical stability.

2.1.3. Learning the Network

The training data used a semi-automatically generated 344 Case, which had a reso-
lution of 512 × 512 pixels and pixel spacing values in a range of approximately 0.258 to
0.293. To improve segmentation performance, rigid transformation, crop, normalization,
gaussian noise, gaussian smoothing, and cutout [26,27] methods were randomly combined
and applied as an augmentation for learning the network. The cutout image augmentation
was applied to reflect the loss of information such as crossing or overlapping during the
projection process and narrowing or occlusion of blood vessel areas. Xavier uniform initial-
ization [28] was used to initialize the weights of the network. The Adam Optimizer was
used, and the learning rate was 3 × 10−4.

2.2. Multimodality Rigid Registration

The position and shape of blood vessels in preoperative 3D CTA and intraoperative 2D
XA images of the same patient may differ due to other external factors such as the patient’s
posture, heart rate, and respiration, and differences in protocols between imaging devices.
In order to reduce these errors, registration was performed at the position where distance
difference between the 3D and 2D centerline is the smallest by using the Euclidean distance
through the optimization of the transformation function [21]. It is based on Digital Imaging
and Communications in Medicine (DICOM) information obtained from the C-arm, which
is the imaging apparatus of the 2D XA image, to reduce the search space for registration.
The DICOM information is applied to 3D centerline extracted from 3D CTA image. Table 1
shows DICOM information.

Table 1. DICOM information [21].

Keyword Tag

PositionerPrimaryAngle (0018, 1511)
PositionerSecondaryAngle (0018, 1510)

ImagerPixelSpacing (0018, 1164)
DistanceSourceToDetector (0018, 1110)
DistanceSourceToPatient (0018, 1111)

The transformation function consists of a translation vector Tx, Ty, and Tz on the
x, y, and z axis direction and a central rotation vector Rx, Ry, and Rz on the x, y, and z
axis, respectively. Optimization of the transformation function is performed in the order
of translation TT and rigid transformation TR using parameter sets T ∈ R3, R ∈ R6,
respectively, as shown in the following equation [15]:
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TT(T) = MT
(
T3

1
)

TR(R) = MT

(
R3

1

)
·MR

(
R6

4

)

MT(T) =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

, MR(θ) =


czcy −szcx + czsysz szsx + czsycz 0
szcy czcx + szsysz −czsx + szsycz 0
−sy cysx cycx 0

0 0 0 1


(4)

where c = cos(θ) and s = sin(θ). By using DICOM information, the displacement of the
translation and rotation vector was limited in the transformation function as shown in
Equation (5), so the execution time of registration was shortened. In addition, Powell’s
optimization method [29] was used to converge to the optimal position. As such, it was
possible to enable fast and accurate registration.

|Tx| ≤ dmax,
∣∣Ty
∣∣ ≤ dmax, |Tz| ≤ dmax

|Rx| ≤ thR,
∣∣Ry
∣∣ ≤ thR, |Rz| ≤ thR

(5)

where dmax and thR represent the threshold of translation and rotation vectors, respectively.
These values were experimentally determined.

2.3. Graph Search and Analysis

In the case of 2D XA images, confusion regarding the background exists owing to the
presence of organs, bones, and surgical instruments. In addition, as the images of actual
3D blood vessels are captured after being projected on a 2D plane, the depth information
is unavailable. Consequently, there are errors in the structural information of the 2D
centerlines that are segmented from the 2D XA image; moreover, these errors may cause
errors in nonrigid registration. In this paper, to alleviate the occurrence of errors in nonrigid
registration, the vascular structure in the 2D XA image was reconstructed based on the
phase structure in the 3D CTA image and used in the nonrigid registration. Initially, a graph
structure for the vascular structure was generated to perform an efficient 2D/3D vascular
comparison by lowering the complexity of the vascular structure. This was represented as
(T, f ), consisting of a graph structure T and shape properties f. The graph structure T was
composed of vertices υ, edge E (E⊂ V × V), and root r, and was represented by T = (V, E, r).
The shape properties f were composed of n centerline points per edge, and represented by
f 3D: E→ R3n and f 2D: E→ R2n.

In the case of the graph structure from the 3D vascular structure T3D, as bifurcation
points were clearly identified and segmented, a tree structure was created. Conversely,
in the case of the 2D vascular structure, false bifurcation points may occur owing to the
confusion of the background. In addition, areas where blood vessels overlap or cross
each other may occur because of the lack of depth information. To solve this problem, the
graph structure for the 2D vascular structure was created for the smallest unit as shown in
Figure 3.

Figure 3. Creation of graph structure for vascular structure.

For the reconstruction of the shape properties of the 2D vascular structure, i.e., f 2D,
this paper assumed the following two facts. (1) Because the 2D and 3D blood vessel data of
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the same patient were used, accurately segmented f 2D and f 3D were similar. (2) Through
rigid registration, the same f 2D and f 3D existed within a certain range.

Based on these assumptions, we consider the set of candidate segments of f(i)2D that
satisfies the condition d2(f(i)2D, f(i)3D) < DTh for each f(i)3D that is defined as S(k)

3D→2D
(k = 1, 2, . . . , r), where r refers to the number of 2D candidate segments. To obtain the
connectivity information that is similar to the vascular structure and shape of f(i)2D and
f(i)3D, the connected structure was generated using S(k)

3D→2D. The connected structure
created for S(k)

3D→2D was defined as L(i)
2D. In L(i)

2D, all paths were searched to create all
connectable structures among the candidate segments, as shown in Figure 4.

Figure 4. Creation of all connected structures that can be combined.

Finally, the connection between candidate lines, hereafter referred to as candi-lines,
were analyzed to remove unnecessary candi-lines. The analysis of connection relations
was performed for T3D beginning from the lowest level including the leaf node toward
the highest level including the root node. As the 3D vascular structure was a seamless
connected structure, the connection elements of 2D candi-lines were analyzed based on the
3D segments connected to adjacent parent-child nodes. In this case, the child candi-lines
that were not connected to the parent candi-lines were regarded as unnecessary candi-lines
and removed.

2.4. Point Matching Using Distance and Gradient

The information on the curvature of the centerline was used to determine the optimal
point in the 2D centerline that matches each point of the 3D centerline. In cases where
point matching was performed using only simple curvatures [15], wrong point matching
could be achieved in certain areas, as shown in Figure 5b, owing to variations such as
errors, beats, and breathing that occurred during the segmentation or registration process.
In addition, multiple points may be matched owing to the lack of information pertaining to
the depths in 2D XA images. To perform robust and accurate matching in consideration
of these errors, Equation (6) was calculated using the information on all the neighboring
adjacent points, which were considered together.

M(i)
2D = argmin

 1
d2

∣∣c′i xj − yj + b
∣∣√(

1
2n+1 ∑n

i=−n c′i
)2

+ 1

+ d2

 (6)
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Figure 5. Comparison of point matching methods. (a) Distance-based methods. (b) Gradient-based
methods. (c) Proposed method.

Here, c′i represents the vertical gradient of the ith point of the 3D centerline and (xj, yj)
represents the 2D Point matched with (xi, yi). n denotes the number of adjacent points of
(xi, yi) and d2 denotes the Euclidean distance between two points. b represents the intercept
of the straight line that has a gradient of c′i and passes through (xj, yj).

Figure 5c shows the results of point matching performed using the proposed method.
As it can be observed in Figure 5c, the point matching method that uses the information of
adjacent points is more uniformly and accurately performed than point matching using
only the curvature or only one point.

2.5. Similarity Comparison

In this paper, the optimal candi-lines are selected through Equation (7) using the
distances and differences in gradients, lengths, and thicknesses between 3D segments and
candi-lines for accurate similarity comparison.

SM = argmin
(

αDθ + βd2 + γDTh + δDL
)

(7)

In Equation (7), Dθ , DTh, and DL indicate the differences in gradients, thicknesses, and
lengths between 3D segments and candi-lines, respectively. α, β, γ, and δ have values that
are not smaller than zero, and indicate the degrees of influence on each term. They are
determined experimentally. Each term is defined as follows.

Dθ = ∑
c′i x− y + b

d2

√
c′i

2 + 1
(8)

DTh =
1
N ∑(Th3D − Th2D)

2 (9)

DL =
∣∣∣(SL

3D − CL
2D

)
/SL

3D

∣∣∣ (10)

Th3D and Th2D represent the thicknesses of the blood vessels in the 3D and 2D seg-
ments, respectively, and sL

3D and cL
3D represent the lengths of the projected 3D segments

and 2D candi-lines, respectively. The thicknesses of the 3D blood vessels are measured
through the lengths of the vectors perpendicular to the gradient of the blood vessels. The
lengths are constructed under the condition of (vi, vi+1) ∈ E at i ∈ [1, k− 1] for path ρ
between the start and end points where the two vessels are matched.

ρ
(
v, v′

)
=
(
v = v1, v2, · · · , vk = v′

)
(11)

The length of ρ is defined as the sum of the Euclidean distances of the matched points.

d(ρ) =
k−1

∑
i=1

√
(vi − vi+1)

2 (12)
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2.6. Nonrigid Deformation through Energy Minimization

Energy functions are defined to change the positions and shapes of the vascular
centerlines; the positions of the 3D vascular centerline points are changed using the gradient
descent method so that the energy functions have minimum values. The energy functions
are defined as a combination of three terms, as presented in Equation (13).

E =
N

∑
i=0

(
µEcont(vi) + τEcurv(vi) + ϕEimage(vi)

)
(13)

Each energy term performs the role of inducing the shape and position to approximate
the 2D centerline while preserving the topological information of the 3D centerline. Econt
denotes the continuity of the centerline. When a centerline vs. is composed of N pieces of
points, v1, v2, . . . vN, the Econt at the ith point is calculated according to Equation (14).

Econt(vi) =
(

d‖vi − vi−1‖
)2

(14)

Here, d denotes the average distance between adjacent points, which ensures that
the distance between the adjacent points of the centerline is maintained constantly. Ecurv
performs the role of ensuring that the centerline does not vibrate or suddenly changes in
flexion; consequently, it creates a gentle and natural shape. Ecurv refers to the energy term
for the calculation of curvature and is expressed as presented in the following equation.

Ecurv(vi) =

∣∣∣∣d2vi
ds2

∣∣∣∣2 (15)

Econt and Ecurv are the energy terms that are used to determine the basic structure
of the centerline, while Eimage reflects the characteristics of the centerline. Thus, it is an
energy term that changes the position and shape of the 3D blood vessel according to the 2D
blood vessel.

Eimage(vi) = H(vi)
(
‖vi −

.
vi‖
)2 (16)

H(υ) represents {0, 1}. When H(υ) = 0, it indicates that (1) there is no matching point or
(2) the distance between the two points is more than the value of Maxdist; for the remaining
cases, H(υ) = 1 [15].

.
vi represents the point matched to vi.

3. Experimental Results

The experiment in this study was implemented in C ++ and Python and was performed
on a PC with Intel Core i7-8700 CPU (3.2 GHz), NVIDIA Geforce 1080 TI(11GB) 32 GB RAM
and Windows 7, 64-bit operating system installed with Visual Studio 2017 and Python 3.5.

3.1. Dataset

In this study, data from a total of 68 patients were used, and the CTA images of both
the left coronary artery (LCA) and right coronary artery (RCA) were used in the case of
27 patients, while the CTA images of either the LCA or RCA were used in the case of
11 patients. For the XA image, 394 series of images at different angles were captured from
the 68 patients. Figure 6 shows a series of XA images with different angles for the same
patient’s data.
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Figure 6. XA Images with different angles for the same patient. (a) Primary angle: −29.3, secondary
angle: −18.7. (b) Primary angle: 42.6, secondary angle: 15.8.

For the CTA data, images were captured using Siemens SOMATOM Definition Flash,
GE Lightspeed VCT, and Toshiba Aquilion ONE; moreover, the images had a resolution of
512 × 512 pixels and were captured at the end-diastole or end-systole. To convert the pixel
units into physical units, values ranging from 0.305 to 0.39 and 0.5 to 0.75 were used, for
pixel spacing and slice thickness, respectively. The XA images were captured using Philips
Allura Xper, GE DL, and Toshiba DFP-8000D C-arm. The XA images had a resolution of
512 × 512 pixels acquired at a rate of 15 frames per second. These images included blood
vessels that were visualized by administrating a contrast agent among consecutive frame
images. For the pixel spacing, values in a range of approximately 0.258 to 0.293 were used.

For the experiments, 344 series of 394 series of XA images were used as training
data, and the remaining 50 series were used as test data for evaluation. Ground truth
for training of CNN segmentation was created by a cardiologist and researcher with
more than three years of experience using the semi-automated blood vessel segmentation
method [22] and Adobe Photoshop CS3. A total of 2771 training data were used through
the data augmentation.

Ground truth data were created and used as a reference standard for quantitative
evaluation of the accuracy of segmentation and registration. One frame was selected out of
the 50 series of data as the ground truth, and a cardiologist and researcher with more than
three years of experience manually segmented the coronary arteries from the original XA
images using Adobe Photoshop CS3. The manually segmented ground truth was used as a
basis for comparison for obtaining segmentation results in previous studies; therefore, a
similar method was considered in the proposed method.

3.2. Simulation Data

In this study, for evaluating the accuracy of segmentation and registration, simulation
data were generated prior to the evaluation through clinical data for performing a prelimi-
nary evaluation. Through the preliminary evaluation, the performance of the proposed
method was characterized in ideal environments and scenarios and 3D registration errors,
which cannot be evaluated with clinical data, were evaluated [15]. The simulation data were
generated using a method similar to the method proposed by [15], as shown in Figure 7.
Initially, a blood vessel segmented from a 3D CTA image was projected on an X-ray image
in which no blood vessel was contrasted. In this case, to generate a natural image similar to
an actual XA image, the Hounsfield unit information of the CT image was reflected when
the blood vessel was projected. In addition, Gaussian smoothing and alpha blending were
performed on the projected image for improvement and natural integration of the area
around the boundary between two different images.



Diagnostics 2022, 12, 778 11 of 20

Figure 7. Creation of simulation data.

However, this method has a limitation that nonrigid deformation cannot be evaluated
in cases where the same 3D CTA image is used for the creation and registration of simulation
data. To improve this problem, 3D CTA images of the same patient that are captured
on different dates or phases are used for the creation of simulation data and nonrigid
registration. Using simulation data, parameters α, β, γ, and δ were used as 0.4, 0.7, 0.25
and 0.15 based on the optimal candi-line inclusion and the number of candidates. The
parameters µ, τ, and ϕ were measured as error values as 0.5, 0.4 and 0.6 based on the
average values of 3D Euclidean distance. For each parameter, one of the parameters was
varied, the other two were kept fixed (as shown in Figure 8).

Figure 8. Error after nonrigid registration. (a) Parameter µ, (b) parameter τ, (c) parameter ϕ.

The simulation data had the characteristics that was contained in the conversion
information, which was generated during creation, and were identical to the 3D blood
vessel used for registration. These characteristics enabled accurate error measurement
through the same correspondence point; moreover, it was possible to obtain 2D and 3D
error measurements. Figures 9 and 10 show the result of the accuracy measurement of the
proposed method for the simulation data.

Figure 9. Result of segmentation of simulation data. (a) Error measurement of centerline. (b) Error
measurement of segment.
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Figure 10. Result of nonrigid registration of simulation data. (a) Error measurement of 2D data.
(b) Error measure of 3D data.

For the accuracy measurement of segmentation, the average values of 2D Euclidean
distances were measured as error values for the 2D centerline/segment for which CNN-
based segmentation with the centerline/segment of the simulation data was performed. The
average error values of centerline pertaining to the LCA and RCA for 15 data values were
measured to be 0.0975 and 0.0884 mm, respectively, and the average error values of segment
were determined to be 0.6206 and 0.6195 mm, respectively. Segments were an important
component of blood vessels and structures and were useful for understanding structures
and nonrigid registration. For the accuracy measurement of registration, the average values
of the 3D and 2D Euclidean distances projected on the X-ray image were measured as
error values for the 3D centerline for which nonrigid registration with the centerline of
the simulation data was performed. The 2D average error values pertaining to the LCA
and RCA for 15 data values were measured to be 0.1374 and 0.0892 mm, respectively, and
the 3D average error values were determined to be 0.6439 and 0.8615 mm, respectively.
Therefore, the results of experiment performed using simulation data showed that the
proposed method can derive robust and accurate results of segmentation and registration.

3.3. Clinical Data
3.3.1. Segmentation of 2D XA Images

Figure 11 shows the results of the segmentation achieved by using the proposed
method. Figure 11a,b shows the results of the segmentation for the LCA and RCA, respec-
tively. It can be observed from Figure 11 that the blood vessels in the 2D XA images, which
were captured during the procedure, segmented well and could be visually confirmed.

In this study, we compared the accuracy of the blood vessel segmentation of our
method with those of the previous methods [10,24,30–39]. Table 2 presents the quantitative
results of the eleven methods [24,30,31,33–39] for the segmentation of the coronary arteries
on XA images, reporting the average similarity scores of 50 selected XA images with respect
to the ground truth. Precision, recall, and F1 score were based on true positive (TP), false
positive (FP), true negative (TN), and false negative (FN). TP represents the number of
vessel pixels classified as vessel, FP represents the number of background pixels classified
as vessel, TN represents the number of background pixels classified as background, and
FN represents the number of vessel pixels classified as background. Precision, Recall, and
F1 score represent TP/(TP+FP), TP/(TP+FP+FN), and 2TP/(2TP+FP+FN), respectively.



Diagnostics 2022, 12, 778 13 of 20

Figure 11. Results of segmentation. (a) Results of left coronary artery segmentation. (b) Results of
right coronary artery segmentation.

Table 2. Results of comparison of the proposed method with previous studies [24,30,31,33–39].

Method Precision Recall F1 Score

Proposed method 0.7563 0.6922 0.7176
CRFasRNN [33] 0.7378 0.5091 0.5874

U-Net [24] 0.7083 0.4713 0.5497
DeepLabV3+ [34] 0.6431 0.5266 0.5528

Frangi [30] 0.6725 0.3232 0.4172
Krissian [31] 0.2883 0.5078 0.3463

DPWrenGA [35] 0.3960 0.2582 0.2851
LBAdaptiveSOM [36] 0.4016 0.2526 0.2822

MixtureOfGaussianV2 [37] 0.5713 0.1325 0.2051
MultiLayer [38] 0.4631 0.1811 0.2128

PixelBasedAdaptiveSegmenter [39] 0.7784 0.1435 0.2250

CRFasRNN [33], U-Net [24], and DeepLabV3+ [34] were the results of applying the
segmentation method using a convolutional neural network. Frangi [30] and Krissian [31]
were representative 2D blood vessel segmentation studies. DPWrenGA [35], LBAdap-
tiveSOM [36], MixtureOfGaussianV2 [37], MultiLayer [38], and PixelBasedAdaptiveSeg-
menter [39] were the background subtraction (BGS) methods [40] used in computer vision.
We selected the top 5 best BGS methods [35–39]. We used the BGS library [40,41], and the
parameter settings of each BGS method. Some previous methods showed high precision,
but they resulted in very poor recall as a trade-off for increased precision. The recall was
generally lower in classical image processing methods [30,31,35–39] than in CNN-based
methods [24,33,34], which resulted in a very poor F1 score.

Table 3 presents the quantitative results of the three methods [10,32] for the segmen-
tation and its structure of the coronary arteries, reporting the average similarity scores
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of 50 selected XA images. For the quantitative measurement of the segmentation and its
structure results, the points and bifurcations of the same vessel between the segmentation
result and ground truth were compared. When the points and bifurcations of the centerline
of the segmentation result were within 1 and 3 mm with respect to the ground truth, it was
defined as TP, respectively.

Table 3. Results of comparison of the proposed method with previous studies [10,32].

Method
Points Bifurcations

Precision Recall F1 Score Precision Recall F1 Score

Proposed method 0.8542 0.6003 0.7035 0.8897 0.6389 0.7386
Sun et al. [10] 0.6009 0.2575 0.3235 0.5637 0.2018 0.2738
Park et al. [32] 0.6974 0.3737 0.4475 0.7235 0.4152 0.4708

Table 3 shows that the proposed method is generally more accurate than the previous
methods [10,32]. In particular, it can be seen that the proposed method was significantly
higher in the accuracy of blood vessel bifurcations. As the bifurcation points of the blood
vessels were important anatomical feature information that are required for the correct
insertion of the surgical instrument during the coronary intervention, accurate positional
information of the branching points should be provided to obtain highly reliable guidelines.

3.3.2. Nonrigid Registration

Figure 12 shows the results of the registration achieved by using the proposed method.
Figure 12a,b shows the results of the registration for the LCA and RCA, respectively. The
color of the centerline in the registration results indicate the depths; for higher depths, the
color s greener, while for lower depths, the color is redder, as shown in Figure 13. It can be
observed from Figure 12 that the blood vessels in the 3D CTA image, which were captured
before the procedure, and 2D XA images, which were captured during the procedure,
matched well and could be visually confirmed.

Figure 12. Results of nonrigid registration. (a) Results of left coronary artery registration. (b) Results
of right coronary artery registration.
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Figure 13. Color representation according to the depth of blood vessels [21].

To evaluate the accuracy of registration, errors were measured by comparing the
results of the registration, which was automatically matched through the proposed method,
with the ground truth centerline of the 2D XA image, which was manually segmented
by experts. While measuring the distance error for the entire blood vessel, it is possible
that the average error may be measured as a small value even when wrong blood vessels
are matched. Consequently, in this paper, the robustness of the registration was further
measured using bifurcation points and markers. As the bifurcation points of the blood
vessels are important anatomical feature information that are required for the correct
insertion of the surgical instrument during the coronary intervention, accurate positional
information of the bifurcation points should be provided to obtain highly reliable guidelines.
The points that were manually entered by experts for the 3D CTA image and ground truth
centerline were used as the markers. The robustness of the registration was measured using
the average of the distance errors between the markers.

ADD =
1
M

M

∑
i=1

E(pi − qi) (17)

Here, p and q denote the pairs of markers at two blood vessels and E(p − q) denotes
the Euclidean distance between the corresponding markers. M indicates the number of
markers; moreover, 10 pairs were used per patient.

The results of measurement of accuracy and robustness of the registration are shown
in Figure 14.

Figure 14. Results of measurement of the nonrigid registration of clinical data. (a) ADD. (b) Marker.
(c) Bifurcation.

Table 4 lists the results of the proposed method and previous studies. The accuracy
evaluation indexes used in experiments differed according to the study, and there were
significant differences in image modality. Therefore, there were limitations in determining
clear and accurate criteria for comparison. However, the proposed nonrigid registration
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method showed an accuracy of less than 1 mm and an execution time of about 0.1 s. This
indicates fast and accurate results.

Table 4. Results of the proposed method and previous studies.

Author Modality Dimensionality No. of Test
Subjects Accuracy Processing

Time (s)

Kaila et al. [14] Biplane XA/CTA 3D–3D 7 1.41 mm (RMSE 1) N/A

Khoo et al. [42] Biplane XA/CTA 2D–3D 6 3.8 mm (RMSD 2)
2.31 mm (RMSD 2)

0.4
15

Liu et al. [43] XA/CTA 2D–3D 10 0.6201 pix (MPE 3) 20
Park et al. [44] XA Sequence 2D–2D 9 7.02 mm (TRE 4) N/A
Kim et al. [16] XA/CTA 2D–3D 12 4.25/5 (Score 5) 4.5

Proposed method XA/CTA 2D–3D 50 0.8705 mm (ADD 6) 0.107
1 RMSD: Root mean square distance. 2 RMSE: Root mean square error. 3 MPE: Mean projective error. 4 TRE: Target
registration error. 5 Score: Average score by three experts on a five-point scale. 6 ADD: Average of distance difference.

Figure 15 shows the results of a nonrigid registration using the proposed method and
method proposed by Kim et al. [16]. The average of distance difference for the centerline of
the proposed method and that of the method proposed by Kim et al. [16] were 0.8705 and
1.2237 mm, respectively, which are numerically similar. However, the registration method
proposed by Kim et al. [16] may lead to a final matching result in which branch points are
not matched as shown in Figure 15 because certain blood vessels converge on the local
minimum at points where there are local errors.

Figure 15. Comparison of the nonrigid registration results. (a) Proposed method. (b) Previous
study [16].

4. Discussion

XA image is commonly used in percutaneous coronary interventions with the advan-
tage of visualization of the inside of blood vessels in real-time. However, the XA image
acquisition process has the following drawbacks: (a) loss of depth information (b) back-
ground clutter of bones, organs, and intervention tools (c) fast-disappearing contrast agents
(d) invisible areas such as lesions, etc. These drawbacks make it difficult to grasp and
analyze the exact structure of blood vessels using XA images.

We approached in phase to provide accurate information from 2D XA images. CNN
segmentation was performed to extract blood vessels from the XA image that is input at
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15 frames per second at various angles. It was a structure with maximum accuracy within
the constraints of expression capacity and computational complexity through compound
scaling, and the prediction accuracy was improved with much fewer parameters and FLOPS
through optimization. In addition, a loss metric considering the shape of blood vessels was
learned. As a result, the overall blood vessel was rapidly and robustly extracted from the
XA images acquired from various angles. Then, we utilized 3D vascular information to
improve the fundamental drawbacks of 2D XA images. A graph structure was used for
the efficient utilization of blood vessel information. Based on the 3D graph structure, the
2D graph structure was analyzed and reconstructed. In this process, errors caused by the
background clutter were improved. In particular, a more accurate structure was extracted
by improving the vascular area overlapped or obscured by the projection. Nonrigid
registration was performed similarity comparisons and energy functions that preserve
topology information in consideration of cardiovascular characteristics to complement
2D blood vessel information. The proposed method evaluated the entire blood vessel,
markers, and bifurcation points. The markers were manually entered by experts. It was
confirmed that the vascular structure was reconstructed and the nonrigid registration was
performed correctly. In particular, there are cases in which blood vessels visible in 3D CTA
are not visible in 2D XA images. The evaluation using markers is important for determining
whether to apply to patients such as the cases (like total occlusion). Bifurcation points are
used as important anatomical features for the accurate insertion of instruments. Therefore,
it was evaluated for clinical applicability. In addition, the evaluation using phantom was
used for error measurement in 3D. The proposed method demonstrated fast, robust, and
accurate results for segmentation and nonrigid registration in clinical data.

The proposed segmentation method is useful for segmentation such as the shape of
long and thin conduits such as vessels, and it is possible to optimize the structure using
compound scaling according to the input image. The registration method is flexible to
apply to other vessels composed of hierarchical structures, which includes the process of
analyzing the structure based on the characteristic information of the blood vessels. In
addition, since the entire registration process is performed based on the centerline extracted
from the 2D/3D images, a dimensional expansion for 3D–3D registration is flexible.

5. Conclusions

In this paper, CNN-based segmentation and the nonrigid deformation method to
represent the movement of the coronary artery in real-time while compensating for changes
in the position and shape of the coronary artery due to other external factors such as
heartbeat and breathing were proposed. The CNN-based segmentation extracted the
robust and rapid results for 2D XA images which were obtained from various angles in
real time. We also used 3D CTA information to complement the limitations caused by
the projection of 3D into 2D. The phase structures between blood vessels extracted from
2D XA and 3D CTA images were analyzed to utilize the characteristics of data from the
same patient with different pieces of modality information. Graph structures were used
for efficient comparative analysis of the phase structure while reducing the complexity of
the blood vessels. Although the phase structure of 3D blood vessels was clearly divided
based on the bifurcation point, the phase structure of 2D blood vessels contained certain
inaccurate information. To overcome this limitation, all possible connection paths were
assumed to reconstruct the entire structure by comparatively analyzing the connection
relations; further, point matching between two vessels was performed to verify and apply
the accurate corresponding relations. The point matching was performed using distances
and gradients together, and more accurate results were obtained by using information of
adjacent points and not merely one point. Although the graph structure is efficient for
calculation and comparative analysis as it lowers the complexity of blood vessels, thereby
simplifying the blood vessels, it lacks feature information such as the curvature, thickness,
and shape of blood vessels. Therefore, similarity comparison was performed to utilize the
feature information. In addition, energy functions were defined and utilized based on the
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blood vessel feature information to reflect changes in the position and shape according to
other external factors such as heartbeat and breathing so that registration to the optimal
position was possible.

According to the results of the experiment, the error for the all the blood vessels was
0.8705 mm, the error for the marker, which was manually entered by the experts, was
1.06 mm, and the error for the bifurcation point was 1.5706 mm. In addition, the overall
execution time of the segmentation and nonrigid registration was 0.179 s. Therefore, it
can be concluded that an accurate segmentation and nonrigid registration was performed
within a short amount of time.
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