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Abstract: The major cause of death worldwide is due to cardiovascular disorders (CVDs). For a
proper diagnosis of CVD disease, an inexpensive solution based on phonocardiogram (PCG) signals
is proposed. (1) Background: Currently, a few deep learning (DL)-based CVD systems have been
developed to recognize different stages of CVD. However, the accuracy of these systems is not
up-to-the-mark, and the methods require high computational power and huge training datasets.
(2) Methods: To address these issues, we developed a novel attention-based technique (CVT-Trans)
on a convolutional vision transformer to recognize and categorize PCG signals into five classes. The
continuous wavelet transform-based spectrogram (CWTS) strategy was used to extract representative
features from PCG data. Following that, a new CVT-Trans architecture was created to categorize the
CWTS signals into five groups. (3) Results: The dataset derived from our investigation indicated
that the CVT-Trans system had an overall average accuracy ACC of 100%, SE of 99.00%, SP of 99.5%,
and F1-score of 98%, based on 10-fold cross validation. (4) Conclusions: The CVD-Trans technique
outperformed many state-of-the-art methods. The robustness of the constructed model was confirmed
by 10-fold cross-validation. Cardiologists can use this CVT-Trans system to help patients with the
diagnosis of heart valve problems.

Keywords: cardiovascular disease; heart valve disorders; continuous wavelets transform; vision
transformers; deep learning; convolutional vision transformer

1. Introduction

The main cause of death worldwide is cardiovascular disease (CVD), which claims more
than 17 million lives each year [1]. CVD disease creates other pathological [2] issues with the
heart, heart valves, or blood vessels. In this study, the authors describe a cost-effective and
non-invasive technique for capturing heart signals through phonocardiography (PCG) [3,4].
It aids in enhancing the diagnosis of cardiac disorders and in creating new perceptions
regarding the connection between the signal and the mechanical function of the heart. PCG
signals can be used to diagnose a variety of CVD signals, including mitral stenosis (MS),
mitral regurgitation (MR), aortic stenosis (AS), and mitral valve prolapse (MVP). A visual
example of these PCG signals, categorized into five classes, is shown in Figure 1.
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Figure 1. Signals of the existing CVD classes, using a phonogram, (a) Aortic stenosis (AS), (b) Mitral 
regurgitation (MR), (c) Mitral stenosis (MS), (d) Mitral valve prolapse (MVP) and (e) Normal.  

In practice, the visual screening of the PCG signal takes time [5] and is prone to error. 
Still, the arbitrary PCG signal inspection and analysis required by doctors requires 
substantial training and expertise. This encouraged the creation of a computer-aided 
diagnostic (CAD) method for the recognition of PCG signal-based cardiac screening and 
abnormality detection. CVD classification is currently a promising topic of research, based 
on biomedical signal processing and artificial intelligence (AI) [6]. Techniques utilizing AI 
can be utilized to get around these restrictions. Machine learning (ML) is a branch of AI 
that entails feature selection, statistical analysis, salient feature extraction (SFA), and 
classification. ML techniques are extensively used in combination with PCG signals to 
detect heart sounds [7]. Recently published papers for the diagnosis of cardiac illnesses 
used a variety of suggested research and methodologies [8–10]. Unfortunately, accuracy 
was not adequate, so the focus of attention shifted to developing a very accurate ML or 
DL for the diagnosing of cardiac problems. In the past, authors used a variety of feature 
extraction techniques and classifiers. However, these feature selection and classification 
techniques were hand-crafted, and frequently relied on iterative trial and error. To resolve 
this issue, deep learning (DL) techniques were developed. 

Currently, DL algorithms are still used as the primary approach in detecting heart 
sounds, because smart detection PCG technology has not yet been widely adopted in 
actual clinical diagnosis. Therefore, advancements in the field of CVD diagnosis are 
facilitated by the study of, and deployment of, computer-aided (CAD) heartbeat detection 
techniques. In the past, cardiovascular disease was mostly detected using the following 
four steps: (1) preprocessing of the HS signals, (2) feature extraction, (3) feature selection, 
and (4) identification of normal and abnormal HS recordings. 

It is difficult to categorize PCGs into five stages [11–16]. It is important to note that 
during the feature extraction step, several characteristics of one-dimensional signals are 
shared by various cardiovascular illnesses. The outcome of multi-classification may be 
impacted by these related properties. Therefore, it is crucial to emphasize the diversity of 
the various characteristics of heart disorders. There have been numerous manual feature 
extractions. Most of these hand-crafted features, such as amplitude, time interval, 
kurtosis, energy ratio, MFCC, entropy, etc., have physiological causes. Previous research 
often used these parameters to undertake binary categorization (normal PCG vs. 
abnormal PCG). This feature of manual computation is small and straightforward, but it 
might not be good enough for multi-classification and new databases. 

As a result, there is a need to extract deep features for multi-class recognition. It is 
difficult to categorize five stages of CVD by using one-dimensional PCG signals. As a 
result, we employed a technique based on continuous wavelet transform-based 

Figure 1. Signals of the existing CVD classes, using a phonogram, (a) Aortic stenosis (AS), (b) Mitral
regurgitation (MR), (c) Mitral stenosis (MS), (d) Mitral valve prolapse (MVP) and (e) Normal.

In practice, the visual screening of the PCG signal takes time [5] and is prone to
error. Still, the arbitrary PCG signal inspection and analysis required by doctors requires
substantial training and expertise. This encouraged the creation of a computer-aided
diagnostic (CAD) method for the recognition of PCG signal-based cardiac screening and
abnormality detection. CVD classification is currently a promising topic of research, based
on biomedical signal processing and artificial intelligence (AI) [6]. Techniques utilizing
AI can be utilized to get around these restrictions. Machine learning (ML) is a branch of
AI that entails feature selection, statistical analysis, salient feature extraction (SFA), and
classification. ML techniques are extensively used in combination with PCG signals to
detect heart sounds [7]. Recently published papers for the diagnosis of cardiac illnesses
used a variety of suggested research and methodologies [8–10]. Unfortunately, accuracy
was not adequate, so the focus of attention shifted to developing a very accurate ML or
DL for the diagnosing of cardiac problems. In the past, authors used a variety of feature
extraction techniques and classifiers. However, these feature selection and classification
techniques were hand-crafted, and frequently relied on iterative trial and error. To resolve
this issue, deep learning (DL) techniques were developed.

Currently, DL algorithms are still used as the primary approach in detecting heart
sounds, because smart detection PCG technology has not yet been widely adopted in
actual clinical diagnosis. Therefore, advancements in the field of CVD diagnosis are
facilitated by the study of, and deployment of, computer-aided (CAD) heartbeat detection
techniques. In the past, cardiovascular disease was mostly detected using the following
four steps: (1) preprocessing of the HS signals, (2) feature extraction, (3) feature selection,
and (4) identification of normal and abnormal HS recordings.

It is difficult to categorize PCGs into five stages [11–16]. It is important to note that
during the feature extraction step, several characteristics of one-dimensional signals are
shared by various cardiovascular illnesses. The outcome of multi-classification may be
impacted by these related properties. Therefore, it is crucial to emphasize the diversity of
the various characteristics of heart disorders. There have been numerous manual feature
extractions. Most of these hand-crafted features, such as amplitude, time interval, kurtosis,
energy ratio, MFCC, entropy, etc., have physiological causes. Previous research often used
these parameters to undertake binary categorization (normal PCG vs. abnormal PCG).
This feature of manual computation is small and straightforward, but it might not be good
enough for multi-classification and new databases.

As a result, there is a need to extract deep features for multi-class recognition. It is
difficult to categorize five stages of CVD by using one-dimensional PCG signals. As a result,
we employed a technique based on continuous wavelet transform-based spectrogram
(CWTS) strategy to transfer energy from the PCG signal into 2D spectrogram images.
Moreover, deep features were utilized in this paper to develop a classifier. To automatically
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extract more detailed information, several researchers have employed deep-learning models
like CNN or other ANN models. In this study, we created a CNN model that is trained
on discriminant representations of non-segmental PCG frames to offer a useful method
for automatic detection. Our primary goal was to investigate alternate feature extraction
methods for PCG classification, based on convolutional vision transformer (CVT), which is
a combination of DL and vision transformer. The following are the novel contributions of
this study:

We propose the convolutional vision transformer (CVT) architecture, based on local
and global attention mechanisms, which is computationally efficient. It is possible to
recognize 1-D signals in 2-D spectra for effective extraction of features.

A continuous wavelet transform-based spectrogram (CWTS) strategy is employed to
transfer energy from the PCG signal into 2D images.

A simple and reliable attention-based transformer model is developed to classify
multi-class PCG signals accurately and efficiently.

A classification of five designated categories is presented in this paper, based on heart
sounds.

The rest of the paper is organized as follows. Section 2 introduces the details of previ-
ous work. Section 3 presents the proposed method, including PCG datasets, CWT, the trans-
formation of signals into a spectrogram, feature extraction and selection, attention-based
vision transformer model, and classification procedures. Section 4 presents experimental
results. Sections 5 and 6 provide some discussion and conclusions, respectively.

2. Literature Review

Heart sound segmentation (HSS), feature extraction (FE), and classification are the
three phases that traditionally go into heart sound classification. The initial stage aims
to locate the location of the basic heart sounds (HS). Each PCG recording is divided into
several HD segments. The systolic and diastolic areas of the heart sounds are revealed by
the precise localization of the HS. Segmentation is not required because the goal of abnormal
HS detection is primarily to identify an abnormality in the heart sound, rather than to detect
its presence. Therefore, a variety of strategies for classifying heart sounds without any
segmentation have been suggested in the literature. When the segmentation information
from the various strategies is used, they can attain equivalent results. A comparative
performance of existing work for cardiac disease classification (CDC) is described in Table 1.

Regarding the second stage, numerous feature extraction algorithms have been pro-
posed in the literature, falling into the following three primary categories: time domain [17],
frequency domain [18], and time-frequency complexity domain [19]. Due to the physiologi-
cal properties of the PCG signals, the time or frequency domain features are straightforward,
simple to grasp, and easy to calculate. However, it can be challenging to quantify certain
critical PCG signal information independently in the time or frequency domain. As a result,
time–frequency (TF) domain feature extraction is growing in popularity. The TF-based
features can offer more thorough information about the PCG signal and better feature
extraction performance results, even though they require greater computing complexity
than features based just on time or frequency [20]. Wavelet transformation, discrete and
packet wavelet transform (DPWT), Hilbert transform (HT), empirical wavelet transform
(EWT), variational mode decomposition (VMD), and adjustable Q-wavelet transform are
some of the popular TF feature extraction techniques for PCG signals (TQWT). When
the PCG signal’s TF matrix is generated using spine CT, it can more accurately capture
pathological changes and offer superior resolution in the TF domain. However, due to the
nonstationary and varied properties of PCG signals, such manually created features have
their constraints, and feature extraction is still a difficult operation.

The final stage involves training a classifier on the retrieved characteristics to produce
predictions for each PCG signal [21–26]. To categorize the HS based on extracted features,
several machine learning-based classifiers have been proposed, such as the support vector
machine (SVM), decision tree (DT), K-nearest neighbor (KNN), artificial neural network
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(ANN), multi=layer extreme learning machine (ML-ELM), hidden Markov model (HMM),
etc. An ensemble of various classifiers was also used to further enhance classification
performance. In [27], the authors suggested a tent-pooling decomposition and a graph-
based feature generator to extract features. Five classes of PCG signals were classified
using DT, linear discriminant, bagged tree, and SVM classifiers after iterative neighborhood
component analysis (NCA) was used to determine the features. In [28], the authors chose
the most discriminative features for NCA using a one-dimensional (1D) binary pattern
with three kernels. For the classification of PCG signals, KNN and SVM were used. In [29],
the authors took six audio variables from audio samples of PCG signals, including spectral
centroid, zero crossing rate, energy entropy, spectral roll-off, volume, and spectral flux, and
submitted them to four conventional machine learning-based classifiers for classification.
Although PCG categorization has greatly improved thanks to machine learning-based
techniques, these methods are still subjective and time-consuming [30]. Convolutional
neural networks (CNNs) and long short-term memory (LSTM) are two deep learning
models that have recently been used for the classification of heart sounds [30–34]. They
have drawn more attention because of their automatic analysis and extraction of high-level
representations from heart sounds. Additionally, it is becoming popular to identify PCG
signals directly from entire audio recordings without first segmenting them.

Table 1. A Comparative performance of existing work for cardiac disease classification (CDC).

Cited Reference * Dataset Feature Extraction Classification Results Limitations

Z.H. Wang et al. [17] PRV CWT + Spectrogram LSTM-RNN ACC: 93% Five Classes

A.M. Alqudah [18] PhysioNet and
GitHub dataset

Instantaneous
frequency-based

features
RF and KNN ACC: 95% Five Classes

X. Cheng et al. [19] Open Heart
sound dataset

Heart sound
segmentation

features

Fisher ratio (FR). Finally, the
Euclidean distance (ED) and

the close principle
ACC: 96% Two Classes

A. Rath et al. [20] Pascal CHSE
dataset

DWT and MFCC
features RF-MFO-XGB ensemble ACC: 89% Three Classes

J. Li et al. [21] PRV Multidimensional
Scattering transform PCA and Twin SVM ACC: 98% Two Classes

F. Khan et al. [22] PhysioNet
Mel Frequency

Cepstral Coefficients
(MFCC)

ANN + LSTM AUC: 91% Two Classes

A.T. Saputra et al.
[24] - PCA data correlation NN and PSO AUC: 98% Two Classes

O. Arslan [25] PRV PWPT + EMD
features RF ACC: 99% Two Classes

J.S. Khan [26] PhyioNet
Power Spectrum
discriminating

features
CNN ACC: 98.89% Two Classes

A. Yadav [29] NIH Spectral Statistical
Features

SVM, k-NN, random forest,
Naïve Byes ACC: 97% Two Classes

P. Dhar [34] PhyioNet Cross-wavelet
transform (XWT)

Cross-wavelet transform
(XWT) assisted Convolution

neural network (CNN)
utilizing the AlexNet model

ACC: 98% Two classes

* PRV: Private dataset, DWT: Discrete wavelet transform, RF: Random Forest, CNN: Convolutional neural network,
NN: neural network, PSO: Particle swarm optimization, SVM: Support vector machine, AUC: area under the curve,
LSTM-RNN: long-term short-term memory recurrent neural network, CWT: continuous wavelets transform, PCA:
principal component analysis.
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Time, frequency, time–frequency (TF) features, energy features, and entropy features
were all merged into feature vectors by the authors. For PCG classification, they were
combined with the deep learning features that CNN had previously collected from pictures
with Mel frequency cepstral coefficients (MFCCs). According to the authors, handcrafted
characteristics could only reflect the differences in PCG signals brought on by HVDs from
specific angles in practical applications. More thorough disease-related data could be
gathered when deep learning characteristics, having good representation capabilities, were
combined. In [35], the authors developed a new 2D CNN architecture for HS classification
that could extract more discriminative features while using fewer parameters. This architec-
ture included spatial and channel-wise attention methods. In addition, more recent studies
have been reported to use PCG signals, spectrogram and deep learning techniques [36–41].

3. Materials and Methods
3.1. Acquisition of Dataset

To test and train the convolutional vision transformer (CVT), we used a dataset that
is publicly available in the form of PCG signals. A total of 1000 PCG recordings from five
different courses, each with 200 recordings, were produced. The various signal classes were
N, AS, MS, MR, and MVP. Each recording was sampled at an 8000 Hz frequency.

This dataset was the phonocardiogram database [22]. The database has over 1000 au-
dio recordings in wav audio format, though it is unknown how many individuals are
included, and 8000 Hz is the sampling frequency. The other two types of heart sound
signals (HSS) were normal (N) and four primary valvular heart disorders, including mitral
stenosis (MS), mitral valve prolapse (MVP), mitral regurgitation (MR), and aortic stenosis
(AS). In each category, there were 200 HD recordings (200 audio recordings). In database A,
heart sound signals could last anywhere from 1.1556 to 3.9929 s. Based on the minimum
time length of the HS signal in the dataset, we used the HS signal’s maximum time of
1.1556 s. The dataset of the five categories of original HS could be obtained in the repos-
itory: https://github.com/yaseen21khan/Classification-of-Heart-Sound-Signal-Using-
Multiple-Features- (accessed on 10 September 2021).

All PCG recordings were sampled at an 8 kHz rate, and a subsequent de-noising
preprocessing step was then applied. The noise that contaminates PCG signals typically
comes from a variety of sources. Therefore, filtering noise to eliminate these distortions
is crucial. This should be done so as to keep all diagnostic data needed for PCG signal
processing, while deleting all unnecessary components known as noise. To reduce as much
background noise as possible, the PCG signals were carefully filtered. Therefore, out-of-
band noise was reduced by using a Butterworth bandpass filter with cut-off frequencies of
25 Hz and 900 Hz. A visual example of this five-stage PCG is displayed in Figure 2.
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3.2. Proposed Methodology

This study investigated the classification of heart sounds into five distinct categories,
including artifact, extra heart sound, extra systole, murmur, and normal, using a 2D
convolutional neural network. With no segmentation of the heart sound waves, the goal of
this research was to develop a trustworthy method for the automatic detection of heart valve
diseases (HVDs). When using a deep learning (DL) model to detect anomalous patterns in
PCG data, a CWT spectrogram was used to extract representative features. The immediate
energy of the PCG signal was first divided into various sub-bands using CWT. These
sub-bands, which served as discriminant traits, had preserved the oscillatory characteristics
of PCG. Second, these features were converted from being one-dimensional (1D) to two-
dimensional (2D) spectrograms using a continuous wavelet transform-based spectrogram
(CWTS) strategy. Following that, a brand-new attention-based transformer architecture
was created to categorize the spectrogram into five groups. To test the effectiveness of the
suggested strategy, experiments using multi-class classification (normal vs. AS vs. MR vs.
MS vs. MVP) were conducted using three freely available PCG datasets. Finally, various
performance metrics were used to assess the categorization outcomes. The proposed
algorithm’s flowchart is shown in Figure 2.

Research manuscripts reporting large datasets that were deposited in a publicly avail-
able database should specify where the data were deposited and provide the relevant
accession numbers. If the accession numbers have not yet been obtained at the time of
submission, it is necessary that they are provided during review. They must be provided
prior to publication.

3.2.1. Signal Preprocessing and Noise Removal

PCG signals frequently experience noise from sources such as lung noises, power
frequency interference, electromagnetic interference from the environment, and interference
from electrical signals with human body signals. The diagnosis of PCG recordings is made
difficult, if not impossible, by these diverse noise components. Due to its features like multi-
resolution and its windowing technique, continuous wavelet transform (CWT), which is
a collection of high-pass and low-pass filters, exhibits exceptional performance in signal
denoising.

The sample frequency of the dataset was 8000 Hz. However, the sampling frequency
for database B was 2000 Hz. We did not pre-process database A. We preprocessed database
B, keeping database A’s original signal intact. To reduce the difference in sampling fre-
quency, the dataset sample frequency was reduced to 2000 Hz. After that, the sample length
of the heart sound signals in the two databases was fixed at 2312. The heart sound record-
ings from database B contained a small amount of noise, but the signal quality in database
A was excellent. As is well known, the frequency of a heartbeat typically ranges from 50 to
150 Hz [28]. Digital filters are used to filter out low and high-frequency components. In
this work, a third-order Butterworth filter with a bandwidth of 15 Hz to 150 Hz was used
to filter the HS signals. To remove noise beyond the bandwidth and avoid time delay, the
filtered sequence was then reversed and put through the filter once again. The dataset’s
signal was then normalized.

3.2.2. Data Augmentation

The application of conventional data augmentation techniques to the field of heart
sound signals (HSS) is hampered by the time series nature of the signal and the unique
characteristics of each individual. Therefore, finding a more appropriate and efficient
augmentation method than the original HSS was one of the main challenges in designing
the multi-label heart sound (HS) diagnosis system. Data augmentation operations often
involve flipping, rotating, reflecting, shifting, zooming, contrasting, coloring, and noise
disruption [29–31]. However, data augmentation techniques in the realm of images only
alter fundamental details, such as location and angle, from a macro-perspective and,
therefore, are only applicable to straightforward computer vision techniques, like image
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recognition, and they cannot be used to augment data. The PCG augmentation approach
used in this study utilized a 1D signal augmentation mechanism. In order to identify the
model with a greater generalization performance, the augmentation approach incorporated
HS signals in a variety of instances. The research investigated backdrop forms while also
allowing transfer learning models to classify different heart sound signals even in noisy
environments.

The heart sound signal “original signal” was a specific HSS. The equisized back-
ground transformations were produced stochastically at the same moment. “Delta” was
used to represent a deformation control parameter, and “random signal” was used to repre-
sent a background transformation. The background deformation’s “delta” ranged from
“(0, 1).” Equation (2) was used to calculate the augmented signal, which was produced by
combining the original heart sound signal with random background noise. It should be
emphasized that there was no data augmentation in the testing unit. The outcome of the
augmentation of the data is shown in Figure 3. Figure 3a shows the initial HSS. Figure 3b
shows the HSS that was enhanced using Equation (2), and Figure 3c shows the denoised
signal of Figure 3b. Finally, there were 2400 PCG recordings altogether in the database.
Each lesson contained 400 PCG recordings.

3.2.3. Signal Transformation

To determine the time–frequency representation of a sound, time–frequency (TF)
transformation is a popular method in the classification of speech events. Using TF repre-
sentation, a one-dimensional (1D) signal is converted into a three-dimensional (3D) image.
Following that, the most likely sound source is identified using the attributes that were
derived from the transformation. Based on their analysis in [32], the authors drew the
conclusion that the continuous wavelet transform-based spectrogram (CWTS) presented
the TF content of PCG signals in the clearest representation [42]. Several authors’ analyses
showed that the CWTS process and the signal were represented in the form of a spectro-
gram. The heart-sound signal’s magnitude spectrogram is computed for each sample. The
transfer learning models were tested and trained using these spectrograms. We employed
the CWTS process, compared to the technique in [17], for recovering heart sound signals,
based on LSTM architecture.

The “scale” parameter of the wavelet transform could be altered to identify various
frequencies in the signal, as well as their locations. We now knew the frequencies present
in the time signal as well as their locations. Wavelets compressed at smaller scales could,
therefore, collect higher frequencies. A wider scale, on the other hand, meant lower
frequencies could be picked up. An illustration of a compressed and stretched wavelet can
be seen in the image below. Superior time and frequency resolution was provided by the
CWT. This enabled the use of various analysis windows of varying sizes and frequencies.
The spectrograms of the heart sound signals showed the frequencies at different times and
offered a visual representation that could be utilized to distinguish individual heart sounds.
The CWT produced data for a spectrogram, and each RGB image was downsized to an
array of size (n-by-m-by-3) to match the inputs of various deep learning (DL) algorithms.
Figure 4 displays the six typical HS signal spectrograms. The spectrogram of the original
heart sound signals (HSS) is shown in Figure 3’s time–frequency plot, and the spectrogram
of the heart sound (HS) signals is shown in Figure 3 in the form of a color spectrogram.
The CWT, often referred to as the constant-Q transform, is a technique for time–frequency
analysis that offers an equal-resolution time–frequency representation of a signal on a log–
frequency scale (Figure 2). Particularly in the high-frequency range, the human auditory
filter bank is known to have an equal resolution on a log–frequency scale as with the CWT.
Hence, modeling, analyzing, and processing spectrograms obtained by the CWT would
be one promising technique to enable computers to mimic the important functions of the
human auditory system (a spectrogram). In fact, recent research has demonstrated that
multiple fundamental frequency estimation performed exceptionally well in the magnitude
CWT spectrogram domain.
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On a logarithmic frequency scale, CWT spectrograms have an equivalent resolution to
STFT spectrograms, but STFT spectrograms have the opposite. Compared to the short-time
Fourier transform (STFT), the CWT has a much slower rate of calculation; this approach
takes a very long time to complete. The reduction of computational complexity could be
crucial in real-world circumstances. The phase might currently be quickly determined from
a magnitude STFT spectrogram by the authors and collaborators [8]. The waveforms in
the overlapping portion of succeeding frames must be constant when the hop size is less
than the frame length. By implication, an STFT spectrogram is a redundant representation.
Therefore, for the STFT spectrogram to be connected to a time-domain signal, a specific
requirement must be met. This requirement has been referred to as the consistency require-
ment. In [8], we demonstrated how the issue of determining the phase from a magnitude
STFT spectrogram might be framed as a conundrum of consistency criterion optimization.
It specifies the deviation of any complicated array from this requirement. It soon became
apparent that the algorithm was the same as the well-known technique put forth. We were
able to introduce a quick approximation technique and provide a very clear demonstration of
the algorithm’s convergence thanks to the formulation derived from the idea of spectrogram
consistency. We might be able to make the most of the spectrogram consistency notion to
create a quick approximation for phase estimation from a magnitude CWT spectrogram,
because a CWT spectrogram is also a redundant representation of a signal.

The ECG signal’s spectrum density is described by a spectrogram over time. It displays
a time–frequency domain signal. It is determined mathematically by the squared magnitude
of the signal’s short-time Fourier transform (STFT), as calculated by Equation (1):

Spect(t, w) = |STFT(t, w)|2 (1)

where, the function Spect(.) is the defined spectrogram over time, w parameter stands for
frequency (in radians/seconds) and t stands for time (in seconds). A signal’s local segments’
sinusoidal frequency and phase content are estimated by STFT as a time-varying function.
Long signals are divided into smaller chunks, and each segment’s Fourier transform is
computed. As a result, during a limited amount of time, a spectrogram represents the
time–frequency intensity spectrum.



Diagnostics 2022, 12, 3109 10 of 26

3.2.4. Features Extraction and Classification Using CVT

After successful completion of preprocessing, signal transformation using continuous
wavelet transform-based spectrogram (CWTS) was performed, and the classification was
performed by using a convolutional vision transformer (CVT) algorithm to recognize CVD
into the following five classes of PCG signals: aortic stenosis (AS), mitral regurgitation
(MR), mitral stenosis (MS), mitral valve prolapse (MVP), and normal. To develop the CVT
model, we employed Inception v3 as a pretrain model by removing the last layer, as that
layer is used to extract deep features. Compared to other pre-trained models, such as
VGG16 or VGG19, this paper used the Inception v3 architecture to influence computational
efficiency and ensure low parameters. The steps for classification are explained in the
following paragraphs.

The Vision Transformer (ViT) [43] is probably the first entirely transformer-based
design for vision, treating image patches as simple word sequences that are then encoded
using a transformer. The ViT can produce impressive results in image recognition when it
is pretrained on huge datasets. However, ViT has been found to perform poorly in image
recognition without significant pre-training. This is a consequence of the Transformer’s
strong model capability and lack of inductive bias, which causes overfitting. In multiple
subsequent studies, sparse Transformer models designed for visual tasks like local attention
have been investigated to effectively regularize the model’s capacity and enhance its
scalability. One such effective attempt to change transformers by applying self-attention
to shifted, non-overlapping, windows is the Swin Transformer. For the first time, with
a pure vision transformer, this methodology outperformed ConvNets on the ImageNet
benchmark. Window-based attention was found to have limited model capacity, due to the
loss of non-locality, and, thus, scales negatively on bigger data regimes, like ImageNet-21K,
despite being more adaptable and generalizable than the complete attention utilized in
ViT. However, full-attention acquisition of global interactions in a hierarchical network
at early- or high-resolution stages involves computationally intensive effort, since the
attention operator has quadratic complexity. It is still challenging to include global and
local interactions to balance model capacity and generalizability within a computing
budget.

Shift, scale, and distortion invariance are characteristics of convolutional neural net-
works (CNNs) that were transferred to the ViT architecture [44], while retaining the benefits
of Transformers (i.e., dynamic attention, global context, and better generalization). Even
though vision transformers are successful on a large scale, their performance is still inferior
to that of smaller CNN competitors (such as ResNets) when trained on less input. One
rationale might be that CNNs are better suited to addressing vision-related issues because
they naturally possess certain desirable qualities that ViT lacks. By utilizing local receptive
fields, shared weights, and spatial subsampling, a texture compels the capture of this local
structure and, as a result, also achieves some degree of shift, scale, and distortion invariance.
Images, for instance, often contain a strong 2D local structure with highly connected spa-
tially neighboring pixels. Additionally, the hierarchical structure of convolutional kernels
enables the learning of a variety of complex visual patterns, from low-level edges and
textures to higher-order semantic patterns that incorporate local spatial context.

Convolutional Transformer Block contains the convolutional projection as the first
layer. In this study, we proposed that convolutions could be strategically added to the
ViT structure to improve performance and robustness, while maintaining a high level
of computational and memory efficiency. As proof of our hypothesis, we proposed our
convolutional vision transformer (CvT), which integrated convolutions into the transformer
and was intrinsically efficient in terms of parameters and floating-point operations (FLOPs).
Compared to CvT in [44], we integrated an attentional selective fusion (ATTSF) layer
to provide more focus on local and global interactions of pixels. In the original CvT
model, the authors used a complex strategy by integrating token embedding and projection
for Attention hierarchical transformers. However, we used a computationally efficient
approach through an ATTSF mechanism.
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The proposed convolutional vision transformer (CVT) model consists of two compo-
nents: VT and feature learning (FLs). The FL extracts learnable features from the continuous
wavelet transform-based spectrogram (CWTS). The learning features are fed into the VT,
and, for the final detection stage, the VT transforms them into a series of picture pixels.
The feature learning (FL) component is a collection of convolutional operations. The FL
component follows the hierarchy of the Inception v3 architecture. The FL component differs
from the Inceptionv3 model in that it does not have the fully-connected layer (FCL) seen in
the Inceptionv3 architecture, and instead serves the purpose of extracting CWTS features
for the VT component, rather than classification. The result is a CNN without the FCL
layer. In addition, we integrated an attentional selective fusion (ATTSF) consisting of global
attention and local attention, which could add more flexibility when fusing various forms
of information. In this study, we first fused the LBP features (LBP) and the CNN features
(CNN) to get more local and global interactions.

With a kernel size of 3 × 3, the feature learning (FLs) component contained 17 con-
volutional layers. The CWTS images’ low-level features were extracted using the CNN
layers. A step and padding of 1 were used in all CNN layers. All of the layers employed the
ReLU activation function for non-linearity and batch normalization (BN) to normalize the
output features. The BN function normalized changes in the distribution of earlier layers
because these changes had an impact on how the CNN architecture learned. Additionally,
a 2-by-2-pixel window with a stride of 2 was pooled up to five times. The max-pooling
process cut the image’s dimension in half. With the first layer, the convolutional layer’s
(channel’s) width was doubled by a factor of two after each max-pooling operation. The VT
component of this CVT model received a feature map of the CWTS spectrogram as input.
Seven patches were created from the feature maps, which were then embedded into a linear
series of lengths of 1 × 1024. The positional information of the image feature maps was
then retained by adding the embedded patches to the position embedding. The position
embedding had a dimension of 2 × 1024. The position embedding and patch embedding
were received by the VT component, which then sent them to the transformer.

In contrast to the original Transformer, the Vison Transformer merely made use of
an encoder. The MSA and MLP blocks made up the VT encoder. The block of MLP was
an FFN. The transformer’s internal layer was normalized by the Norm. The Transformer
had eight heads of attention. The ReLU nonlinearity and two linear layers made up the
MLP head. A typical CNN architecture’s fully linked layer and the MLP head task were
equivalent. A total of 2048 channels were present in the first layer, and two channels were
present in the last layer, which represented the class of cardiovascular diseases. The CVT
model comprised 38.6 million learnable parameters and a total of 20 weighted layers. For
the final detection goal, Softmax was used on the MLP head output to compress the weight
values between 0 and 1.

An overview of the convolutional visual transformers can be broken down into three
sections: classification of expressions, relationship modeling, and visual word extraction.
The foundation for feature map extraction was pre-trained by using Inception v3. Our
Attentional Selective Fusion fused all the extracted features to produce representative visual
words. Simply flattening the feature map’s spatial dimensions and projecting to the desired
dimension yielded the input visual words. Additionally, we used a multi-layer transformer
encoder to model the connections between various visual feature components. Finally,
using a simple softmax function, the network predicted expression.

As shown in Figure 4, our attentional selective fusion (ATTSF) consisted of global
attention and local attention, which could add more flexibility when fusing various forms
of information. As stated, we first fused the LBP features (LBP) and the CNN features
(CNN), deriving two feature maps (LBP, CNN) retrieved from the backbones, to capture
the next information interaction:

Features_map (i, j) = WL× LBP + WC× Cnn (2)
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where Features_map follows the addition of the LBP and Cnn is the integrated feature maps,
and + denotes element-wise addition. The weights for the initial integration, WL and
WC, were easily produced by two 1 by 1 convolutions. Then, to do both global and local
selective fusion, we chose global average pooling and pixel-wise convolution as the global
context and local context aggregators, respectively. The global context gradually converted
each feature map of size (H × W) into a scalar, making use of the feature inter-channel
interactions. Given that it preserved and highlighted the input pieces’ subtler distinctions,
the local context was a useful addition to the global context. Aggregating local and global
contexts might enable the network to take advantage of several types of information and
more precisely recognize ambiguous signals. Both the global and local contexts were
calculated.

4. Results

PCG signals frequently experience noise from sources, such as lung noises, power
frequency interference, electromagnetic interference from the environment, and interference
from electrical signals with human body signals. The diagnosis of PCG recordings is made
difficult, if not impossible, by these diverse noise components. To remove such noises, we
employed a multi-resolution and windowing technique, by using the continuous wavelet
transform (CWT) along with a collection of high-pass and low-pass filters, which exhibited
exceptional performance in signal denoising. To test and train the proposed system, we
used 2400 PCG sound signals, which were doubled by using data augmentation techniques.
Afterwards, the time–frequency content of PCG signals was represented most clearly among
the three time–frequency representations (short-time Fourier transform (STFT)) to transfer
1D signals into 2D spectrograms. We applied the characteristics of convolutional neural
networks (CNNs) to the Vit architecture [44] to recognize five classes of CVD diseases,
while retaining the benefits of transformers. A machine with 32 GB of RAM and an Intel
Core i7 6700K processor was used for the experiments. The Keras platform and TensorFlow
backend, powered by GPUs, were used by the suggested deep learning model.

4.1. Performance Evalaution

Metrics were used to measure the proposed solutions and the existing solutions.
The first measurement was Accuracy (ACC). This was the metric used to evaluate the
classification models, a way of measuring how well the algorithm classified the data.
Optimizing the model’s accuracy lowered the cost of errors, which can be huge. In addition,
it could be calculated as follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN)× 100 (3)

True Positive (TP) and True Negative (TN) showed that the algorithm correctly pre-
dicted the data, either true or false. As for false, a False Positive (FP) and False Negative
(FN) showed that the algorithm predicted the data incorrectly, whether true or false. The
second measurement was Sensitivity (SE), which was defined as the percent of actual
positive instances that were virtually predicted as positive, indicating that there was a
percent of actual positive instances that were misclassified as negative. It is worth noting
that this measurement implied that a low FN rate almost always accompanied a high recall.
Sensitivity is also known as Recall, True Positive Rate and Hit Rate. The following formula
can be used to compute it:

Recall = TP/(TP + FN)× 100 (4)

The third measurement was Specificity (SP), defined as the percent of true negative to
total negative in the data. The formula for this measurement is as follows:

Speci f icity = TN/(TN + FP)× 100 (5)
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The fourth measurement was Precision, which refers to the ability to correctly identify
positive categories among entire expected positive classes, as measured by the proportion
of all correctly predicted positive categories to all accurately expected positive categories.
Mathematically, it can be represented as follows:

Precision = TP/(TP + FP)× 100 (6)

The fifth measurement was the F1-Score. This metric is important for determining the
exactness and robustness of a classifier. The F1-Score is a critical metric for performance
assessment that considers both recall and precision. It can be calculated as follows:

F1− Score = 2× (precision× recall)/(precision + recall) (7)

4.2. CVT Model Training

The huge PCG signal data were used for training, validation, and testing of the
proposed CVT-Cardio system. Validation was the foundation for both training and testing.
In this study, the CVT models were trained using nine folds and then tested using one-fold.
To guarantee that the whole dataset was covered for training and testing situations, the
process was repeatedly iterated. Since all the patient recordings were combined into one
collection, the selection of each folder was not based on distinct subjects. The training
data included 90% of the original heart sound data and all the augmented data. There
were 3800 heart sound recordings, 2000 of which were enhanced (augmented), and 1800 of
which were the original recordings. By experimental analysis, we selected 2000 recordings
to perform training, testing and validation.

4.3. Fine-Tunning

To enhance the model, we used the vision transformers’ [30] fine-tuning approach.
To fine-tune, an SGD optimizer with a momentum of 0.9 was employed. We pre-trained
our models at a resolution of 224 × 224 and fine-tuned at a resolution of 384 × 384, like
vision transformers. With a total batch size of 512, we refined each model individually over
20,000 steps on the PCG dataset.

4.4. Computational Analysis

To measure the performance of the proposed CVT-Trans system, we computed the
running time. To show that the suggested technique was a computationally efficient model,
it was developed and trained on a GPU-based system, rather than a CPU-based system.
For all datasets, the durations for STFT calculation, CVT with time domain input, and CVT-
Trans with frequency input were computed. On average, this step took 0.4 Ms. Overall, a
CWT spectrogram transformed steps from original 1-D PCG signals taking, on average,
1.2 MS. This point-of-view is visually explained in Figure 5a. An attention-based CVT
transformer architecture was created in this study to categorize the spectrogram into five
groups. On average, this step took 1.2 MS. The key benefits of the proposed technique were
quick classification and STFT computation, excellent accuracy acquired by utilizing all
datasets, and a minimal number of layers. The original TL models contain more parameters
and FLOPs (given in Figure 5b), compared to the suggested CVT-Trans model.
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transferred into 2D CVT-STFT, (b) Classification computational cost.

The outcome was a compact model that required fewer computational support systems
for implementation. Training time complexity = O (n × m × d), where, the parameter
n is the input dimension, d is the batch size, and m is the output dimension. In general,
the proposed CVT-Trans model took linear running time calculated as O (n ×m × d). By
utilizing tensor processing units (TPUs), which were offered by the Google cloud, this time
complexity could be further decreased. In actual use, the TPUs significantly increased
DL model speeds while using less power. This viewpoint will also be covered in further
studies.

4.5. Results Analysis

The authors’ approaches only considered a single representation of heart sound signals,
a spectrogram from the preprocessed heart signals that were captured through PCG signals.
The time–frequency domain image of a sound signal is called a spectrogram. The inputted
heart sound waves were transformed into the appropriate spectrogram before being further
categorized, using transfer learning models, into five categories (Table 2). Table 3 lists the
various approaches that do not include transfer learning. The various classifications of
cardiac disorders demonstrate the accuracy of alternative methods in comparison to transfer
learning models. On the same database, these various methodologies were compared
against one another. However, the outcome of Table 4 demonstrates that the accuracy was
up-to-the-mark.



Diagnostics 2022, 12, 3109 15 of 26

Table 2. Classification results of the Proposed CVT-Trans system model based on 10-fold cross
validation on selected dataset.

Predicted Classes * SE * SP F1-Score * RL * PR * ACC

NRM 100 0.96 0.97 97% 96% 99.4%

AS 0.98 0.95 0.95 95% 94% 99.4%

MVP 99.4 0.94 0.93 97% 95% 99.0%

MS 98.5 0.95 0.94 96% 94% 99.67%

MR 99.5 0.98 0.96 98% 98% 99.5%
* SE: Sensitivity, SP: Specificity, RL: Recall, PR: Precision, ACC: Accuracy, normal (NRM), aortic stenosis (AS),
mitral valve prolapse (MVP), mitral stenosis (MS), and mitral regurgitation (MR).

Table 3. Classification results of the Proposed Model by using data augmentation, 10-fold cross
validation test and by using five stages of cardiovascular disease.

10-Fold Cross Valid * SE% * SP% F1-Score * RL * PR * ACC

1 0.96 0.96 0.97 97% 96% 99.4%

2 0.92 0.92 0.95 95% 94% 98.4%

3 0.94 0.94 0.93 92% 95% 99.0%

4 0.95 0.95 0.94 93% 94% 98.4%

5 0.98 0.98 0.96 95% 98% 98.4%

6 0.97 0.97 0.95 94% 94% 98.0%

7 0.99 0.99 0.98 97% 98% 99.4%

8 0.98 0.98 0.98 96% 98% 99.0%

9 0.99 0.99 0.98 97% 97% 99.4%

10 0.99 0.98 0.99 98% 98% 100.0%
* SE: Sensitivity, SP: Specificity, RL: Recall, PR: Precision, ACC: Accuracy.

Table 4. Classification results of the Proposed Model by using data augmentation, 10-fold cross
validation test and by using two stages of cardiovascular disease.

10-Fold Cross Valid * SE * SP F1-Score * RL * PR * ACC

1 0.95 0.96 0.97 97% 96% 99%

2 0.93 0.95 0.95 95% 94% 98%

3 0.94 0.94 0.96 92% 95% 99%

4 0.95 0.95 0.94 93% 94% 98%

5 0.98 0.98 0.96 95% 98% 98%

6 0.98 0.97 0.96 94% 94% 98%

7 0.99 0.98 0.98 97% 98% 99%

8 0.98 0.98 0.98 96% 98% 99%

9 0.99 0.99 0.98 97% 97% 99%

10 0.99 0.98 0.99 98% 98% 100%
* SE: Sensitivity, SP: Specificity, RL: Recall, PR: Precision, ACC: Accuracy.

Figure 6 displays the accuracy with loss of the proposed training and testing in the
enriched-PCG and the original-PCG databases, respectively, for one transfer learning model.
The 10-fold cross-validation method was used to conduct the experiment. Table 3 shows
these measures for each fold, including training and testing samples: training accuracy
(Acc), testing accuracy (Val Acc), training loss (Loss), and testing loss (Val Loss). The results
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of 10-fold cross-validation on the expanded-PCG database using data augmentation are
shown in Table 3. The results of 10-fold cross-validation on the original database are shown
in Table 4, using two categories. The categorization of five classes using the proposed
approach, both with supplemented data training and with original data training, achieved
an average accuracy of 98%, as shown in Tables 3 and 4. The PCG database’s results
demonstrated the effectiveness of this approach. We additionally assessed the effects of the
PCG augmentation technique using additional background deformation.
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A machine with 32 GB of RAM and an Intel Core i7 6700K processor was used for the
experiments. The Keras platform and TensorFlow backend, powered by GPUs, were used
by the suggested deep learning model. The efficacy of the suggested strategy was tested
in a few trials. The 10-fold cross-validation technique, which reduced the variance of the
estimate for the classifiers, was used to evaluate the classification outcomes. The training
and testing portions of the fragmented data were separated. The data set was split into ten
subsets for the 10-fold cross-validation, making sure that each subset contained the same
number of observations with a certain categorical value. The other night subgroups were
combined to create a training set each time, with one of the 10 subsets being used as the test
set. As a result, each fold was utilized ten times for training purposes and once for testing
purposes. The average of the 10 implementations was the outcome. It confirmed whether
the suggested method outperformed others. Table 2 demonstrates the results obtained by
the proposed CVT-Trans system to classify PCG signals into five classes.

Different strategies were employed in the past to classify PCG signals into AS, MR,
MS, MVP, and N categories by using machine learning, feature engineering, and deep
learning techniques. However, a thorough investigation of the efficacy of classification
across huge datasets was not considered. Therefore, it was more desirable to determine if
the suggested technique could classify PCG signals that contained various combinations of
datasets. Seven distinct classification examples were offered from the datasets to handle
this issue. Table 4 tests all centers on identifying normal and abnormal PCG signals by
using a 10-fold cross-validation test. We achieved the best classification results for two
classes of normal and abnormal PCG signals by using data augmentation techniques.

Figures 7 and 8 show the categorization outcomes for five cases using a 10-fold
cross-validation methodology. The classification results obtained by the classifier for
binary and multi-class classification problems were thoroughly distributed in a confu-
sion matrix. The 10-fold cross-validation’s overall confusion matrices are illustrated in
Figures 7 and 8. As shown in Tables 4 and 5, our study showed that accuracy increased
when distinguishing between binary and multi-class PCG signals. Overall classification
accuracy for the experiment’s five binary classification cases was 100%, 99.00%, 99.75%,
99.75%, and 99.60%, respectively. The robustness of our model was verified and had the
benefit of discriminating features. In addition, the features were automatically retrieved
through the CVT-Trans model, which provided a low misclassification rate.
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Table 5. State-of-the-art classification results for categorizing five classes of PCG signals.

Studies Features Extraction Classifier * ACC

Z.H. Wang et al. [17] CWT + Spectrogram LSTM-RNN 93%

A.M. Alqudah [18] Instantaneous frequency-based features RF and KNN 95%

CVT-Trans Model CWT + Spectrogram CVT + ATTF 99%
* CWT: Continuous wavelet transform, ACC: Accuracy, RF: Random Forest classifier, KNN: k-means clustering
algorithm.

Comparisons were also performed using state-of-the-art approaches, such as those of
Wang RNN et al. [17] and Cheng RF et al. [19]. The authors [17] used LSTM and RNN deep
learning models with the CWT-spectrogram technique to recognize cardiovascular disease
categories. Whereas in [19] the authors used different heart sound features to recognize
two classes of PCG signals, we selected [17,19] because they were easy to implement,
compared to other systems. Figure 8 demonstrates the results obtained by these two
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techniques compared to the proposed CVT-Trans system. The proposed CVT-Trans system
outperformed both techniques.

Additionally, for both the four-class and five-class classifications, we were able to
obtain a total classification accuracy of 98.87% and 98.10%, respectively. In comparison to
cutting-edge methods, the proposed (PRS) system could effectively distinguish between
various classes of PCG signals. In another experiment, we compared recent studies, such
as those of Z.H. Wang et al. [17], and A.M. Alqudah [18], as shown in Table 5. The obtained
result demonstrated that our CVT-Trans outperformed the rest.

Several studies with comparable data sizes to ours have achieved results that were
less accurate than ours. Our model had slightly better accuracy, sensitivity, and specificity
values. Moreover, the past studies developed mostly two-classes of PCG signals by using
hand-crafted features. We employed five-classes of heart sound classification, and the
features were not manually extracted. In our work discriminating characteristics were
automatically picked up by the model, rather than the more laborious process of retrieving
and selecting features manually. Additionally, our model classified each sample in less
than a millisecond. Our approach was, thus, quicker and more suited for quick diagnosis.
Our large data size also required 10-fold cross-validation, whereas 5-fold cross-validation
was employed in previous studies. The size difference between the training set and resam-
pling subsets became smaller with a bigger k value of 10, which lowered the bias of our
suggested method. This demonstrated that our proposed strategy was more dependable.
The confusion matrix revealed that each class’s misclassification rates were less than 3%.
This low misclassification rate attested to the model’s great accuracy.

The suggested CWT spectral loss may be used to train a high-quality model, according
to experimental data. It is difficult to balance the time and frequency (TF) resolutions in
STFT, since they depend on the frameshift and analysis window design. The CWT may be
used to do time–frequency (TF) analysis at various temporal and frequency resolutions. It
is also feasible to modify the CWT’s time–frequency analysis in order to take into account
scales resembling those used in human vision. In this study, employing both STFT and
CWT spectral losses, we examined the training of high-quality features from waveform
models. CWT can consider temporal and frequency resolutions that are closer to human
perception scales than in STFT. The nonlinear nature of PCG signals cannot be adequately
analyzed by the methods now in use in any of these fields. This study, in which the
continuous wavelet transform (CWT), and STFT spectrogram methods were employed
together to analyze nonlinear and non-stationary aspects of the PCG signals, overcomes
these restrictions. To find time–frequency maps, two prominent techniques were used:
the short-time Fourier transform (STFT) and the continuous wavelet transform (CWT).
This illustration demonstrated how the CWT analyzed signals concurrently in time and
frequency, as seen in Figure 9. The example demonstrated how the CWT worked better
than the short-time Fourier transform (STFT) when localizing transients. The example
also demonstrated how to approximate time–frequency localized signals using the inverse
CWT. The phase information of the signal under analysis was not provided by the CWT.
In this paper, we used the CWT and STFT algorithms with the intention of comparing
them to earlier STFT findings. The scale factor and the mother wavelet selection served as
adjustment parameters. When the settings were changed, a combination of CWT and STFT
was used to automatically diagnose CVD disease. Finally, a comparison between STFT
and CWT was suggested by considering the precision of detection and time processing.
Figure 9 illustrates a time–frequency map made possible by CWT and STFT spectrograms.
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Figure 10 shows the comparisons of different CNN-based pretrained models with
the proposed CVT-Trans technique for classification of five categories of cardiovascular
disease. Figure 10a shows the testing/validation/training loss, and Figure 10b represents
the performance measures with computation time. This figure shows the efficiency of
the proposed CVT-Trans model. The relationship between the true positive rate (TPR),
which is known as sensitivity, and the false positive rate (FPR), which is known as 100%
specificity for various classifications, is explained by the receiver operating characteristic
(ROC) curve. The total area under the ROC curve (AUC) can be used to assess how well
the categorization performed. In this work, the AUC was determined for each iteration
and provided as a complete quantitative evaluation of classification performance using
10-fold cross-validation. The ROC curves and associated AUC for all seven instances are
shown in Figure 11 to better clarify the 1D CNN classifier’s performance. Overall, our
classification strategy performed well. The suggested pattern recognition system (PRS)
could successfully distinguish between various PCG signal classes using CWT, spectrogram,
and CVT techniques.
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We also performed experiments to show the importance of the proposed CVT-Trans
system compared to state-of-the-art approaches, such as Cheng-FRED [19], Rath-RF-MFO-
XGB [20], Li-PCA-TSVM [21], Khan-ANN-LSTM [22], Saputra-NN-PSO [24], and Arsalan-
RF [25], in terms of SE, SP, F1-score, RL, PR, and ACC measures. The standard hyper-
parameters were defined, as presented in the corresponding studies. Firstly, the compar-
isons were performed between the proposed method and state-of-the-art techniques by
using data augmentation and a 10-fold cross-validation test, in terms of two stages of CVD
disease, as shown in Table 6. As displayed in Table 6, the Khan-ANN-LSTM [22] system
obtained good classification results (SE of 0.88, SP of 0.87, F1-score of 0.88, RL of 85%, PR of
88%, and ACC of 86%) for CVD heart disease, compared to the other approaches. However,
the proposed CVT-Trans method achieved 100% ACC. Secondly, we also measured the
performance of the CVT-Trans system in terms of the recognition of the five stages of CVD
heart disease. The results are mentioned in Table 7. As mentioned in Table 7, the proposed
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CVT-Trans system outperformed (SE of 0.99, SP of 0.98, F1-score of 0.99, RL of 98%, PR of
98%, and ACC of 100%) the state-of-the-art approaches. The good results obtained were
because we developed a convolutional vision transformer (CVT) architecture based on local
and global attention mechanisms in a continuous wavelet transform-based spectrogram
(CWTS) strategy. The developed strategy was effective and efficient compared to many
state-of-the-art systems.
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Table 6. Performance comparisons between proposed method and state-of-the-art techniques by
using data augmentation, 10-fold cross validation test and by using two stages of CVD disease.

Methods * SE * SP F1-Score * RL * PR * ACC

Cheng-FRED [19] 0.75 0.74 0.75 76% 75% 75%

Rath- RF-MFO-XGB [20] 0.85 0.86 0.84 85% 84% 85%

Li-PCA-TSVM [21] 0.87 0.85 0.86 84% 86% 87%

Khan-ANN-LSTM [22] 0.88 0.87 0.88 85% 88% 86%

Saputra-NN-PSO [24] 0.78 0.76 0.75 77% 77% 77%

Arsalan-RF [25] 0.73 0.74 0.75 74% 74% 75%

Proposed CVT-Trans 0.99 0.98 0.99 98% 98% 100%
* SE: Sensitivity, SP: Specificity, RL: Recall, PR: Precision, ACC: Accuracy.

Table 7. Performance comparisons between proposed method and state-of-the-art techniques by
using data augmentation, 10-fold cross validation test and by using five stages of CVD disease.

Methods * SE * SP F1-Score * RL * PR * ACC

Cheng-FRED [19] 0.70 0.72 0.71 70% 70% 71%

Rath- RF-MFO-XGB [20] 0.73 0.74 0.73 73% 73% 72%

Li-PCA-TSVM [21] 0.74 0.75 0.75 74% 74% 73%

Khan-ANN-LSTM [22] 0.78 0.79 0.77 78% 76% 77%

Saputra-NN-PSO [24] 0.77 0.78 0.76 77% 75% 75%

Arsalan-RF [25] 0.74 0.75 0.76 74% 75% 76%

Proposed CVT-Trans 0.99 0.98 0.99 98% 98% 100%
* SE: Sensitivity, SP: Specificity, RL: Recall, PR: Precision, ACC: Accuracy.

5. Discussion

When one or more of the four heart valves are damaged or flawed, it is called heart
valve disease (HVD). The pulmonary, aortic, mitral, and tricuspid valves are the four valves
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of the human heart [20]. The heart’s mechanical activity and function are good, and blood
backflow is prevented when the heart valves open and seal correctly. HVD can result
from any type of heart valve damage. Aortic stenosis (AS), mitral stenosis (MS), mitral
regurgitation (MR), and mitral valve prolapse are examples of common HVDs.

A full comparison with some excellent recent work is included in Table 1. There are
significant constraints around HSs classification because there are so few clinical datasets.
Additionally, much research has focused on binary categorization. Additionally, a single
database, such as the Open-Heart Sound, was used for most validation and training. There
are no databases with categories of heart sounds that have various labels for the sounds. The
database from the website and the data we acquired ourselves were combined to address
this issue. Five different types of heart sound signal were included in this database: normal,
mitral stenosis, mitral regurgitation, mitral valve prolapse, and aortic stenosis. Additionally,
the proposed methodology was verified in our study using a data augmentation scenario.
This made excellent use of numerous noise recordings and the heart sound amplification
approach.

Compared to other modalities, phonocardiography (PCG) is non-invasive, non-destructive,
repeatable, easy to use, and inexpensive. It can be used for early detection, long-term in-
tensive care, and prevention of diseases associated with the heart. The growth of digital
medical technology and biological technology has increased the demands on the processing
and analysis of heart sound data in key sectors. Automatic analytic techniques for process-
ing medical sequence signals might share the burden and pressure of the medical sector,
and these systems can also provide long-term disease monitoring. They can also assist
medical professionals in better understanding the situation and in developing measures
for illness avoidance and treatment. Cardiologists can improve society’s general health in
this way.

The automatic diagnosis of heart sounds has come a long way, but there are still several
obstacles to be addressed before the technology can be fully developed. For instance, there
are many heart disease classifications that are inaccurate and have large feature extraction
and database limitations. By overcoming these obstacles, deep learning technology may
make a significant advancement in the realm of human health. Our study provides the first
pulmonary hypertension-specific heart sound database, often known as a “heart sound
database of pulmonary hypertension.” Another drawback is that it sometimes takes a long
time to gain heart-sound feature extraction. In order to automatically extract features using
a convolution layer in the heart sound domain, we also proposed 1-D signal transfer to the
2-D image for training and testing. Finally, we suggested using convolutional vision transfer
(CVT) techniques to accurately identify various heart sounds. By using prior information
to address related tasks, this breaks the independent learning pattern. Transfer learning is
crucial in the artificial intelligence field when dealing with tiny sample sizes of data since
pre-trained weights might be more effective in training and achieve greater performance. In
this study, we hypothesized that the diversity of the enriched data may help the networks
generalize to previously unexplored material during the training phase. The robustness of
training can be increased through data augmentation. Transfer learning and conventional
approaches were contrasted. According to numerous performance indicators across all
experiments, transfer learning networks outperformed other basic networks, such as CNN
and the LSTM network. Physicians may be given an effective and precise way to triage
patients using this strategy.

The suggested method significantly influences clinical settings by supporting doctors
in making decisions regarding various cardiac diseases. Our model is effective at predicting
when an anomaly appears in a recorded signal. Additionally, it was evaluated in regard to
people with certain valvular disorders where early diagnosis is difficult. In conclusion, this
paper has the following three contributions: (1) A novel way to transfer heart-sound signals
into 2D spectrograms after preprocessing. Additionally, our approach was tested by using
data augmentation scenarios. (2) An approach to augmentation enhancing the accuracy of
the detection of cardiac disease, particularly in loud situations. (3) CVT learning, which
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is hardly ever used in the field of classifying heart sounds, according to the published
literature. To validate the categorization strategies, we compared them with state-of-the-art
models. For multiple categorizations of heart illnesses, we achieved a low mistake rate
and high accuracy (0.98 accuracy for six categories of heart sounds), which helped to
address multiple classification concerns. With an overall accuracy of 96.25%, a multi-class
composite classifier was created using class-specific closest neighbor distance and class-
specific residuals. Compared to other approaches, ours had a 98.87% overall accuracy
rate.

The following crucial points are just a few of the numerous elements that contributed
to the proposed method’s successful categorization performance. The CVT-Cardio could
improve the performance of the transient characteristics, due to its good and instantaneous
signal adaptation and high time resolution. The adaptable CWT could be used for a variety
of applications, including the detection of HVDs, because of its variable and scalable
time–frequency distribution properties. Based on the derived discriminant features, a
trustworthy 2D CNN model for categorizing various PCG recordings was created. It has a
straightforward structure and minimal computational complexity.

Other approaches provided higher classification accuracy (above 98%). However,
they only conducted two-class research. The accuracy was 97%, which is similar to ours.
Other research in Table 1 also found lower accuracy for two-class studies. The classification
results from three-class investigations are summarized in Table 3. All the papers reported
classification accuracy levels that were lower than ours. The other authors employed a
comparable amount of data to attain the accuracy shown in Table 4, which was identical to
ours, despite our model’s somewhat lower sensitivity and specificity values. Characteristics
from PCG signals were first extracted using conventional machine learning methods, like
the discrete wavelet transform, before being sent to the deep neural network in these other
works. In contrast to our work, where discriminatory characteristics were automatically
selected by the model, this would be more laborious because the features would need to
be retrieved and selected manually. Additionally, our model classified each sample in less
than a millisecond. Our approach is, therefore, quicker and more suited for quick diagnosis.
Additionally, the 10-fold cross-validation for our enormous data size changed to 5-fold
validation. The size gap between the training set and the resampling subsets decreased
with a bigger k value of 10, which reduced the bias of our proposed method. This proves
that our suggested strategy is more reliable. The confusion matrix revealed that each class’s
misclassification rates were less than 10%. This low rate of misclassification attests to the
model’s great accuracy.

The highest accuracy, 99%, was attained by the proposed CVT-Trans with a pre-trained
Xception net. As a result, it is appropriate to create AI-based machinery for the early
detection of cardiovascular diseases. The research’s novelty lies in the use of the CVT-Trans
network model for valvular heart sound analysis, which requires very little time in training
and testing. However, several uses in research papers pertaining to video/image analysis
had previously been discovered.

6. Conclusions

Heart valve disease is becoming more common, and it has a higher fatality rate
than other cardiovascular disorders. Heart valve disease patients’ PCG signals contain
crucial information that can be used for diagnosis. A novel patch-embedding technique
(CVT-Trans) based on convolutional vision transformer divides the PCG signals into five
classes, such as normal (NRM), aortic stenosis (AS), mitral valve prolapse (MVP), mitral
stenosis (MS), and mitral regurgitation (MR). Continuous wavelet transform (CWT) and
spectrogram are used to extract representative features from PCG data. The instantaneous
energy of the PCG signal is first divided into various sub-bands using the CWT. To develop
the CVT-Trans model, we first converted preprocessed 1D signals into 2D through an STFT
spectrogram approach. Following that, an attention-based transformer architecture was
created to categorize the spectrogram into five groups. We used PCG sound recordings
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to analyze and assess the CVD-Trans system. The five-class classification had an overall
average accuracy ACC of 100%, SE of 99.00%, SP of 99%, and F1-score of 98%. The signals
in our study were utilized to train a deep model for the categorization of several heart valve
disease types, including normal, MVP, MS, MR, and AS. In the classification of “normal,” a
high training accuracy of 97% was attained, which yielded the greatest accuracy of 98.20%.
The model’s robustness was confirmed using 10-fold cross-validation. One of the first
experiments to classify heart sounds was based on five categories. Cardiologists may be
able to utilize the suggested model as a diagnostic tool to find heart valve disease. A PCG
signal’s problematic status can be accurately determined using a CNN-based deep learning
algorithm. It proved to be the best method for classifying the various medical disorders
affecting the heart. The efficiency of the suggested method in differentiating between
normal and multi-class diseased heart activity, in comparison to other state-of-the-art
methods, was demonstrated by extensive trials on a real-world PCG database.

Future studies will expand on this technique to use PCG signals to identify stress
and coronary artery disease. In addition, the effect of SARS-CoV19 on cardiovascular
disorders will also be analyzed using the CVD-Trans technique. The CVD-Trans system
can potentially be used to detect HVDs in real-time for smart healthcare and Internet of
Medical Things (IoMT) applications.
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